Method for growing a SiC crystal by vapor deposition onto a seed crystal provided on a supporting shelf which permits thermal expansion

Information

  • Patent Grant
  • 9738991
  • Patent Number
    9,738,991
  • Date Filed
    Friday, August 9, 2013
    11 years ago
  • Date Issued
    Tuesday, August 22, 2017
    7 years ago
Abstract
A method of forming an SiC crystal, the method including: placing a SiC seed in a growth vessel, heating the growth vessel, and evacuating the growth vessel, wherein the seed is levitated as a result of a temperature and pressure gradient, and gas flows from a growth face of the seed, around the edge of the seed, and into a volume behind the seed, which is pumped by a vacuum system.
Description
BACKGROUND

1. Field


This disclosure relates to production of silicon carbide with low dislocation density count and to method and apparatus for supporting an SiC seed during physical vaport transport growth.


2. Related Art


Silicon carbide, SiC, is a crystalline semiconductor material, recognized by those familiar with materials science, electronics and physics as being advantageous for its wide band gap properties and also for extreme hardness, high thermal conductivity and chemical inert properties. These properties make SiC a very attractive semiconductor for fabrication of power semiconductor devices, enabling power density and performance enhancement over devices made from more common materials like silicon.


The most common forms of SiC consist of cubic or hexagonal arrangements of atoms. The stacking of Si and C layers can take on many forms, known as polytypes. The type of silicon carbide crystal is denoted by a number denoting the number of repeat units in the stacking sequence followed by a letter representing the crystalline format. For example the 3C—SiC polytype refers to a repeat unit of 3 and a cubic (C) lattice, while a 4H—SiC polytype refers to repeat unit of 4 and a hexagonal (H) lattice.


The different silicon carbide polytypes have some variations in materials properties, most notably electrical properties. The 4H—SiC polytype has the relatively larger bandgap while the 3C—SiC has a smaller bandgap, with the bandgaps for most other polytypes falling in between. For high performance power device applications when the bandgap is larger, the material is more capable, in theory, to offer relatively higher power and thermal conductivity performance.


SiC crystals do not occur in nature and as such must be synthesized. Growth of SiC crystals can be executed by sublimation/physical vapor transport (PVT) or chemical vapor deposition.


Growth of SiC by sublimation is very challenging. Temperatures in excess of 2,000° C. are required to generate vapor stream of Si/C species by sublimation, which places great limitations on the reaction cell components and the furnace design. Originally SiC abrasive materials formed by processes like the Acheson method were used as the source of the Si and C atoms for the crystal, and as the technology matured groups developed means to synthesize SiC source powder specifically for SiC crystal growth. The growth is usually performed in a graphite container within a vacuum chamber. The graphite container is heated by either resistive methods or induction methods. The container is insulated in a careful manner so as to create controlled temperature gradients within the volume. A seed crystal is used, which is usually shaped like a plate or disc. The seed crystal is typically oriented with its growth surface facing the source material. The location of the seed crystal in the container is designed such that when the container is heated, the seed is at a relatively lower temperature position, while the Si—C source materials are at the higher temperature position. When the container is heated to a temperature sufficient to sublime the source material, the vapors will travel towards the low temperature region and condense on the seed crystal. While this appears simple in concept, in practice the growth of SiC is very complicated and recognized by those who practice as very difficult to perform.


Historically, initial progress in SiC sublimation-based crystal growth is described first by Lely (U.S. Pat. No. 2,854,364) whose method of unseeded crystal growth resulted in small hexagonal SiC platelets. In the 1970s and 1980s the art to produce the first crystals of size attractive for producing devices was done in Russia by Tairov and Tsvetkov (Journal of Crystal Growth, 52 (1981) p. 146-50 and Progress in Controlling the Growth of Polytypic Crystals in Crystal Growth and Characterization of Polytype Structures, P. Krishna, ed., Pergammon Press, London, p. 111 (1983)). Their approach used a Lely crystal as a seed, and conducted growth by sublimation and transport as described above. These results showed methods for polytype control by choice of seeds, pressure control and temperature gradients. Later, Davis (U.S. Pat. No. 4,866,005) revealed improvements by judicious selection of source materials and gradient controls. Refinements on the methods of Tairov, Tsvetkov and Davis continue to be revealed to this day.


When methods to produce larger crystals emerged, focus also moved to control defects in the crystals. Defects can be categorized as inclusions and crystal dislocations. The primary crystalline defects in SiC crystals are screw dislocations. Among these are a special case known as a micropipe or hollow core screw dislocations. Additionally, there are basal plane dislocations and threading edge dislocations. These defects originate from many sources. For example, defects contained in the seed crystal can be passed to the newly grown crystal volume. Stresses arising from temperature gradients and thermal expansion mismatch and imparted to the seed and the crystal during growth can result in formation of dislocations. Deviation of the stoichiometry in the sublimation vapor stream from that needed to form SiC can result in unstable polytype growth—in turn leading to polytype inclusions in the grown crystal, which lead to dislocation formation at the polytype boundaries. Even interactions between dislocations can create or eliminate dislocations.


SiC crystals produced by methods identified have large concentrations of dislocations. As of this filing, the commonly reported values of screw dislocation and basal plane concentration are nominally 5,000-10,000/cm2, respectively. The dislocations are most commonly assessed by sectioning the crystal in the plane normal to the crystal axis of symmetry. Etching the exposed crystal surface with molten salt, like potassium hydroxide, at temperatures in the 350-500° C. range will reveal the dislocations. Each dislocation type has a unique shape so they can be uniquely counted. The dislocations are commonly counted and reported as a number divided by the inspection area. This characterization method is useful as it allows for easy correlation of defects contained in planar semiconductor devices formed on the crystal plane. There are many examples in the literature which show that dislocations are not uniformly distributed in the plane of observation. The large count of dislocations makes it very impractical to count every single one, especially as today inspections can be required on sections greater than or equal to the equivalent of 100 mm diameter circles. Therefore, the etched area is sampled to determine the amount of dislocations. However, incorrect sampling methods can lead to errors in the estimation of the dislocation concentration associated with larger crystals. In most reports, the details of the sampling method are not provided, so replication of reported results can often be difficult, if not impossible.


Scientists experienced in solid state physics and semiconductor devices know that dislocations result in device performance below the theoretical properties of the material. Therefore, modern effort focused on improvements of semiconductor SiC crystal quality look to identify and control the factors which can reduce defects originating in crystal growth.


Once large enough crystals are produced, the crystal must be cut and fabricated into wafers in order to be useful to fabricate semiconductor devices using planar fabrication methods. As many semiconductor crystals (e.g., silicon, gallium arsenide) have been successfully developed and commercialized into wafer products, the methods to fabricate wafers from bulk crystals are known. A review of the common approaches to, and requirements for wafer fabrication and standard methods of characterization, can be found in Wolf and Tauber, Silicon Processing for the VLSI Era, Vol. 1—Process Technology, Chapter 1 (Lattice Press—1986).


Due to its hardness, fabrication of SiC into wafer substrates presents unique challenges compared to processing other common semiconductor crystals like silicon or gallium arsenide. Modifications must be made to the machines and the choices of abrasives needs to be changed beyond commonly used materials. It has been reported that substantial subsurface damage is observable on mirror polished SiC wafers, and this can be reduced or removed by using chemical enhanced mechanical polishing methods similar to that used in the silicon industry (Zhou, L., et al., Chemomechanical Polishing of Silicon Carbide, J. Electrochem. Soc., Vol. 144, no. 6, June 1997, pp. L161-L163).


In order to build semiconductor devices on SiC wafers additional crystalline SiC films must be deposited on the wafers to create the device active regions with the required conductivity value and conductor type. This is typically done using chemical vapor deposition (CVD) methods. Techniques for growth of SiC by CVD epitaxy have been published from groups in Russia, Japan and the United States since the 1970's. The most common chemistry for growth of SiC by CVD is a mixture of a silicon containing source gas (e.g., monosilanes or chlorosilanes) and a carbon containing source gas (e.g., a hydrocarbon gas). A key element to growth of low defect epitaxial layers is that the substrate surface is tilted away from the crystal axis of symmetry to allow the chemical atoms to attach to the surface in the stacking order established by the substrate crystal. When the tilt is not adequate, the CVD process will produce three dimensional defects on the surface, and such defects will result in non-operational semiconductor devices. Surface imperfections, such as cracks, subsurface damage, pits, particles, scratches or contamination will interrupt the replication of the wafer's crystal structure by the CVD process (see, for example, Powell and Larkin, Phys. Stat. Sol. (b) 202, 529 (1997)). It is important that the polishing and cleaning processes used to fabricate the wafer minimize surface imperfections. In the presence of these surface imperfections several defects can be generated in the epitaxial films including basal plane dislocations and cubic SiC inclusions (see for example, Powell, et. al. Transactions Third International High-Temperature Electronics Conference, Volume 1, pp. II-3-II-8, Sandia National Laboratories, Albuquerque, N. Mex. USA, 9-14 Jun. 1996).


Defects in SiC are known to limit or destroy operation of semiconductor devices formed over the defects. Neudeck and Powell reported that hollow core screw dislocations (micropipes) severely limited voltage blocking performance in SiC diodes (P. G. Neudeck and J. A. Powell, IEEE Electron Device Letters, vol. 15, no. 2, pp. 63-65, (1994)). Neudeck reviewed the impact of crystal (wafer) and epitaxy originated defects on power devices in 1994, highlighting limitations of power device function due to screw dislocations and morphological epitaxy defects (Neudeck, Mat. Sci. Forum, Vols 338-342, pp. 1161-1166 (2000)). Hull reported shift to lower values in the distribution of high voltage diode reverse bias leakage current when the diodes were fabricated on substrates having lower screw dislocation density (Hull, et. al., Mat. Sci. forum, Vol. 600-603, p. 931-934 (2009)). Lendenmann reported forward voltage degradation in bipolar diodes was linked to basal plane dislocations in the epilayer that originate from basal plane dislocations in the substrate (Lendenmann et. al., Mat. Sci. Forum, Vols 338-342, pp. 1161-1166 (2000)).


Modern technology for growth of 4H—SiC crystals has not been successful to develop a commercial method for a crystal growth process that allows simultaneous control over the gamut of dislocation types.


Various methods disclosed in the prior art are often lacking detail regarding the specific steps employed in the crystal growth or the methods employed to assess the concentration of defects and demonstrate repeatability.


In recent years, it has become desirable to grow larger crystals of silicon carbide and gallium nitride. Currently, most growth processes utilize vapor-based transport methods such as physical vapor transport (PVT) sublimation methods.


For example, crystals of SiC may be grown by PVT in a reaction cell which is typically formed from solid graphite. The cell is typically a right angle cylinder and the grade of graphite is chosen so that its thermal expansion coefficient is close to that of SiC in order to minimize stresses imparted by the differences in the respective coefficients of expansion. The SiC seed crystal is typically provided in a disk shape. The seed crystal is polished and can be coated on the side opposite the growth surface with a material which is stable at the growth temperatures. The presence of a protective carbon coating is important to suppress deterioration of the seed during the crystal growth process, showing that voids (“thermal evaporation cavities”) form in the seed when the protection is absent.


The seed is generally oriented in the reaction cell so that the major axis of the cylindrical reaction cell and the plane of the seed wafer are nominally at right angles to each other. In most PVT reaction cells, the seed crystal is placed above the Si/C source feedstock to aid in controlling vapor flow as well as keeping the seed free of debris and contamination during growth. In this type of PVT reaction cell arrangement, the seed is typically supported above the vapor source by rigid or mechanical attachment of the seed to the lid of the reaction cell. The seed may be attached to the lid by adhesive, cement, retaining rings, and the like. However, the act of mounting the seed to the reaction cell lid or seed holder can lead to undesirable effects during crystal growth.


For example, during the mounting process, scratching of the coated seed back may occur. In addition, a void may be created between the seed and reaction cell ceiling interface during the mounting process. Such occurrences may exacerbate formation of evaporation cavities of the seed backside, resulting in defect formation. Moreover, differences in thermal expansion between the seed and lid can cause stresses in the seed. See, for example, discussion in Japanese patent publication JP 2011-20860.


It is important to support the seed crystal in the reaction cell in a position where the temperature can be controlled to allow condensation of the vapor stream on the seed surface. However, because the reaction cell is typically made from a different material than the seed crystal, the rigid attachment methods often create stresses in the crystal during growth. For example, when the seeds are mounted to the reaction cell or lid using an adhesive, it is possible for the seed to be bent during the mounting process, which results in undesirable stress in the crystal.


As a result, attempts have been made to develop alternative methods for supporting the seed crystal during growth. For example, JP 2011-20860 relies on pressure differentials to create vacuum that holds the seed against the lid. However, contact between the crystal and holder is such that stress on the crystal may still occur during growth. Specifically, pressure differential forces may deform the seed. Moreover, if the lid's surface is not smooth and flat, it will create pressure points on the back surface of the seed, thereby generating strains in the seed. Similarly, any particulate material that may inadvertently be captured between the seed and the lid would create pressure point. Even if the lid is perfectly flat such that the seed perfectly contacts the lid, when seed touches the lid it will cool the backside of the seed, causing it to bow away from the lid and the seal will be broken. Also, the bowing will cause the crystal to be in stress, leading to defects in the growing crystal.


There are other problems with the approach disclosed in the JP 2011-20860. For example, when the seed is elevated due to pressure differential, it blocks gas flow out of the crucible, thus leading to increased pressure and temperature inside the crucible. At least for these reasons it is preferred to maintain the flow of gas out of the crucible. Also, as the crystal grows it gets heavier and at some point will be too heavy for the pressure differential to maintain it against the lid, at which point the crystal would drop, leading to sudden change in the temperature of the crystal and due to resumed flow of gas out of the crucible, reduced pressure and temperature inside the crucible.


Accordingly, there is a need in the art for a method of SiC crystal growth, which results in crystal growth with minimized stress resulting in reduced defects such as micropipes, screw dislocations and basal plane dislocations.


SUMMARY

The following summary is included in order to provide a basic understanding of some aspects and features of the invention. This summary is not an extensive overview of the invention and as such it is not intended to particularly identify key or critical elements of the invention or to delineate the scope of the invention. Its sole purpose is to present some concepts of the invention in a simplified form as a prelude to the more detailed description that is presented below.


Various embodiments of the present invention are directed to support for a seed crystal during vapor-based crystal growth, and more particularly, to a vapor transport growth method wherein the seed crystal is not subjected to external stress during crystal growth.


According to aspects of the invention, a method of forming an SiC crystal is provided, the method comprising: placing a seed crystal, obtained from a bulk crystal of a hexagonal polytype of SiC, on a shelf of an insulated graphite container thereby defining a volume between ceiling of the graphite container and back surface of the seed; placing a source of silicon and carbon atoms in the insulated graphite container, wherein the source of silicon and carbon atoms is for transport to the seed crystal to grow the SiC crystal; placing the graphite container inside a furnace; heating the furnace to a temperature from about 2,000° C. to about 2,500° C.; and, evacuating the induction furnace to a pressure of from about 0.1 Torr to about 100 Torr, while directing gas flow from below the seed crystal through a periphery of the seed crystal and to a center of the volume between ceiling of the graphite container and the back surface of the seed, to thereby facilitate vapor transport from the source of silicon and carbon atoms to the seed, while preventing the back surface of the seed from contacting any part of the graphite container.


According to further aspects, a method is disclosed wherein the temperature and pressure inside a vacuum furnace is maintained to enable SiC crystal growth of 0.1-50 mm thick with nitrogen concentration in the growth being from 1×1015 to 1×1019/cm3.


According to other aspects, a seed for crystal growth is provided, wherein the seed is of a 4H—SiC polytype with offcut from 0-4 degrees toward the (11-20) crystalline orientation and a nitrogen concentration of the seed crystal is from about 1×1016/cm3 to about 8×1018/cm3.


Further aspects provide a 4H—SiC substrate having an averaged micropipe density of less than about 1/cm2, wherein the 4H—SiC substrate has a screw dislocation density of less than about 5,000/cm2, and wherein the 4H—SiC substrate has a basal plane dislocation density of less than about 5,000/cm2 as determined from at least 9 measurements made on the 4H—SiC substrate. These metrics are achieved simultaneously. The substrate can be used as a seed crystal or as a substrate used in fabrication of semiconductor devices.


Yet other aspects provide a reaction cell suitable for SiC crystal growth by physical vapor transport wherein a seed is levitated as a result of a temperature and pressure gradient, and gas flows from a growth face of the seed, around the edge of the seed, and into a volume behind the seed, which is pumped by a vacuum system. The reaction cell is fabricated such that the back surface of the seed is prevented from contacting any part of the container. For example, the lid may be constructed with a peripheral ring extension that is configured to contact the peripheral edge of the seed and prevent that back surface of the seed from touching the surface of the lid.


Additionally, a furnace system for forming an SiC crystal is provided, the system comprising: an insulated graphite container having a lid on top portion thereof, and a shelf for an having an insulated graphite container having a lid on top portion thereof and a shelf for supporting a seed crystal, the shelf being positioned below the ceiling and configured to prevent the back surface of the seed from contacting the surface of the lid; a means for directing gas flow from a periphery of the seed crystal to the center of a volume behind the seed crystal; an evacuation path configured for allowing a vapor flux to pass through the lid; a heater for heating the graphite container to a temperature from about 2,000° C. to about 2,500° C.; vacuum pump for maintaining interior of the graphite container at a pressure from about 0.1 Torr to about 100 Torr; and, a gas inlet for filling the furnace with an inert gas and or doping gas. The lid may include an extension configured for engaging peripheral edge of the seed so as to prevent the back surface of the seed from contacting the surface of the lid.


Further aspects also involve a method for SiC crystal growth by physical vapor transport, comprising placing a SiC seed in a growth vessel, heating the growth vessel, and evacuating the growth vessel, wherein the seed is levitated as a result of a temperature and pressure gradient, but is prevented from having its back surface contact the surface of the lid, and gas flows from a growth face of the seed, around the edge of the seed, and into a volume behind the seed, which is pumped by a vacuum system.


Other aspects and features of the invention would be apparent from the detailed description, which is made with reference to the following drawings. It should be appreciated that the detailed description and the drawings provides various non-limiting examples of various embodiments of the invention, which is defined by the appended claims.





BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in and constitute a part of this specification, exemplify the embodiments of the present invention and, together with the description, serve to explain and illustrate principles of the invention. The drawings are intended to illustrate major features of the exemplary embodiments in a diagrammatic manner. The drawings are not intended to depict every feature of actual embodiments nor relative dimensions of the depicted elements, and are not drawn to scale.



FIG. 1 is a schematic of a prior art arrangement for growth of SiC crystals by physical vapor transport.



FIG. 2 is a schematic of an arrangement for growth of SiC crystals by physical vapor transport according to one embodiment.



FIG. 3 is a schematic of an arrangement for growth of SiC crystals by physical vapor transport according to another embodiment.



FIG. 4 is a schematic of an arrangement for growth of SiC crystals by physical vapor transport according to yet another embodiment.



FIG. 5 is a schematic of an arrangement for growth of SiC crystals by physical vapor transport according to yet another embodiment.





DETAILED DESCRIPTION

The following provides examples of fabrication methods according to embodiments of the invention, which result in substrates of relatively large diameter while exhibiting low micropipes, screw and basal plane dislocations densities. According to disclosed embodiments, the seed is not physically attached to any part of the vessel during growth, but is rather allowed to freely move within constraining boundaries. The constraining boundaries allow horizontal (expansion and contraction) and vertical movement of the seed during processing, but the vertical movement is limited such that the back surface of the seed is prevented from contacting the surface of the lid. In some embodiment, vertical movement is facilitated by creating differential pressure and/or upward flow of gases within the processing vessel. In some embodiments the back surface of the seed is prevented from contacting the surface of the lid by having an extension ring, an o-ring, or similar constract for contacting the peripheral edge of the seed to thereby maintain a space between the back surface of the seed and the surface of the lid. Examples of how to achieve such a growth will be described below with reference to the embodiments illustrated in FIGS. 2-4. Of course, other manners of achieving the results described herein may be used without departing from the scope and/or spirit of this disclosure.


Features of the invention can be understood from the following description of examples of methods for producing a 4H—SiC crystal/wafer exhibiting micropipe density of less than 1/cm2, screw dislocation density of less than 5,000/cm2 and basal plane dislocation density of less than 5,000/cm2. That is, the disclosed crystal exhibits all three low defect density requirements simultaneously. The 4H—SiC crystals can be grown using seeds of diameter as small as 76 mm or up to and exceeding 150 mm diameter.


According to the following embodiments, the process begins with an SiC seed, which is generally in the shape of a circular wafer of about the same diameter as the grown crystal. The seed crystals are polished and/or etched on the carbon face to ensure that the surface is free of mechanical damage. A modified arrangement for crystal growth is utilized, to improve growth on the seed. To fully understand the required modifications, a growth arrangement according to the prior art will be described first.



FIG. 1 shows a generic arrangement for growth of SiC crystals by physical vapor transport, indicative of the prior art. A PVT reaction cell 40 is illustrated, which is configured for SiC crystal growth. The reaction cell 40 is typically formed from a graphite vessel with graphite lid 55. Granulized SiC or silicon and carbon material 42 is placed in the bottom of the cell. Positioned in the upper portion of the vessel is a seed crystal 48, which is physically mounted or bonded to the inside of the lid of the cell. The entire vessel 40 is surrounded with insulation 54, such as graphite felt or foam. The reaction cell 40 is placed in a vacuum furnace 70 which is pumped by a vacuum pump. The vacuum furnace 70 may be comprised of steel if the cell is resistively heated, or it may be comprised of quartz, glass or other dielectric material if the cell is inductively heated. In the embodiments shown, the vacuum furnace is comprised of glass and is heated by an RF induction coil 72. Silicon and carbon evaporate from the source material 42 and condense onto the seed 48. Silicon and carbon that has not condensed onto the seed is diffused out of the reaction vessel and into the vacuum furnace. This diffusion is driven by pressure gradient between the interior of the reaction vessel and the vacuum furnace. Gases that are being injected into the vacuum furnace, such as nitrogen, argon, and dopants, diffuse through the graphite crucible walls and into the reaction vessel. This diffusion is driven by concentration gradient between the vacuum chamber and the interior of the reaction vessel.


Embodiments of the method described herein provide several advantages over prior methods and apparatus for seed crystal growth. As noted above, most prior art connects the seed with contact between the back surface of the seed and the top of the crucible or reaction cell or to the lid. We have found that such contact is unnecessary and may be detrimental to crystal formation. We have unexpectedly found that by minimizing the contact between the seed and the cell, the stresses imparted to the crystal during growth are also minimized. We have also unexpectedly found an improvement in the quality of the grown crystal as evidenced by the low crystal defect density.


Various disclosed configurations of the innovative support minimize damage to or bending of the seed crystal during the mounting process, and because the seed crystal is mechanically decoupled from the reaction cell, the seed crystal may expand and contract independently of the reaction cell during growth. The following are example of the seed support to achieve the improved crystal growth.


Referring now to FIG. 2, a PVT reaction cell according to one embodiment of this invention is illustrated, which is configured for SiC crystal growth. The reaction cell 40 is preferably formed from a graphite vessel, with graphite lid 55. The cell has an interior diameter designated as “d” in FIG. 2, which is slightly larger than the diameter of the seed 48. Additionally, a shelf 46 is provided in the upper portion of the cell. The shelf 46 has an inner diameter, designated “ds” in FIG. 2, which is slightly smaller than the diameter of the seed 48. The shelf 46 can be made as a ring of graphite bonded to the sidewall of the vessel. Alternatively, the shelf 46 may be made integrally with the vessel, e.g., the vessel may be formed with the shelf as integrated part of the interior sidewall of the vessel 40. Of course, the walls of the shelf need not be vertical, but instead may be slanted, as shown by the dotted line, in which case the diameter “ds” can have a larger value on the source side of the shelf than on the seed side.


Shelf 46 is used for supporting the seed crystal 48 at its peripheral edge, without any physical attachment. Rather, seed 48 is simply placed inside the vessel so as to rest on the shelf 46. A graphite retainer, 53 is then placed above the seed without contacting the seed, so as to maintain free space above the seed, but allow the seed freedom to move vertically within the bounded space. The retainer 53 is configured to prevent the seed from moving vertically to an extent that the back surface of the seed would contact the surface of the lid 55. In some embodiments, the retainer 53 is formed as part of the lid 55. For example, the retainer 53 may be a ring extension machined or made integrally to the lid 55.


Optionally, one gas channel ring, 50, is provided at the bottom of the graphite retainer or spacer 53, and another one is provided below the seed, and is used to direct the gas into the gap 31 between the lid 55 and the seed 48. Example of gas channel ring 50 is shown in the callout, illustrating grooves 57 that are provided on the surface facing the seed and which assist in gas flow. It is generally in the shape of a flat washer, having flow channels 57 at its underside, i.e., the side facing the seed 48. The secondary callout illustrates a variant of the ring 50 wherein the grooves 57 are provided on the surface facing the seed and on the outer edge of the ring 50. In this example, the gas exits the cell 40 through the gas collector 61 in lid 55; however, the gas collector can be any geometry or material that increases the conductance of the gas in the direction out of the top of the cell relative to the radial direction. Generally, the arrangement is configured so as to generate gas flow from below the seed 48, around the seed and through the gas channel ring 50 into gap 31, and out of the top of the vessel, as shown by the broken-line arrows in FIG. 2. Both the gas channel fitting and the gas collector should be constructed of a material compatible with the process temperature and chemistry used in SiC crystal growth, e.g., graphite, molybdenum, etc. This overall arrangement allows the seed to be bound in its vertical motion so as to maintain gap 31 between the lid and the back surface of the seed. This way the back surface of the seed never contacts the lid and stresses that may be cause due to such contact are avoided. Also, the arrangement allows the seed to be free to expand and contract without imparting stress to the seed from the cell upon heating and cooling.



FIG. 3 illustrates another embodiment for forming the shelf 46 as integral part of the cell 40. Specifically, the cell 40 is fabricated such that its interior diameter is slightly smaller than that of the seed 48, similar to diameter ds in the embodiment of FIG. 2. The upper part of the cell 40 is fabricated to have a diameter that is slightly larger than the diameter of seed 48, i.e., similar to diameter d in the embodiment of FIG. 2. The difference between the two diameters forms shelf 46, upon which the seed 48 rests. Thus, as can be understood, various configuration can be used to facilitate the shelf 46, and the particular configuration used is not essential, provided that the seed can be placed in a resting orientation on the shelf, such that the seed can expand and contract freely without having physical constraints. Also, the shelf should be positioned a distance below the top of the cell 40 such that the seed may be free move slightly in the vertical direction, but would be prevented from contacting the surface of the lid.


Another variant illustrated in FIG. 3 is of a gas flow ring 50, shown in the callout. As shown in the callout, gas flow ring 50 is in the shape of a flat washer, having bumps or other extensions 58 provided on the bottom surface thereof, so as to generate a setback from the seed 48, such that the gas is directed to flow between the gas flow ring 50 and the seed 48.



FIG. 4 illustrates yet another embodiment, wherein the retainer 53 and the top gas flow ring 50 are incorporated into the lid 55. As shown in the callout, lid 55 is formed integrally with an extension 53, which functions as a retainer ring 53. Gas flow channels 59 are formed at the bottom of the extension 53, to function as channels 57 in the gas flow ring 50. When the lid 55 is placed on top of the vessel, it forms gap 31 between the lid 55 and the seed 48. The bottom gas flow ring allows gas to enter from below the seed. Also, as in the previous embodiments, there's setback space for the seed 48 to move vertically, but its vertical movement is bounded by the extension 53 such that its back surface never touches the surface of the lid. Also, holes 61 are provided in the lid 55 to enable pumping of gas out of the vessel through the lid 55.



FIG. 5 illustrates another variation of the embodiment of FIG. 4. According to the embodiment of FIG. 5, the lid 55 is formed integrally with an extension 53, which functions as a retainer ring 53. Gas flow holes 59 are formed on the sidewall of the extension 53, to function as channels 57 in the gas flow ring 50. The ring 50 placed under the seed has a horizontal channel leading to a vertical channel to enable gas flow from under the seed to above the seed, as illustrated by the broken-line arrows.


The following description is applicable regardless of the specific embodiment utilized. The entire vessel 40 is surrounded with insulation 54 such as graphite felt or foam. The thickness, thermal conductivity, and porosity of the insulation are chosen so as to achieve a desired temperature distribution in the reaction cell. The arrangement for growth of SiC crystals can include a controller 80 for controlling a valve 82 to a nitrogen source 84, which is connected to the vacuum furnace 70, and for controlling a valve 86 to an argon source 88, also connected to the vacuum furnace 70. The vacuum inside vacuum furnace 70 is controlled by valve 90 leading to vacuum pump 92. In this embodiment, controller 80 is configured to control vacuum valve 90 and pump 92 so as to maintain a user-set vacuum level inside the vacuum furnace 70, regardless of argon and/or nitrogen flow into the vacuum furnace. For example, if nitrogen flow into the chamber is increased, controller 80 opens the vacuum valve 90 to increase vacuum pumping from the furnace and maintain the set vacuum level. Controller 80 also controls the operation of the heater, such as the power applied to RF induction coil 72.


Once the cell 40 is loaded with the source material 42 and seed 48, it is sealed and is placed into an RF induction furnace 70. The furnace is evacuated using pump 92, thereby creating a pressure differential between the interior of the furnace 70 and the interior of the cell 40. However, cell 40 is constructed such that the lid does not seal the cell fully hermetically and so, gaseous matter from inside the cell 40 leaks to the interior of furnace 70 and is pumped out. Similarly, the walls of cell 40 are somewhat porous to gases and leak into the interior of furnace 70. Consequently, the pumping action of pump 92 also evacuates the interior of cell 40 by creating the pressure differential between the interior of cell 40 and the interior of furnace 70.


The furnace 70 is then backfilled with a non-oxidizing gas such as argon. Pressure is established near atmospheric pressure (500-700 torr) and the container is heated to approximately 1,600-2,500° C. The pressure is subsequently reduced by proper setting of valve 90, to initiate the vapor transport process. Nitrogen or other dopant gas can be added to the furnace to control the conductivity of the grown crystal. At this point the pressure, temperature and nitrogen flow are controlled to achieve the conditions needed to form the bulk SiC crystal on the seed. The thickness of the remaining crystal grown is in the range of 5-50 mm. Typical values of pressure are in the range of 0.1-10.0 torr and temperature in the range of 2,000-2,500° C.


At conditions of temperature, pressure and gas flow promoting vapor transport from the source to the seed crystal there will be a temperature gradient parallel to the axis of symmetry of the seed, with the growth face at a higher temperature than the back side of the seed. This will cause the seed to bow, since the thermal expansion of the seed will be larger on the growth face than the backside. That is, the area of the seed growth face is now larger than the backside, so that the seed bows with its center being lower than its periphery. Since the seed simply rests of shelf 46 and is not held mechanically or physically, this expansion and bowing is not restricted—the diameter of the vessel at the shelf level is sufficiently large to allow for the seed expansion and there is sufficient space above the seed to allow vertical movement of the seed.


At the same time, a pressure gradient is also established across the seed, parallel to the axis of symmetry of the seed, since the growth cell volume containing the source material is at a higher pressure than the gap, 31, above the seed, due to the differential pumping action of the growth furnace. Since the cell 40 is constructed such that gas flow is upwards via the top portion or the lid, gas from below the seed is flowing upwards and around the periphery of the seed. This combination results in a buoyant force across the seed, levitating the seed or floating it upwards until it contacts the gas channel fitting, 50, on the retainer, 53. The seed will maintain this position until such time that the weight of the crystal grown will overcome the buoyant forces, at which time the seed will flow down and rest again of shelf 46 or, if provided, on ring 50. In its buoyant position, the seed is pressed at its peripheral edge against the retainer ring 53, such that the back surface of the seed cannot contact the bottom surface of the lid.


At the end of the growth process, the pressure is raised to approximately 600 torr. This suppresses any more vapor transport. The furnace is then cooled to room temperature. When the container is opened, a single crystal of SiC with the same polytype as the seed crystal has formed on the seed crystal.


New seeds can be created from crystals grown by this method and used to prepare new crystals. It is found that each generation of crystals grown shows reduced dislocation density.


The beneficial features of this invention are the cell design which includes a seed confinement section defined by the shelf, retainer, and lid/gas collector, a gap above the seed and a gas channel fitting/gas collector to promote the proper gas flow and differential pressure to initiate levitation of the seed.


To assess the dislocations in the crystal, the crystal is sliced and all slices are polished. Micropipes can be tested by first revealing them with molten salt etching and counting via manual and automated methods, or by scanning the polished slice with a laser light scattering spectrometer and an image processing algorithm to count the micropipes. Methods such as this are described in J. Wan, et. al., “A New Method of Mapping and Counting Micropipes in SiC Wafers” Proc. 2005 Int'l Conf. On SiC and Related Materials, Materials Science Forum (2006), p. 447, and J. Wan, et al., “A Comparative Study of Micropipe Decoration and Counting in Conductive and Semi-Insulating Silicon Carbide Wafers,” J. Electronic Materials, Vol. 34 (10), p. 1342. Once the total number of defects is counted, this value is divided by the area of the slice measured to derive a defect density in counts per unit area.


Screw dislocations and basal plane dislocations require either molten salt etching as described above or x-ray topography. Counting is generally done by sampling several areas on the slice and counting the defects. The method typically used to report defects consists of a measurement at the center of the wafer, four sites 90 degrees apart at 50% of the wafer radius and four sites 90 degrees apart at >80% of the wafer radius, and rotated 45 degrees to the points at 50% of the radius. The total counts in each site are summed, and then the sum is divided by the measurement area to derive a defect density in counts per unit area. Since the sampling method of larger wafers is important to assessing the wafer, it is often pertinent to report the site count values as well as the net count of defects.


EXAMPLE

A graphite vessel was formed and loaded with a source mixture of silicon and carbon totaling approximately 850 grams. A 4H-SiC seed of approximately 102 mm diameter was fixtured into the cell per the methods described earlier with the C-face facing the source. The graphite assembly was wrapped with graphite felt and placed into a RF induction heated vacuum furnace. The vacuum chamber was evacuated to base pressure and then backfilled with argon gas. The pressure was set to 600 Torr and the system was heated to achieve a temperature of approximately 2200° C. as read by a pyrometer focused on the lid of the graphite vessel. N2 gas was delivered to the chamber at this time and the pressure was dropped below 10 Torr to initiate sublimation of the source. The N2 gas flow was set to a level to deliver a nitrogen concentration in the crystal within the range 3-8E18/cm3. After about 100 hrs the pressure was raised to 600 Torr to stop sublimation and then the system was cooled to retrieve the crystal.


The resulting crystal, designated AG1045, was 15 mm long on the tapered side. Crystal was sliced into wafers which were 100 mm in diameter and offcut 4 degrees toward <11-20>. The wafers were polished using diamond abrasives to achieve a smooth specular surface. Resistivity measurements were performed on the wafers and the values ranged 0.017-0.020 ohm-cm.


Micopipes in the polished wafers were assessed using laser light scattering spectrometry. The wafer area inspected excluded the outer 2 mm. Table below shows the values measured for total micropipes and micropipe density (MPD).















Total




Micropipes
MPD


Wafer
Observed
(cm−2)







1
4
0.06


2
6
0.09


3
3
0.04


4
1
0.02


5
8
0.11


6
2
0.02


7
6
0.09









One of the slices was etched in molten KOH to reveal the dislocations. Dislocations were measured at 9 sites on the wafer arranged by radius and angle. The test locations consists of a measurement at the center of the wafer, four sites 90 degrees apart at 50% of the wafer radius and four sites 90 degrees apart at >80% of the wafer radius, and rotated 45 degrees to the points at 50% of the radius. Microscope images were taken at each site and the etch pit density (EPD), which is the sum of all threading, basal and screw dislocations), basal plane dislocation density, and screw dislocation density were determined from the images. The data is tabulated below:


















Screw




Basal Plane Dislocation
Dislocation


Site
EPD (cm-2)
Density (cm-2)
Density (cm-2)


















1
5.00E+03
0
0


2
2.44E+03
250
125


3
4.69E+03
188
563


4
2.25E+03
188
500


5
4.94E+03
0
1000


6
2.94E+03
250
750


7
2.75E+03
375
625


8
3.88E+03
250
875


9
4.38E+03
313
375









It should be understood that processes and techniques described herein are not inherently related to any particular apparatus and may be implemented by any suitable combination of components. Further, various types of general purpose devices may be used in accordance with the teachings described herein. The present invention has been described in relation to particular examples, which are intended in all respects to be illustrative rather than restrictive. Those skilled in the art will appreciate that many different combinations will be suitable for practicing the present invention.


Moreover, other implementations of the invention will be apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed herein. Various aspects and/or components of the described embodiments may be used singly or in any combination. It is intended that the specification and examples be considered as exemplary only, with a true scope and spirit of the invention being indicated by the following claims.

Claims
  • 1. A method of forming an SiC crystal using a seed crystal having a given diameter, the method comprising: a. providing a graphite container having an interior diameter which is larger than the diameter of the seed crystal and having a shelf on an interior sidewall of the graphite container with an inner diameter which is smaller than the diameter of the seed crystal;b. placing a source of silicon and carbon atoms in the insulated graphite container, wherein the source of silicon and carbon atoms is for transport to the seed crystal to grow the SiC crystal;c. placing the seed crystal on the shelf and placing a lid on the graphite container to form a ceiling while preventing an exposed back surface of the seed from contacting the ceiling, thereby defining a volume between ceiling of the graphite container and the exposed back surface of the seed;d. providing means for directing gas flow from a periphery of the seed crystal to the volume;e. placing the graphite container inside a furnace;f. evacuating the furnace and filling with inert gas to a pressure above 600 torr;g. heating the furnace to a temperature from about 2,000° C. to about 2,500° C.; and,h. evacuating the induction furnace to a pressure of from about 0.1 Torr to about 100 Torr, while directing gas flow from below the seed crystal through a periphery of the seed crystal and to a center of the volume between ceiling of the graphite container and the back surface of the seed, to thereby facilitate vapor transport from the source of silicon and carbon atoms to the seed while preventing the back surface of the seed from contacting the ceiling.
  • 2. The method of claim 1, further comprising flowing dopant gas into the furnace.
  • 3. The method of claim 2, wherein the temperature and pressure are maintained to enable growth of from 0.1 to 50 mm thick SiC crystal with a nitrogen concentration from 1×1015 to 1×1019/cm3.
  • 4. The method of claim 2, wherein the seed crystal is a 4H-SiC crystal with offcut from 0 to 4 degrees toward (11-20) crystalline orientation and wherein a nitrogen concentration of the seed crystal is from about 1×1016/cm3 to about 8×1018/cm3.
  • 5. The method of claim 1, wherein preventing the back surface of the seed from contacting the ceiling comprises inserting a retaining ring above the seed.
  • 6. The method of claim 5, wherein providing the means for directing gas flow comprises inserting a gas channel ring between the seed and the retaining ring.
  • 7. The method of claim 6, further comprising inserting a second gas channel ring between the seed and the shelf.
  • 8. The method of claim 1, wherein the seed crystal has a diameter of greater than or equal to 76 mm.
  • 9. The method of claim 8, wherein the seed crystal has a diameter of greater than or equal to 150 mm.
  • 10. The method of claim 8, wherein the seed crystal has a diameter of greater than or equal to 76 mm and less than or equal to 150 mm.
RELATED APPLICATION

This application claims priority benefit from U.S. Provisional Application No. 61/761,179, filed Feb. 5, 2013.

US Referenced Citations (134)
Number Name Date Kind
2854364 Lely Sep 1958 A
3691694 Goetz et al. Sep 1972 A
4582561 Ioku et al. Apr 1986 A
4855254 Eshita et al. Aug 1989 A
4866005 Davis et al. Sep 1989 A
4912063 Davis et al. Mar 1990 A
4912064 Kong et al. Mar 1990 A
5192987 Khan et al. Mar 1993 A
5248385 Powell Sep 1993 A
5416465 Lin May 1995 A
5679153 Dmitriev et al. Oct 1997 A
5709745 Larkin et al. Jan 1998 A
5751055 Maruyama et al. May 1998 A
5888887 Li et al. Mar 1999 A
5895583 Augustine et al. Apr 1999 A
5899743 Kai et al. May 1999 A
5942445 Kato et al. Aug 1999 A
5944890 Kitou et al. Aug 1999 A
5954881 Burk, Jr. et al. Sep 1999 A
6196901 Minami Mar 2001 B1
6214108 Okamoto et al. Apr 2001 B1
6261931 Keller et al. Jul 2001 B1
6336971 Nagato et al. Jan 2002 B1
6352927 Kishimoto Mar 2002 B2
6406539 Shigeto et al. Jun 2002 B1
6491836 Kato et al. Dec 2002 B1
6534026 Vodakov et al. Mar 2003 B2
6562127 Kud et al. May 2003 B1
6579359 Mynbaeva et al. Jun 2003 B1
6583050 Wenski et al. Jun 2003 B2
6723166 Kuhn et al. Apr 2004 B2
6786969 Kondo et al. Sep 2004 B2
6827638 Kiuchi et al. Dec 2004 B2
6861360 Wenski et al. Mar 2005 B2
6899762 Wenski et al. May 2005 B2
7064073 U'ren Jun 2006 B1
7081420 Kamata et al. Jul 2006 B2
7294324 Powell et al. Nov 2007 B2
7314520 Powell et al. Jan 2008 B2
7314521 Powell et al. Jan 2008 B2
7316747 Jenny et al. Jan 2008 B2
7323051 Hobgood et al. Jan 2008 B2
7399217 Godshall Jul 2008 B1
7422634 Powell et al. Sep 2008 B2
7438760 Bauer et al. Oct 2008 B2
7449065 Powell et al. Nov 2008 B1
7513819 Kiuchi et al. Apr 2009 B2
7531433 Ellison et al. May 2009 B2
7935614 Schauer et al. May 2011 B2
8075647 Kawasaki et al. Dec 2011 B2
8165706 Pitney Apr 2012 B2
8221549 Maruyama Jul 2012 B2
8384090 Powell et al. Feb 2013 B2
8395164 Murphy et al. Mar 2013 B2
8409351 Robbins et al. Apr 2013 B2
8435866 Nishiguchi et al. May 2013 B2
8436366 Harada et al. May 2013 B2
8716718 Momose et al. May 2014 B2
8860040 Loboda et al. Oct 2014 B2
20020083892 Kondo et al. Jul 2002 A1
20030070611 Nakamura et al. Apr 2003 A1
20040081805 Furihata et al. Apr 2004 A1
20040134418 Hirooka Jul 2004 A1
20040266057 Nagasawa Dec 2004 A1
20050059247 Ikenaka Mar 2005 A1
20060042540 Futatsuyama et al. Mar 2006 A1
20060102068 Tsvetkov et al. May 2006 A1
20060107890 Hobgood et al. May 2006 A1
20060118037 Powell et al. Jun 2006 A1
20060180077 Suda et al. Aug 2006 A1
20060249073 Asaoka et al. Nov 2006 A1
20060267024 Murphy et al. Nov 2006 A1
20060289873 Rowland et al. Dec 2006 A1
20070051979 Kambayashi et al. Mar 2007 A1
20070176531 Kinoshita et al. Aug 2007 A1
20070221614 Sumakeris Sep 2007 A1
20070262322 Nakabayashi et al. Nov 2007 A1
20070290211 Nakayama et al. Dec 2007 A1
20080008641 Leonard et al. Jan 2008 A1
20080217627 Friedrichs et al. Sep 2008 A1
20080220620 Kawada et al. Sep 2008 A1
20080261401 Kerr et al. Oct 2008 A1
20080318359 Yonezawa et al. Dec 2008 A1
20090038541 Robbins et al. Feb 2009 A1
20090085044 Ohno et al. Apr 2009 A1
20090114148 Stahlbush et al. May 2009 A1
20090124060 Nagaya et al. May 2009 A1
20090134405 Ota et al. May 2009 A1
20090302328 Ohno et al. Dec 2009 A1
20090321747 Murphy et al. Dec 2009 A1
20090324896 Kato Dec 2009 A1
20100031877 Gupta et al. Feb 2010 A1
20100080956 Fujimoto et al. Apr 2010 A1
20100119849 Nakamura et al. May 2010 A1
20100291756 Haeberlen et al. Nov 2010 A1
20100295059 Fujimoto et al. Nov 2010 A1
20110031505 Harada et al. Feb 2011 A1
20110056434 Yamaguchi et al. Mar 2011 A1
20110089431 Yagi et al. Apr 2011 A1
20110146565 Ishibashi et al. Jun 2011 A1
20110206929 Nakabayashi et al. Aug 2011 A1
20110233562 Harada et al. Sep 2011 A1
20110237078 Hirooka Sep 2011 A1
20110266556 Leonard et al. Nov 2011 A1
20110284871 Harada et al. Nov 2011 A1
20110306212 Sato et al. Dec 2011 A1
20120025153 Hirose et al. Feb 2012 A1
20120031330 Tsumori et al. Feb 2012 A1
20120060751 Urakami et al. Mar 2012 A1
20120061686 Nishiguchi et al. Mar 2012 A1
20120070605 Sasaki et al. Mar 2012 A1
20120070968 Shibagaki et al. Mar 2012 A1
20120103249 Gupta et al. May 2012 A1
20120114545 Loboda et al. May 2012 A1
20120128892 Toyoda et al. May 2012 A1
20120184113 Inoue et al. Jul 2012 A1
20120241766 Ohtsuka et al. Sep 2012 A1
20120248463 Zhang Oct 2012 A1
20120280254 Muto et al. Nov 2012 A1
20120285370 Gupta et al. Nov 2012 A1
20130020585 Ishibashi Jan 2013 A1
20130029158 Aigo et al. Jan 2013 A1
20130032822 Ishibashi Feb 2013 A1
20130071643 Harada et al. Mar 2013 A1
20130099253 Ohtsuka et al. Apr 2013 A1
20130122692 Imai et al. May 2013 A1
20130126906 Tomita et al. May 2013 A1
20130130593 Kalenian et al. May 2013 A1
20130171402 Straubinger et al. Jul 2013 A1
20130327265 Inoue et al. Dec 2013 A1
20140021481 Lee et al. Jan 2014 A1
20140054619 Tseng et al. Feb 2014 A1
20140220296 Loboda et al. Aug 2014 A1
20140220298 Loboda Aug 2014 A1
Foreign Referenced Citations (182)
Number Date Country
1643188 Jul 2005 CN
101072901 Nov 2007 CN
101155640 Apr 2008 CN
101155676 Apr 2008 CN
101490315 Jul 2009 CN
101599428 Dec 2009 CN
101724344 Jun 2010 CN
101802273 Aug 2010 CN
102107391 Jun 2011 CN
102187019 Sep 2011 CN
102187019 Sep 2011 CN
102257190 Nov 2011 CN
102272351 Dec 2011 CN
102484044 May 2012 CN
102569055 Jul 2012 CN
102656297 Sep 2012 CN
102714143 Oct 2012 CN
102859654 Jan 2013 CN
102899723 Jan 2013 CN
102009016132 Oct 2010 DE
102010029755 Dec 2011 DE
0712150 May 1996 EP
0795050 Jul 1999 EP
0967304 Dec 1999 EP
1039512 Mar 2000 EP
1179620 Feb 2002 EP
0954623 May 2002 EP
1215730 Jun 2002 EP
1225257 Jul 2002 EP
1288346 Aug 2002 EP
1255281 Nov 2002 EP
1306890 May 2003 EP
1354987 Oct 2003 EP
1403404 Mar 2004 EP
1143033 Sep 2004 EP
1491662 Dec 2004 EP
1243674 Jun 2005 EP
1659198 May 2006 EP
1739726 Jan 2007 EP
1785512 May 2007 EP
1852527 Nov 2007 EP
1855312 Nov 2007 EP
1751329 Jan 2008 EP
1901345 Mar 2008 EP
1828446 Mar 2010 EP
1721031 Nov 2010 EP
2264223 Dec 2010 EP
2314737 Apr 2011 EP
1752567 Sep 2011 EP
2371997 Oct 2011 EP
2385158 Nov 2011 EP
2394787 Dec 2011 EP
2395133 Dec 2011 EP
2405038 Jan 2012 EP
2420599 Feb 2012 EP
2484815 Aug 2012 EP
2490247 Aug 2012 EP
2557205 Feb 2013 EP
1797225 Mar 2013 EP
2570522 Mar 2013 EP
2584594 Apr 2013 EP
1790757 Aug 2013 EP
2653591 Oct 2013 EP
H04-223330 Aug 1992 JP
H05-262599 Oct 1993 JP
H06-5567 Jan 1994 JP
H06-316499 Nov 1994 JP
10-50616 Feb 1998 JP
11-121311 Apr 1999 JP
11-135464 May 1999 JP
2000-235941 Aug 2000 JP
2001-508597 Jun 2001 JP
2001-291690 Oct 2001 JP
2002-134375 May 2002 JP
2003086518 Mar 2003 JP
2003086816 Mar 2003 JP
2003-249426 Sep 2003 JP
2004099340 Apr 2004 JP
2004-299018 Oct 2004 JP
2004292305 Oct 2004 JP
2005051299 Feb 2005 JP
2005-508086 Mar 2005 JP
2005064392 Mar 2005 JP
2006-32655 Feb 2006 JP
2006066722 Mar 2006 JP
2006120897 May 2006 JP
2006-143511 Jun 2006 JP
2006-245128 Sep 2006 JP
3854508 Dec 2006 JP
2007-002268 Jan 2007 JP
2007080770 Mar 2007 JP
2007131504 May 2007 JP
2007230823 Sep 2007 JP
2008001537 Jan 2008 JP
2008004888 Jan 2008 JP
2008-053178 Mar 2008 JP
2008053343 Mar 2008 JP
2008-074664 Apr 2008 JP
2008-091656 Apr 2008 JP
2008074661 Apr 2008 JP
2008115034 May 2008 JP
2008-235740 Oct 2008 JP
2008-538542 Oct 2008 JP
2008-311541 Dec 2008 JP
2009-081186 Apr 2009 JP
2009-088223 Apr 2009 JP
2009182126 Aug 2009 JP
2009-256146 Nov 2009 JP
2009-295728 Dec 2009 JP
2010-029995 Feb 2010 JP
2010-045279 Feb 2010 JP
2010-95397 Apr 2010 JP
2010-510946 Apr 2010 JP
2010-99830 May 2010 JP
2010-109151 May 2010 JP
2010-135789 Jun 2010 JP
2010228939 Oct 2010 JP
2010-254521 Nov 2010 JP
2010254520 Nov 2010 JP
2011020860 Feb 2011 JP
2011073915 Apr 2011 JP
2011-121847 Jun 2011 JP
2011-122102 Jun 2011 JP
2011-219297 Nov 2011 JP
2011233932 Nov 2011 JP
2011-243619 Dec 2011 JP
2011-254119 Dec 2011 JP
4845142 Dec 2011 JP
4850960 Jan 2012 JP
2012028565 Feb 2012 JP
2012-051795 Mar 2012 JP
2012-114210 Jun 2012 JP
2012246168 Dec 2012 JP
2013014469 Jan 2013 JP
2013-023399 Feb 2013 JP
10-1999-0087978 Dec 1999 KR
10-2002-0032355 May 2002 KR
10-2004-0097175 Nov 2004 KR
10-2007-0063150 Jun 2007 KR
10-2007-0073954 Jul 2007 KR
10-2008-0007165 Jan 2008 KR
100845946 Jul 2008 KR
10-2009-0031573 Mar 2009 KR
10-2010-0096999 Sep 2010 KR
10-2012-0061920 Jun 2012 KR
10-2012-0101087 Sep 2012 KR
10-2012-0101097 Sep 2012 KR
WO 9301914 Feb 1993 WO
WO 9713013 Apr 1997 WO
WO 0068474 Nov 2000 WO
WO 0079570 Dec 2000 WO
0118872 Mar 2001 WO
WO 0218670 Mar 2002 WO
WO 2004014607 Feb 2004 WO
2004092453 Oct 2004 WO
WO 2005111277 Nov 2005 WO
WO 2006031641 Mar 2006 WO
WO 2006108191 Oct 2006 WO
WO 2006135476 Dec 2006 WO
WO 2007035570 Mar 2007 WO
WO 2007058774 May 2007 WO
WO 2007148486 Dec 2007 WO
WO 2008033994 Mar 2008 WO
WO 2008039914 Apr 2008 WO
WO 2009003100 Dec 2008 WO
2009035095 Mar 2009 WO
WO 2009075935 Jun 2009 WO
WO 2009080177 Jul 2009 WO
WO 2009120505 Oct 2009 WO
WO 2010041497 Apr 2010 WO
WO 2010111473 Sep 2010 WO
2010119792 Oct 2010 WO
WO 2011034850 Mar 2011 WO
2011074453 Jun 2011 WO
WO 2011083552 Jul 2011 WO
WO 2011126145 Oct 2011 WO
WO 2011142074 Nov 2011 WO
WO 2011149906 Dec 2011 WO
WO 2012026234 Mar 2012 WO
WO 2012067112 May 2012 WO
WO 2012144614 Oct 2012 WO
WO 2013062380 May 2013 WO
Non-Patent Literature Citations (82)
Entry
International Application No. PCT/US2013/059064, International Search Report and Written Opinion, Nov. 18, 2013.
Yashiro, H., et al. “Development of Lapping and Polishing Technologies of 4H-SiC Wafers for Power Device Applications.” Materials Science Forum 600-603 (2009): 819-822.
International Application No. PCT/US2013/058996, International Search Report and Written Opinion, Nov. 27, 2013.
Chen, Y., et al. “Studies of the Distribution of Elementary Threading Screw Dislocations in 4H Silicon Carbide Wafer.” Materials Science Forum 600-603 (2007): 301-304.
Chung, G., et al. “4H-SiC Epitaxy with Very Smooth Surface and Low Basal Plane Dislocation on 4 Degree Off-Axis Wafer.” Materials Science Forum 679-680 (2011): 123-126.
Dmitriev, V., et al. “Growth of SiC and SiC—AlN solid solution by container-free liquid phase epitaxy.” Journal of crystal growth 128.1 (1993): 343-348.
Gupta, A., et al. “Status of Large Diameter SiC Single Crystals.” Materials Science Forum 717-720 (2012): 3-8.
Gutkin, M., et al. “Micropipe Reactions in Bulk SiC Growth.” Silicon Carbide—Materials, Processing and Applications in Electronic Devices (2011): 187-206.
Hecht, C., et al. “High-Performance Multi-Wafer SiC Epitaxy—First Results of Using a 10×100mm Reactor.” Materials Science Forum 645-648 (2010): 89-94.
Hull, B., et al., “Development of Large Area (up to 1.5 cm2) 4H-SiC 10 kV Junction Barrier Schottky Rectifiers.” Materials Science Forum 600-603 (2008): 931-934.
Ioffe Physico-Technical Institute. “Electronic archive. New Semiconductor Materials. Characteristics and Properties. NSM Archive—Silicon Carbide (SiC).” http://www.ioffe.ru/SVA/NSM/Semicond/ accessed Aug. 29, 2013 (1998-2001): 1-72.
Kimoto, T., et al. “Homoepitaxial Growth of 4H-SiC (0338) and Nitrogen Doping by Chemical Capor Deposition.” Journal of crystal growth 249.1 (2003): 208-215.
Larkin, D., et al. “Site-Competition Epitaxy for Superior Silicon Carbide Electronics.” Applied Physics Letters 65.13 (1994): 1659-1661.
Lendenmann, H., et al. “Operation of a 2500V 150A Si-IGBT / SiC Diode Module.” Materials Science Forum 338-342 (2000): 1423-1426.
Maximenko, S., et al. “Open Core Dislocations and Surface Energy of SiC.” Materials Science Forum 527-529 (2006): 439-442.
Mynbaeva, M., et al. “Chemical Vapor Deposition of 4H-SiC Epitaxial Layers on Porous SiC Substrates.” Applied Physics Letters 78.1 (2001): 117-119.
Neudeck, P. “Electrical Impact of SiC Structural Crystal Defects on High Electric Field Devices.” Materials Science Forum 338-342 (2000): 1161-1166.
Neudeck, P., et al. “Performance Limiting Micropipe Defects in Silicon Carbide Wafers.” Electron Device Letters, IEEE 15.2 (1994): 63-65.
Ogunniyi, A., et al. “The Benefits and Current Progress of SiC SGTOs for Pulsed Power Applications.” Solid-State Electronics 54.10 (2010): 1232-1237.
Powell, A., et al. “Large Diameter 4H-SiC Substrates for Commercial Power Applications.” Materials Science Forum 457-460 (2004): 41-46.
Powell, J., et al. “Process-Induced Morphological Defects in Epitaxial CVD Silicon Carbide.” physica status solidi (b) 202.1 (1997): 529-548.
Powell, J., et al. “Sources of Morphological Defects in SiC Epilayers.” Transactions Third International High-Temperature Electronics Conference, Sandia National Laboratories 1 (1996): II-3-II-8.
Sanchez, E., et al. “Thermal Decomposition Cavities in Physical Vapor Transport Grown SiC.” Materials Science Forum 338.1 (2000): 55-58.
Schulze, N., et al. “Near-Equilibrium Growth of Micropipe-Free 6H-SiC Single Crystals by Physical Vapor Transport.” Applied Physics Letters 72.13 (1998): 1632-1634.
Tairov, Y., et al. “General Principles of Growing Large-Size Single Crystals of Various Silicon Carbide Polytypes.” Journal of Crystal Growth 52 (1981): 146-150.
Tairov, Y., et al. “Progress in Controlling the Growth of Polytypic Crystals.” Progress in Crystal Growth and Characterization 7.1 (1983): 111-162.
Thomas, B., et al. “Properties and Suitability of 4H-SiC Epitaxial Layers Grown at Different CVD Systems for High Voltage Applications.” Materials Science Forum 457-460 (2004): 181-184.
Tupitsyn, E., et al. “Controllable 6H-SiC to 4H-SiC Polytype Transformation During PVT Growth.” Journal of Crystal Growth 299.1 (2007): 70-76.
Wagner, G., et al. “Vapour Phase Growth of Epitaxial Silicon Carbide Layers.” Progress in Crystal Growth and Characterization of Materials 47.2 (2003): 139-165.
Wan, J., et al. “A Comparative Study of Micropipe Decoration and Counting in Conductive and Semi-Insulating Silicon Carbide Wafers.” Journal of Electronic Materials. 34.10 (2005): 1342-1348.
Wan, J., et al. “A New Method of Mapping and Counting Micropipes in SiC Wafers.” Materials Science Forum 527-529 (2006): 447-450.
Wan, J., et al. “Scaling of Chlorosilane SiC CVD to Multi-Wafer Epitaxy System.” Materials Science Forum 556-557 (2007): 145-148.
Wolf, S., et al. Silicon Processing for the VLSI Era. vol. 1—Process Technology. Ch. 1: Silicon: Single-Crystal Growth and Wafering (1986): 1-35.
Zhou, L., et al. “Chemomechanical Polishing of Silicon Carbide.” Journal of the Electrochemical Society 144.6 (1997): L161-L163.
International Application No. PCT/US2013/077189, International Search Report and Written Opinion, Mar. 21, 2014; 16 pages.
Chen, W., and M. A. Capano. “Growth and characterization of 4H-SiC epilayers on substrates with different off-cut angles.” Journal of Applied Physics 98.11 (2005): 114907; 6 pages.
International Application No. PCT/US2013/077285, International Search Report and Written Opinion, Apr. 7, 2014; 15 pages.
International Application No. PCT/US2013/077291, International Search Report and Written Opinion, Apr. 4, 2014; 16 pages.
Levinshtein, M., et al. (eds.). Properties of Advanced Semiconductor Materials: GaN, AlN, InN, BN, SiC, SiGe. Ch. 5: Silicon Carbide (SiC) (2001): 93-147.
Kordina et al., “SiC epitaxial growth on larger area substrates: History and evolution”, Silicon Carbide Epitaxy, 2012, pp. 1-25.
Hecht et al., “High-performance multi-wafer SiC epitaxy—First results of using a 10×100 mm reactor”, Material Science Form, vols. 645-648 (2010), pp. 89-94.
Myers R L et al., “High Epitaxial Growth Rate of 4H-SiC using Horizontal Hot-Wall CVD,” Materials Science Forum Trans Tech Publications Switzerland, vol. 527-529, 2006, pp. 187-190, XP002728678, ISSN: 0255-5476.
Chen, X.D., et al., “Deep Level Defect in Si-implanted GaN n+-9 Junction,” Applied Physics Letters, vol. 82, No. 21, May 2003, pp. 3671-3673.
Cho, H., et al., “Isolation of AlGaN/GaN HEMTs on Si Substrate Using Argon-Ion Implantation Method,” 16th Korea Semiconductor Conference, 2009, pp. 74-75.
Hardin, C.W., et al., “Fixed Abrasive Diamond Wire Saw Slicing of Single-Crystal Silicon Carbide Wafers,” Materials and Manufacturing Processses, vol. 19, No. 2, pp. 355-367, 2004.
Komiyama, J., et al., “Suppression of crack generation in GaN epitaxy on Si using cubic SiC as intermediate layers,” Applied Physics Letters, vol. 88, No. 9, Feb. 27, 2006.
Oka, T., et al., “A1GaN/GaN Recessed MIS-Gate HFET With High-Threshold-Voltage Normally-Off Operation for Power Electronics Applications,” IEEE Electron Device Letters, vol. 29, No. 7, Jul. 2008, pp. 668-670.
Radeker, W.S., et al., “A Hierarchy of Slurry Reprocessing Options,” TMS Conference Papers, Feb. 14-18, 2010, Seattle, WA.
Yamamoto, N., et al., “Slicing of rotating SiC ingot by electric discharge machining,” Materials Science Forum, Jan. 2013.
Wafer Slicing Technology for Solar Photovoltaic Cells, Applied Materials, Apr. 2011.
International Search Report and Written Opinion in PCT/US2015/015842 dated Jul. 29, 2015.
International Search Report and Written Opinion in PCT/US2015/042590 dated Oct. 16, 2015.
International Preliminary Report on Patentability in PCT/US2014/030022 dated Sep. 24, 2015.
Office Action for Japanese Patent Application No. 2015-523311 dated Jul. 21, 2015.
Office Action for Korean Patent Application No. 10-2015-7013789 dated Jul. 27, 2015.
Final Rejection for Korean Patent Application No. 10-2015-7013789 dated Oct. 12, 2015.
Notice of Reasons for Refusal for Korean Patent Application No. 10-2015-7008990 dated Oct. 7, 2015.
Notice of Allowance in U.S. Appl. No. 14/585,101 dated Oct. 28, 2015.
Notice of Reasons for Rejection for Japanese Patent Application No. 2015-539598 dated Sep. 29, 2015.
Examination Report in European Patent Application No. 13765595.7 dated Oct. 29, 2015.
Second Office Action for Chinese Patent Application No. 201380020805.6 dated Dec. 9, 2015.
Office Action for Korean Patent Application No. 10-2015-7024047 dated Dec. 11, 2015.
Office Action for Japanese Patent Application No. 2015-556941 dated Jan. 12, 2016.
Examination Report for European Patent Application No. 14721146.0 dated Jan. 26, 2016.
Notice of Final Rejection for Korean Patent Application No. 10-2015-7008990 dated Feb. 2, 2016.
Notice of Reasons for Rejection for Japanese Patent Application No. 2015-523311 dated Jan. 26, 2016.
Decision of Patent Grant for Korean Patent Application No. 10-2015-7008990 dated Mar. 17, 2016.
Office Action for Chinese Patent Application No. 201480002722.9 dated Mar. 14, 2016.
Decision of Patent Grant for Korean Patent Application No. 10-2015-7024047 dated Apr. 28, 2016.
First Office Action for Chinese Patent Application No. 201380060888.1 dated Apr. 7, 2016.
Decision of Refusal for Japanese Patent Application No. 2015-539598 dated May 10, 2016.
Office Action for Chinese Patent Application No. 201380074938.1 dated Apr. 26, 2016.
Pre-Examination Report for Japanese Patent Application No. 2015-510524 dated Apr. 15, 2016.
Decision of Refusal for Japanese Patent Application No. 2015-556941 dated May 31, 2016.
International Search Report and Written Opinion for PCT/US2016/015773 dated May 13, 2016.
Summons to Attend Oral Proceedings for European Patent Application No. 13765595.7 dated Jul. 14, 2016.
Examination Report for European Patent Application No. 13818955.0 dated Aug. 16, 2016.
Office Action for Chinese Patent Application No. 201480002722.9 dated Aug. 29, 2016.
Office Action for Chinese Patent Application No. 201380074938.1 dated Oct. 24, 2016.
Office Action for Japanese Patent Application No. 2015-510524 dated Nov. 8, 2016.
Decision on Appeal for U.S. Appl. No. 14/058,167 dated Dec. 1, 2016.
Tupitsyn, E. Y., et al: “Controllable 6H-SiC to 4H-SiC polytype transformation during PVT growth”, Journal of Crystal Growth, vol. 299, pp. 70-76, 2007.
Related Publications (1)
Number Date Country
20140220298 A1 Aug 2014 US
Provisional Applications (1)
Number Date Country
61761179 Feb 2013 US