The present invention is directed to a method of gasification and a gasifier. More specifically, the present invention relates to a method of gasification and a gasifier involving cyclonic gasification.
Generally, operation of known cyclonic reactors can present drawbacks. Due to temperature gradients within a cyclonic reactor, there is a tendency for slag to solidify within the reactor, most particularly in the region near where the slag exits the reactor. For example, in known cyclonic reactors, the slag travels through the slag tap and the slag transfers heat by radiation to a cooler environment such as a quench tank. Heat loss from the slag near the slag tap may be relatively high due to the large thermal gradient between the reactor and the quench tank. High heat loss sharply increases the viscosity of the slag, thereby decreasing the flow rate of the slag and often leads to solidification of the slag. This process of slag cooling, viscosity increase, and solidification can lead to a decrease in thermal efficiency for the reactor, an increase in particulate emissions, and/or operational shutdown.
Known cyclonic reactors may erode walls of the reactor by particle-laden flows having high velocity (for example, velocity in excess of about 200 ft/s). In general, when reactor walls include refractory material as a wall insulating material, eroded portions of the refractory material must be replaced regularly to avoid vessel damage or destruction. The replacement of the portions of the refractor wall results in material costs for the replacement material, operational costs for handling the replacement of the refractory material, and an inability to use the reactor during the replacement of the refractory material.
The effectiveness of certain processes and the range of chemical interaction capable is limited by the volume of the reactor. In general, cyclonic reactors involve high velocity injection and also employ relatively high ratios of heat release per unit of volume (for example, in excess of about 10 MW thermal/m3). In order for solid fuels to burn, the solid fuels must first undergo heating, followed by volatilization, then oxidation. Each process is time-dependent and the volume of the reactor affects the duration of time for the process (i.e., for a given heat release, a larger volume permits a longer duration for the process). The known reactors are constrained by the relatively short gas residence time (for example, about one second) available in the cyclonic reactor. Thus, slow burning fuel feedstocks, such as those with high moisture level (for example, exceeding about 15% by weight) or large particle size (for example, having a dimension of about ¼ inch), may not be oxidized to a desirable degree, resulting in reduced fuel utilization and/or reduced efficiency for combustion and/or gasification.
WO 2005/106327, which is hereby incorporated by reference in its entirety, discloses a cyclonic plasma pyrolysis/vitrification system pyrolyzing and vitrifying waste materials into exhaust gas and slag using a plasma torch. This system reduces toxic materials such as heavy metals. This system melts fly ash after being absorbed at the inner walls of a reactor under the centrifugal force formed by the plasma torch. In this system, the plasma torch is inclined at a predetermined angle with respect to an internal bottom surface of the reactor. This system includes an auxiliary reactor for receiving exhaust gas from the main reactor. This auxiliary reactor is positioned on a side of the main reactor. This system requires an afterburner to increase the temperature of exhaust gases. In addition, this system requires a separator wall exposed to relatively high temperatures on both sides (for example, above about 1400° C.) without a heat sink, thereby risking high temperature failure of this element. This system can also result in erosion of the reactor wall caused by a high power/velocity plasma jet directed between about 20 and 40 degrees above the plane of the surface of impingement.
U.S. Pat. No. 6,910,432, which is hereby incorporated by reference in its entirety, discloses a method for combusting a solid fuel in a slagging cyclone reactor having a burner and a barrel. The method involves injection of two oxidant streams, a first oxidant stream having an oxygen concentration of about 21% by volume and a second oxidant stream having an oxygen concentration greater than the oxygen concentration of the first stream. The two streams are selectively injected into a cyclone combustor whereby mixing of the two oxidant streams is such that a part of the first oxidant stream remains unchanged from its original concentration in the barrel of the combustor. This method does not include a secondary fuel within the cyclonic reactor and can result in erosion of the reactor wall due to high velocity injection.
U.S. Pat. No. 6,968,791, which is hereby incorporated by reference in its entirety, discloses a method for operating a cyclone reactor. The cyclone reactor includes a barrel having a burner end (the front or inlet end) and a throat (the rear or the exhaust end), two burners in communication with the barrel, a stream of primary fuel and primary oxidant, and a stream of secondary fuel and a secondary oxidant, wherein the oxygen concentration of the first oxidant is about 21% by volume and the oxygen of the second concentration is greater than about 21% by volume. The secondary fuel and oxidant are introduced at the burner end. The products of secondary fuel and oxidant combustion exit at the throat end, and the secondary flame generated by the secondary fuel and the oxidant generates a supplemental radiant heat within the cyclone. Additionally, this method can also be prone to refractory erosion.
U.S. Pat. No. 7,621,154, which is hereby incorporated by reference in its entirety, discloses a method for supplying heat to a melting furnace for forming a molten product. A first fuel having an ash component and a first oxidant is introduced into a slagging chamber along with a second fuel and a second oxidant, the second oxidant having an oxygen concentration between about 22% by volume and 100% by volume. At least a portion of the first fuel and a second fuel is combusted within the slagging chamber, while the ash component is collected as a layer of molten slag and is withdrawn from the slagging chamber. Slagging combustor gas effluent is passed from the slagging chamber into a combustion space of the melting furnace at a temperature between about 1000° C. and about 2500° C. to supply heat to form the molten slag.
What is needed is a gasification method and a cyclonic gasifier wherein the temperature and viscosity of slag within the gasifier are maintained, the gasifier is substantially protected from erosion, oxidant(s) use little or no inert gas, gas momentum for gasification is maintained, a compact arrangement provides a high heat release to volume ratio, solid fuel particles can be rapidly heated and/or ignited, and/or residence time and uniformity of temperature distribution can be extended.
One aspect of the present disclosure includes a cyclone gasifier. The cyclone gasifier includes a chamber, a first fuel injector, a burner, and an oxidant injector. The chamber has a first portion proximal to a first end and a second portion proximal to a second end. The first fuel injector is positioned for introducing a first fuel to the first portion of the chamber. The burner includes a second fuel injector positioned for introducing a second fuel to the second portion of the chamber and is configured to direct a flame toward the first portion from the second portion. The first oxidant injector is configured to accelerate the velocity of the first fuel and swirl the first fuel from the first portion toward the second portion. The second portion includes a flow path for a product gas formed by gasification of the first fuel, the second fuel, or a combination thereof. The first fuel includes a solid fuel.
Another aspect of the present disclosure includes a cyclone gasifier. The cyclone gasifier includes a chamber having a first portion proximal to a first end and a second portion proximal to a second end, a first fuel injector positioned for introducing a first fuel to the first portion of the chamber, a burner including a second fuel injector positioned for introducing a second fuel to the chamber, an accelerating oxidant injector configured to accelerate the velocity of the first fuel and swirl the first fuel from the first portion toward the second portion, and an annular oxidant injector. The second portion includes a flow path for a product gas formed by gasification of the first fuel, the second fuel, or a combination thereof. The annular oxidant injector is arranged around the first fuel injector to promote the gasification of at least the first fuel. The first fuel includes a solid fuel.
Another aspect of the present disclosure includes a cyclone gasification method. The method includes providing a chamber having a first portion proximal to a first end and a second portion proximal to a second end, introducing a first fuel to the first portion of the chamber, introducing a second fuel to the chamber and oxidizing the second fuel with oxygen, introducing an accelerating oxidant to accelerate the velocity of the first fuel and swirl the first fuel from the first portion toward the second portion, and one or more of directing a flame toward the first portion from the second portion, the flame being formed by the oxidizing of the second fuel, and promoting gasification of at least the first fuel by introducing an annular oxidant around the first fuel with an annular oxidant injector. The second fuel differs from the first fuel in composition. The first fuel includes a solid fuel.
An advantage of the present disclosure includes control of slag temperature and viscosity, which can reduce or eliminate operational shutdowns due to slag cooling and thickening.
Another advantage of the present disclosure includes introducing solid fuel with a low angle of attack relative to the reactor wall, thereby reducing wall refractory erosion and extending the life of refractory material.
Another advantage of the present disclosure includes maintaining cyclonic action while using an oxidizer with a low concentration of inert gas, thereby reducing the adverse effects of inert gas on gasification processes.
Other features and advantages of the present invention will be apparent from the following more detailed description of the preferred embodiment, taken in conjunction with the accompanying drawings which illustrate, by way of example, the principles of the invention.
Provided is a method of gasification and a gasifier involving cyclonic gasification. Embodiments maintain the temperature and viscosity of slag within the gasifier, substantially protect the gasifier from erosion, utilize oxidant(s) having little or no inert gas, retain gas momentum for gasification, include compact arrangement with a high heat release to volume ratio, rapidly heat and ignite solid fuel particles, and/or extend residence time and uniformity of temperature distribution.
Referring to
Referring to
The gasifier 300 is configured to capture and remove solid particles from the synthetic product gas fuel stream, thereby reducing or eliminating a potential source of pollution and downstream fouling. Moreover, the gasifier 300 may convert inorganic material into slag that is an environmentally benign material. The gasifier 300 can be used to process fly ash from a particulate collection device 206, which may provide an environmentally preferable option to land-filling of fly ash, with potential for commercial sale of the slag (for example, as a blast or grit abrasive, roofing shingle granule, and/or aggregate in asphalt paving). Other suitable processing elements may be included in system 200. For example, system 200 may include a coal source 208 for providing coal to the furnace 102.
Portions of system 100 and/or system 200 may be used with other processes or systems. For example, a heat exchanger 105 may be used to heat a fluid not used in system 100 and/or system 200. Moreover, multiple suitable systems can be combined depending upon process heating and/or power requirements. Also, as will be appreciated, the gasifier 300 can be used in any suitable system having a suitable furnace. For example, the gasifier 300 can be used in the system 303 shown in
Referring to
The first fuel is introduced into a chamber 400 (described below with reference to
In one embodiment, shown in
The counter-current burner configuration permits the secondary flame 416 to entrain gas and particulate and to re-direct the gas and particulate toward the first portion 406, thereby increasing residence time and improving gasifier 300 efficiency. The secondary flame 416 can act as an afterburner for synthetic product gas exiting the gasifier 300. As the synthetic product gas exits the gasifier 300, the synthetic product gas traverses a path 500 that maintains proximity to the secondary flame 416, raising the temperature of the synthetic product gas and intermixing the synthetic product gas with chemically active species. The increasing of the temperature and the intermixing improves gasification efficiency by gasifying fine particulate solid carbon in the synthetic product gas and molecularly reduces (or cracks) tars, if present, in the synthetic product gas. As used herein, the term “tars” refers to high molecular weight organic components formed during the early stage of a reaction, particularly in oxygen-deficient environments. Tars are prone to condense at high temperature, form a sticky substance, and are known to foul downstream process equipment such as valves and heat exchangers.
In one embodiment, the secondary fuel and oxidant are swirled with substantially the same orientation as the tangential flow within the chamber 400. The swirling can cause a radial expansion of the secondary flame 416, which in turn arrests forward momentum of the flame. The swirling can reduce or eliminate secondary flame impingement on the chamber 400 front wall 409. Secondary flame impingement can lead to failure of the wall 402. Broadening the flame can increase flame surface area. Increased flame surface area increases heating from the secondary flame 416 throughout the gasifier 300. In particular, heating of the first end 408 of the chamber 400 is improved with a swirled, counter-current secondary flame 416, by increasing the frontal area of the flame, thereby increasing the radiant view factor between the leading surface of the flame and the first end 408 of the chamber 400 (as shown in
In one embodiment, the secondary burner 414 firing a secondary fuel with oxidant forms a secondary flame 416 that enters the chamber 400 from the second end 412 and is directed toward the first end 408. The secondary burner 414 provides a distributed supplementary heating source to accelerate gasification reactions, stabilize slag flow, reduce carryover of particulate into the product stream, and enhance cyclonic action within the reactor. The secondary burner 414 facilitates at least partial oxidation of secondary fuel within the chamber 400. The secondary fuel may be solid, liquid, and/or gaseous. The at least partial oxidation of the secondary fuel forms a flame 416. The flame 416 is directed along the center axis 301 of the chamber 400. In one embodiment, the flame 416 extends over the length of the slag discharge port 802, providing thermal radiation that maintains the temperature in the second portion 410 above a predetermined temperature (for example, above the melting point of the slag). In one embodiment, the secondary burner 414 is operated with less than the stoichiometric amount of oxygen, to reduce or eliminate the oxidation of surrounding product gas. If the secondary fuel is gaseous, this sub-stoichiometric operation can increase secondary flame radiance, which can improve the efficiency of heating from the secondary flame 416 within the chamber 400.
The exterior of the gasifier 300 may include any suitable material. For example, the exterior may include steel, any other suitable material, or combinations thereof. The exterior of the gasifier 300 may be any suitable geometry for housing the chamber 400. The chamber 400 includes a first portion 406 proximal to the first end 408 and a second portion 410 proximal to the second end 412. All or a portion of the chamber 400 can include refractory material. The refractory material can include alloys of silica, alumina, iron, chromium, zirconium, and/or other high temperature materials. In one embodiment, the chamber 400 (or wall(s) 402 of the chamber 400) can include thermocouples for monitoring the temperature of the first portion 406, the second portion 410, and/or any other suitable portions of the chamber 400. Additionally or alternatively, all or a part of the chamber 400 can be water cooled by circulating water through a water jacket 422 (see
In one embodiment, the chamber 400 is cylindrical in shape and may be referred to as a barrel. In the exemplary chamber 400, the chamber relies upon centrifugal forces and the “barrel” shape to separate product gas from slag. The fuel having an ash component can be introduced with a predetermined velocity. In one embodiment, the predetermined velocity is below about 60 ft/s. In another embodiment, the first fuel is introduced substantially devoid of a transport gas (non-pneumatically).
The low velocity first fuel is contacted by the high velocity oxidant prior to the first fuel contacting the wall 402 of the chamber 400. Contact between the first fuel and the oxidant prior to the first fuel making contact with the wall 402 prevents settling and/or piling of the particles within the reactor, and enables rapid entrainment of the fuel particles due to the much higher velocity of the first oxidant stream. The reduction or elimination of particle settling and/or particle piling permits more even depositing of fuel particles within the chamber 400. Generally, a velocity to pick up already deposited particles (a pickup velocity) is substantially higher than a velocity to retain particles in suspension (a saltation velocity). For example, the pickup velocity can be up to 2.5 times higher than the saltation velocity. Hence, by reducing or eliminating initial particle settling and/or particle piling, the fuel particles are more uniformly deposited within the chamber 400. This more uniform distribution can increase chemical reaction rates and/or enable higher heat release rates for a given volume of the chamber 400 by exposing more particulate surface area to high temperature and reactant gases. The velocity of the oxidant can be between about 200 ft/s and 400 ft/s. This range can (depending upon size and/or shape of the fuel particles) provide enough momentum to maintain the rapid particle entrainment and centrifugal action. In addition, this range can (depending upon size and/or shape of the fuel particles) avoid extremely high supply pressure and/or a tendency to solidify the slag layer by convective cooling.
The chamber 400 permits the gasifier 300 to gasify fuels (for example, solid fuels) with one or more oxidants (for example, oxygen containing gas). The chamber 400 is configured to receive fuel from first fuel injector 302 in the first portion 406 of the chamber 400 proximal to the first end 408 of the chamber 400. The velocity of the fuel introduced through the first fuel injector 302 is accelerated tangentially by the oxidant injected by the accelerating oxidant injector 306.
The acceleration of the first fuel caused by interaction with the oxidant causes both centrifugal and linear shear forces to act on the fuel particles. The linear force maintains the particles in suspension by imparting a rapid increase in particle tangential velocity, thereby distributing the particles throughout the reactor volume, while the centrifugal force (caused by the tangential flow field) imparts radially outward movement of the particles, allowing them to deposit on the wall(s) 402 of the chamber 400. However, as shown in
Referring again to
The desired combination of staged oxidant velocity and injection location can be determined by temperature measurement (for example, by monitoring the temperature within the chamber 400 via thermocouples embedded in the wall 402 or by monitoring exhaust gas temperature via thermocouples positioned in the exhaust gas stream). Additionally or alternatively, optimal reactor operating conditions can be determined by measurement of exhaust gas composition. For example, the composition can be determined by extractive sampling using a gas chromatograph, a mass spectrometer, a Raman spectrometer, or other suitable analytical or spectroscopic instrumentation. Additionally or alternatively, the gas composition can be measured in-situ using optical means such as a non-dispersive infrared analyzer. In one embodiment, the optimal reactor operating condition is determined by determining the consistency and carbon content of the slag. In this embodiment, the solid material exiting the slag discharge port 802 is analyzed. The monitoring of the conditions within the chamber 400 allows adjustments to be made to achieve desired results. The desired results can include substantial uniformity of temperature within the refractory (for example, temperature of the refractory being maintained within a range of about 50° C. or between about 1300° C. and about 1350° C.), achieving a predetermined exhaust gas temperature (for example, about 1400° C.), achieving a predetermined exhaust gas carbon monoxide concentration (for example, 50% by volume), achieving a predetermined exhaust gas particulate content (for example, less than about 10% of the total ash content of the first fuel), and/or achieving a predetermined carbon content in the slag (for example, less than about 10% by weight).
The staged oxidant injectors 308 are positioned at a predetermined distance from the outlet 404 (for example, at about ⅓ or about ⅔ the length of the gas flow path 418). The gas flow path 418 is the distance between the centerline of the first fuel injector 302 and the centerline of the gas outlet 404, as measured along the center axis 301 of the chamber 400.
Fuel injection by the first fuel injector 302 occurs at low velocity (for example, less than about 60 ft/s) and with little or no transport gas (for example, less than about 0.5 lb of transport gas per pound of solid fuel or no transport gas as in gravity feeding). Having little or no transport gas (such as conventional transport gases including air or nitrogen) can prevent the reactor temperature and synthetic gas heating value from being reduced by inert diluents.
In one embodiment, a velocity of the oxidant stream provided by the preliminary oxidant injector 309 is preselected to be below a predetermined velocity that would increase the angle of contact 510 beyond a predetermined angle and undesirably erode the wall(s) 402 of the chamber 400. The velocity of this oxidant stream may also be above a predetermined velocity that would add viscous drag to the centrifugal motion and would retard the momentum of the fuel particles entrained by the first oxidant. In one embodiment, the velocity of this oxidant stream is between about 30 ft/s and about 60 ft/s.
Another embodiment includes the first fuel injector 302 providing fuel that is aspirated with oxidant through an annular oxidant injector 702. As used herein, the term “annular oxidant injector” and grammatical variations thereof refer to an oxidant injector configured to form a ring (either contiguous or non-contiguous) of oxidant.
In one embodiment, the annular oxidant injector 702 is positioned to mix oxidant and fuel prior to these streams contacting the wall(s) 402 of the chamber 400. For example, the fuel nozzle of the annular oxidant injector 702 can be retracted from the wall(s) 402 of the chamber 400 by a predetermined distance X. The predetermined distance X can be selected to be above a distance to initiate ignition at a preselected duration and/or can be selected to form a fuel reaction above a preselected degree. Increasing the predetermined distance X increases the degree of mixing of the fuel and oxidant prior to entering the gasifier 300 and provides earlier initiation of fuel ignition and a greater degree of fuel reaction prior to entering the gasifier 300. Additionally or alternatively, the predetermined distance X can be selected to be below a distance corresponding to an amount of damage caused to the annular oxidant injector 702 and/or the wall(s) 402. Decreasing the predetermined distance X reduces or eliminates damage to the annular oxidant injector 702 and wall(s) 402 of the chamber 400. In one embodiment, the predetermined distance X is less than about twice the hydraulic diameter of the fuel nozzle (the hydraulic diameter being equal to 4 times the cross-sectional area divided by the perimeter). In one embodiment, the predetermined distance X is less than about five times the hydraulic diameter of the fuel nozzle.
In an alternate embodiment, shown in
In one embodiment, a predetermined value of the angle of contact 510 is selected to reduce erosion of material in the wall(s) 402 of the chamber 400. Erosion of the wall(s) 402 is dependent upon the velocity and trajectory of the fuel particles, the size of the fuel particles, the shape of the fuel particles, the hardness of the fuel particles, and/or the relative ductility of the material forming the wall(s) 402. In one embodiment, the velocity and trajectory of the fuel particles are controlled in response to the size of the fuel particles, the shape of the fuel particles, the hardness of the fuel particles, and/or the relative ductility of the material forming the wall(s) 402.
In one embodiment, the preliminary oxidant injector 309 and/or the staged oxidant injector(s) 308 adjust the flame characteristics by adjusting aerodynamics (for example, velocity and trajectory of reactants) of the secondary burner 414. For example, temperature within the chamber 400, chemical kinetics within the chamber 400, and slag flow within the chamber 400 may be adjusted by swirling of fuel from the secondary burner 414 (which may or may not correspond in direction with the swirl of the fuel), swirling of oxidant from the preliminary oxidant injector 309, and/or swirling of oxidant from the staged oxidant injector(s) 308. Such adjustments may widen and/or shorten the secondary flame 416. This may increase the area of the secondary flame 416 resulting in increased projection of radiation from the secondary flame 416 throughout the chamber 400.
The chamber 400 may be configured to promoting a vortex to support the centrifugal forces forcing the gas flow path 418 to swirl along the wall 402 of the chamber 400. The promotion of the vortex may be achieved (in whole or in part) by the geometry of the chamber 400 (for example, being cylindrical), the positioning of the accelerating oxidant injector 306, the positioning of the preliminary oxidant injector 309, the staged oxidant injector(s) 308, the location, design, and operating conditions of the secondary burner 414, and the velocity of the fuel and first oxidant.
Embodiments of the present disclosure can gasify solid fuels to produce a synthetic gas with little or no inert component. For example, one or more of the oxidants in the reactor can be enriched in oxygen concentration relative to air. This can permit the volume of the inert gas (for example, nitrogen) to be reduced or eliminated. However, reducing the volume of the inert gas can reduce gas momentum that drives the cyclonic action. The size of the reactor may be compact enough to permit the reactor to operate with a high heat release (Q) to volume (V) ratio (for example, a ON of greater than or equal to about 10 MW/m3), with the heat release (Q) being a higher heating value of the first fuel and the second fuel and volume (V) being the total reactor volume. Thus, the reactor may be configured for increased utilization of the reactor volume by increased surface area, increased heating and/or ignition of solid fuel particles, increased residence time, and/or increased uniformity of temperature distribution.
While the invention has been described with reference to a preferred embodiment, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
3566809 | Carry et al. | Mar 1971 | A |
4378974 | Petit et al. | Apr 1983 | A |
4489562 | Snyder et al. | Dec 1984 | A |
4565137 | Wright | Jan 1986 | A |
5554202 | Brooker et al. | Sep 1996 | A |
5878700 | Farzan et al. | Mar 1999 | A |
6074623 | Vick et al. | Jun 2000 | A |
6093372 | Wallace et al. | Jul 2000 | A |
6254851 | Kohno et al. | Jul 2001 | B1 |
6269286 | Tse et al. | Jul 2001 | B1 |
6905668 | Kohno et al. | Jun 2005 | B1 |
6910432 | D'Agostini et al. | Jun 2005 | B2 |
6968791 | D'Agostini et al. | Nov 2005 | B2 |
7569208 | Kohno et al. | Aug 2009 | B2 |
20050019252 | Kohno et al. | Jan 2005 | A1 |
20050019253 | Kohno et al. | Jan 2005 | A1 |
20050032148 | Kohno et al. | Feb 2005 | A1 |
20070137537 | Drisdelle et al. | Jun 2007 | A1 |
20080280237 | Just et al. | Nov 2008 | A1 |
20090308334 | Geest et al. | Dec 2009 | A1 |
Number | Date | Country |
---|---|---|
101684939 | Mar 2010 | CN |
0 047 349 | Oct 1983 | EP |
1 115 813 | Apr 2005 | EP |
0 986 623 | Aug 2005 | EP |
2138841 | Oct 1984 | GB |
63264696 | Nov 1988 | JP |
2005106327 | Nov 2005 | WO |
2006128286 | Dec 2006 | WO |
2007131235 | Nov 2007 | WO |
2007131239 | Nov 2007 | WO |
Entry |
---|
Phan, P., et al; “Analysis of Material Loss from Brittle Erosion”; Journal of Enigneering Technology and Education; vol. 5, No. 2; Jun. 2008; pp. 141-155. |
American Coal Ash Association; Resource Bulletin; RB-23; Aug. 2004. |
D'Agostini; “Method and System for Controlled Gasification”, U.S. Appl. No. 12/845,879, filed Jul. 29, 2010. |
Number | Date | Country | |
---|---|---|---|
20120023823 A1 | Feb 2012 | US |