Method for infusing an immunotherapy agent to a solid tumor for treatment

Information

  • Patent Grant
  • 11090460
  • Patent Number
    11,090,460
  • Date Filed
    Thursday, December 13, 2018
    6 years ago
  • Date Issued
    Tuesday, August 17, 2021
    3 years ago
Abstract
A method for delivering an immunotherapy agent to a tumor includes advancing the delivery device into a vessel of a patient, and infusing the agent under pressure into the vessel to penetrate the tumor. The delivery device prevents reflux of the agent toward non-treatment sites.
Description
BACKGROUND OF THE INVENTION
1. Field of the Invention

The present invention relates devices and methods for administering immunotherapy to a patient, particularly for the treatment of patients with solid tumors.


2. State of the Art

For many years the basic treatment for cancer has consisted of surgery, chemotherapy and radiation therapy. More recently, drugs that target cancer cells, such as imatinib (Gleevac®) and trastuzumab (Herceptin®) by guiding themselves to specific molecular changes seen in the cancer cells have also become standard treatments for a number of cancers.


Now, therapies that take advantage of a patient's immune system to fight their cancers are in clinical use or in development and gaining interest. There are four basic versions of immunotherapy products today, which can be used alone or in combination. These immunotherapy products include immunomodulators, vaccines, modified cells and check-point inhibitors.


Immunomodulators include IL-2, IL-7, IL-12, Interferons, G-CSF, Imiquimod, CCL3, CCL26, CXCL7, cytosine phosphate-guanosine, oligodeoxynucleotides, and glucans, and all operate to systemically increase the patient's immune response. Vaccines comprise an infusion of antigen directly or antigen-activated dendritic cells, which activate the patients white blood cells. Modified cells are blood-derived immune cells from the patient which are engineered and incubated to grow to a large number of modified cells that specifically target a region of tumor. This approach, referred to as adoptive cell transfer (ACT) has generated remarkable responses in the small clinical trials in which it has been investigated. Check-point inhibitors include anti-PD-1, which block the patient's natural suppression of T-cells, thereby effectively increasing the time and number of T-cells that can fight the cancer.


Immunotherapy practice has had success in “liquid” tumors, such as leukemia, where the therapy is easily delivered to the site of the cancer via intravenous injection or infusion. Further, immunotherapy has promise for solid tumors. However, delivery of the therapy with sufficient penetration into the tumors to allow the therapy to interact with the cancer cells remains a challenge.


In current practice, the immunotherapy agents are delivered by oral dosage, venous delivery, or catheter-based delivery to an organ of interest with a traditional microcatheter.


In venous delivery, the agent is generally infused into the patient through a peripherally inserted central catheter (PICC) or a port implanted in the patient. PICCs and ports can remain in place for several weeks or months and are used to reduce the number of times that a patient is subject to needle sticks and to reduce risk of tissue and muscle damage that can occur with a standard IV. While a PICC or port may be suitable for infusion of a chemotherapy treatment agent, which is generally circulated throughout the patient's circulation system, or for a “liquid” tumor, it may not be suitable for delivery of the immunotherapy agent to a solid tumor.


Microcatheters can be delivered to localize delivery of the agent to the vascular system adjacent the organ of interest. However, various issues prevent desirable agent uptake at the tumor.


SUMMARY

In accord with the invention, systems and methods are provided for delivery of immunotherapy agents to a solid tumor.


Solid tumors undergo angiogenesis, which creates unique vascular characteristics compared to healthy tissue. Solid tumors often have regions of high vascular density, a reduced resistance to flow, and a high capacitance for therapy. As a result of the unregulated tumor angiogenic process, a dense branching network of vessels is formed in the tumor. The formed dense network has a different vessel structure than health vessels. A healthy vessel is encased in endothelium, which maintains vascular tone and provides resistance to flow. Tumor vessels have a deteriorated endothelium and lack tone; this results in lower resistance to flow. Also, the dense network of vessels creates a relatively large vascular volume for the relative volume of the tissue, permitting a significantly higher volume of therapy to be deposited in the tumor compared to healthy tissue. Further, solid tumors can exhibit regions of low pressure within their vessels where there is robust flow, and they can have regions of high pressure where the vessels have become leaky and there is poor to no endogenous arterial flow. For these reasons, it is important to have an infusion system that does not rely solely on endogenous arterial flow to control delivery.


In view of these identified factors, it is believed by the inventors that immunotherapy systems and procedures should achieve several goals. Highly targeted delivery to the organ of interest should be obtained without the chance of back-flow into non-target regions. There should be the ability to increase pressure during infusion to overcome regions of high pressure in the tumor. More therapy should be deposited in the tumor than in the healthy tissue. The immunotherapy dose should deliver a maximum amount of intact cells or antibodies (a maximum percentage of healthy immunotherapy dose), and a minimum amount of damaged, destroyed cells, or activated cells during infusion. In addition, it is desirable to have a catheter deliver a homogenous immunotherapy dose across a vessel, including across a vessel branching network.


In accord with these goals, an immunotherapy treatment is delivered through a fully or partially deployed intravascular pressure modulating anti-reflux catheter, such as a catheter with microvalve and filter or a balloon catheter.


Further, the anti-reflux catheter may have one or more additional attributes that are advantageous in the delivery of cancer treatments. By way of example, these attributes can include the following. The catheter has self-centering capability that provides homogeneous distribution of therapy in a downstream branching network of vessels. The catheter includes an anti-reflux capability that blocks the retrograde flow of therapy into proximal non-target vessels proximal to the catheter tip. The system allows forward flow at a reduced pressure when not infusing therapy to target regions of low vascular resistance (tumor) and high capacitance (tumor). The valve and filter or a fully deployed balloon allows the pressure to be increased during infusion, with the pressure being modulated by the physician. An increased pressure allows increased delivery to and penetration into regions of the tumor that are naturally subject to high pressure conditions. According to another aspect of the device, a coating can be provided to the hub and inner lumen of the catheter to inhibit T-cell activation. According to yet another aspect of the device, a coating or construct can be provided to the hub and inner lumen of the catheter that optimize the wall shear during delivery of the therapy. By optimizing the wall shear gradient, the T-cells are subject to reduced trauma and maintain integrity during delivery while preventing clumping of the cells.


In accord with the method described herein, the treatment catheter is used in a method of delivering an immunotherapy agent. The treatment includes infusion of immunotherapy cells, anti-bodies, and/or other biologics into the target organ, including a selected location within the target organ, while maintaining a high integrity of the cells of the immunotherapy dose.


A modified Seldinger technique is used to introduce the catheter into the patient. More particularly, the catheter is introduced into the femoral artery, and then advanced up the aorta to the celiac axis. The catheter is then advanced into the left gastric artery. From the left gastric artery, the distal end of the catheter is advanced to the target artery that feeds the target organ. The catheter is then deployed for organ targeting.


Then, the immunotherapy agent, including immunotherapy T-cells, is infused under pressure through the catheter and to the tumor. Infusion is continued until the prescribed dose of immunotherapy is completely infused. This can occur at sub-stasis, at stasis, or beyond stasis. At stasis, the immunotherapy can be infused without any reflux. Further, by either manually inflating the balloon of a balloon catheter to block flow past the balloon in the vessel, or by use of the dynamically adjustable anti-reflux infusion catheter with valve, the immunotherapy can be infused beyond stasis without concern that the immunotherapy will reflux back toward the vessels of non-target tissues and/or organs.


After the infusion of the immunotherapy agent, the anti-reflux catheter is removed from the patient, and an arterial closure device is used to close the arterial access point for the procedure.





BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1A-1C are schematic diagrams of one exemplary embodiment of an apparatus of the invention respectively in an undeployed state, a deployed partially open state with blood passing in the distal direction, and a deployed fully open state where the blood flow is static.



FIGS. 2A-2B are schematic diagrams of an exemplary embodiment of a valve having a braid component that is covered by a filter component in respectively an undeployed state and a deployed state.



FIGS. 3A-3C are schematic diagrams of another exemplary embodiment of an apparatus of the invention respectively in an undeployed state, a deployed partially open state with blood passing in the distal direction, and a deployed fully open state where the blood flow is static.



FIG. 4 is a graph showing the performance of the apparatus of FIGS. 1A-1C compared to the performance of a prior art end-hole catheter in delivering immunotherapy agent under pressure to target tissue.



FIG. 5 is a schematic cross-sectional view across an embodiment of the anti-reflux catheter including oleophobic and/or a hydrophobic surface geometry (shown not to scale).



FIG. 6 is a schematic cross-sectional view across an embodiment of the anti-reflux catheter including a surface geometry that minimizes wall shear (shown not to scale).





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

With reference to the human body and components of the devices and systems described herein which are intended to be hand-operated by a user, the terms “proximal” and “distal” are defined in reference to the user's hand, with the term “proximal” being closer to the user's hand, and the term “distal” being further from the user's hand, unless alternate definitions are specifically provided.


Methods are provided herein for infusing an immunotherapy agent to a tumor site for treatment of cancer. The method includes use of an infusion catheter device. In accord with the method, the infusion catheter device is an infusion microcatheter with valve and filter, or filter valve, (hereinafter “microvalve catheter”) or an infusion microcatheter with a distal balloon (hereinafter “balloon catheter”), with both such devices collectively referred to herein as “anti-reflux infusion catheters”. Whereas the balloon catheter is manually operable between expanded (open) and collapsed (closed) configurations, the microvalve catheter is a dynamic device, automatically moving between open and closed configurations based on local fluid pressure conditions to which the proximal and distal surfaces of the valve and filter are subject.


By way of example, referring to FIGS. 1A through 1C, an embodiment of an anti-reflux catheter 202 includes a flexible microcatheter 204 having a proximal end (not shown) and a distal end 206. A lumen 208 extends through the microcatheter and has a distal orifice 210, preferably coaxial with the axis of the catheter. A filter valve 212 is attached to the distal end 206 of the microcatheter, such that the orifice 210 opens into the proximal end 214 of the filter valve 212. The filter valve 212 comprises a braided polymeric filamentary structure 216 that is adapted to dynamically open and close based on the relatively proximal and distal pressure conditions of the fluid to which the filter valve is subject within a vessel 224. At least a portion of the braided filamentary structure 216 includes a polymeric filter 218 thereon, preferably deposited by electrospinning or electrostatic deposition to bond with the braided filamentary structure (FIGS. 1A and 2B). The filter 218 has a pore size not exceeding 500 μm. With such pore size, the filter 218 construct is semi-porous and allows elevated pressure differentials (greater distal pressure) to dissipate. The microcatheter 204 is adapted for use with an outer delivery catheter 220, with the inner microcatheter 204 extending through the outer delivery catheter 220. Longitudinal displacement of the outer catheter relative to the inner catheter (in the direction of arrow 221) allows the filter valve 212 to move from a non-deployed configuration (FIG. 1A) to a deployed configuration (FIG. 1B). Once deployed, the filter valve 212 is adapted to dynamically move between open and closed configurations (FIG. 1B to FIG. 1C and back) based upon fluid pressure forces 222, 226 applied to the proximal and distal sides of the filter valve when the device 202 is deployed within a vessel 224 (FIG. 1C). Such a microvalve catheter is disclosed in detail in incorporated U.S. Pat. Nos. 8,500,775 and 8,696,698 and in U.S. Pat. No. 9,968,740. In addition, microvalve catheters structurally and functionally similar to that described are sold by Surefire Medical, Inc., Westminster, Colo., as part of the Surefire Infusion System.


Turning now to FIGS. 3A through 3C, as another example, another microvalve catheter 302 includes a catheter 304 having a first lumen 306 for infusing the embolizing agent out of a distal orifice 308, and a second inflation lumen (not shown). An elastic membrane 310 is provided about a distal portion 312 of the catheter 304 and has a lower surface in communication with the inflation lumen to define a fluid inflatable balloon 314. FIG. 3A shows the balloon 314 in a collapsed configuration, FIG. 3B shows the balloon 314 in a partially expanded configuration (i.e., expanded insufficiently to reach across the vessel walls 224), and FIG. 3C shows the balloon 314 in a fully expanded configuration (i.e., expanded fully to the vessel walls 224). It is preferred that the balloon 314 be proximally offset from the distal tip 316 of the catheter 304 and particularly the orifice 308 of the first lumen. The balloon catheter device 302 may additionally include multiple balloons, optionally of different sizes, and either radially or longitudinally offset. The balloon is preferably provided for use with an outer delivery catheter 330, as discussed below.


In accord with one preferred aspect of the anti-reflux infusion catheter used in the method, the anti-reflux infusion catheter is adapted to self-center within a vessel 224. This can be accomplished with the expandable balloon 314 being centered about the balloon catheter, or the expandable valve 212 (FIGS. 1B and 1C) expanding radially symmetrically about the catheter. The self-centering of the anti-reflux infusion catheter is effected to promote homogeneous distribution of immunotherapy in a downstream branching network of vessels. That is, in distinction from a single streamline of delivery from a prior art end-hole catheter, a centrally-positioned anti-reflux infusion catheter creates turbulent flow in a vessel to mix the infused immunotherapy evenly across the cross-sectional area of a vessel.


In accord with another preferred aspect of the anti-reflux infusion catheter, such catheter blocks retrograde flow of immunotherapy into proximal non-target vessels proximal to the catheter tip, or a balloon or a valve on the catheter. In accord with yet another aspect of the anti-reflux infusion catheter, the valve and filter or a partially deployed balloon permit forward flow at a reduced pressure when not infusing the immunotherapy to target regions of low vascular resistance (tumor) and high capacitance (tumor).


In accord with yet another aspect of the anti-reflux infusion catheter, the valve and filter or a fully deployed balloon allows the infusion pressure to be increased during infusion, with the pressure being modulatable by the physician. By increasing the pressure, an increase in delivery and penetration of the immunotherapy into regions of the tumor that are naturally subject to high pressure conditions is effected. Referring to FIG. 4, it is seen that a microvalve anti-reflux catheter of the type available from Surefire Medical, Inc. allows infusion to generate substantially elevated distal pressures relative to a prior art end-hole catheter (with no anti-reflux structure or function). The pressure applied by the Surefire device dissipated after infusion, as fluid was able to diffuse back through the semi-porous membrane of the valve and filter. The end-hole catheter was unable to generate pressure gradients distal to the tip during infusion as fluid was able to reflux, equalizing fluid pressure in the system.


In accord with another aspect of the anti-reflux catheter (with reference to device 202, but equally applicable to device 302), an inner lining of the lumen 208 of the catheter 204 is tailored to minimize surface energy and interaction with T-cells. The inner lining of the lumen 208 is coated with one or more polymers 230 (FIG. 2A) such as silicones and silicone oils, polypropylene, polyethylene and fluoropolymers such as polytetrafluoroethylene, polyvinylidene fluoride, fluorinated ethylene-propylene, and perfluorinated elastomers.


In accord with another aspect of the anti-reflux catheter, as an addition to or alternative to the coating described above, an inner lining surface 232a of the lumen 208a of the catheter 204a is structurally patterned to create an oleophobic and/or a hydrophobic surface geometry (FIGS. 2A and 5). In accord with such aspect, the inner lining surface 232a can be patterned to include micro and/or nano scale ridges, pillars, or other features that generate a rough hydrophobic surface. Such features may be further chemically modified with fluoropolymers 230a (such as perfluoropolyether), silicones, or other chemical entities to enhance the hydrophobic effect and/or to provide oleophobic functionality to the surface features.


In accord with another aspect of the anti-reflux catheter, as an addition to or alternative to the coatings and structure described above, the inner lining surface of the lumen can be modified with hydrogels that can act to inhibit T-cell attachment and/or activation or can be used as protectants against fluid-mechanical cell damage. Such polymers are typically hydrophilic and electrically neutral and hydrogen bond acceptors rather than hydrogen bond donors. Examples include but are not limited to polyvinyl alcohol (PVA) and chemically modified PEO-(X) hybrid gels, poly(ethylene) glycol (PEG) and chemically modified PEG-(X) hybrid gels (PEGylated polymers), polyethylene oxide (PEO) and chemically modified PEO-(X) hybrid gels, Poly(acrylic acid), 2-hydroxyethyl methacrylate (HEMA)-based polymers and zwitterionic hydrogels such as phosphobetaine, sulfobetaine, and carboxybetaine which can display variable surface activity based on environmental pH. Furthermore, natural or artificial protein layers can be provided to the lumen surface or the hydrogel network and can have specific cellular stabilizing activities. Such a protein layer can include cytokines. Such polymers and proteins can be attached in cross-linked networks or in “brushy” layers of polymer strands. Methodology includes self-assembled monolayers of short chain hydrogels or peptides attached to the inner surface of the lumen of the catheter using a variety of covalent or ionic bonding chemistry and layer-by-layer self-assembly of tailored functionality nano-composite gels.


In accord with another aspect of the anti-reflux infusion catheter, an alternative or additional coating or structure can be provided to the hub and/or inner lining of the lumen of the catheter that will reduce the wall shear stress during delivery of the immunotherapy. Such a coating or structure can include a hydrophilic coating, a hydrophobic coating, or a small ‘brushy’ fibrous layer that acts to create a region of low flow or no flow along the wall of the catheter. By way of example, the coating can include glycocalyx or a glycocalyx-mimicking layer. Glycocalyx is a glycoprotein-polysaccharide, including several carbohydrate moieties of membrane glycolipids and glycoproteins. In the vascular endothelial tissue, the glycocalyx is a small, irregularly shaped layer extending approximately 50-100 nm into the lumen of a blood vessel, but can be up to 11 μm thick. The coating in the lumen can mimic such biological structure.


In accord with another aspect of the anti-reflux infusion catheter, wall shear stress along the lumen can be modified by incorporating a surfactant coating 230b into the lining of the lumen of the catheter. By way of another example, the wall shear stress can be modified by extruding the lumen 208b of the catheter 204b with features, including elongate channels 234b formed along length and open to the central lumen 208b (FIG. 6). Such channels 234b are either smaller or bigger than the diameter of a T-cell (e.g., less than 7 microns across or greater than 20 microns across) so as to prevent the channels from engaging and filling with captured T-cells. Thus, the channels will fill with fluid, but no T cells, and the peripheral channel-fluid will guide passage and minimize wall shear stress of the T cells through the lumen.


By way of another example, the catheter is negatively charged. In one manner, this can be effected by providing wires or even a braid about the lumen and applying a negative voltage to the wires (with no/negligible current during use); in another manner, the catheter is constructed with a negatively charged polymer. The immunotherapy agent is naturally negatively charge (as T-cells have negative surface charge). Then, the T-cells in the immunotherapy agent are repelled from the lumen surface to thereby reduce the shear stress upon infusion of the immunotherapy agent.


In accord with another manner of reducing wall shear stress, the wall shear stress can be minimized by incorporating a surfactant into the immunotherapy fluid containing the T cells. The surfactant can be premixed with the immunotherapy agent or mixed at the time of infusion.


In accord with a preferred procedure for delivering immunotherapy, a modified Seldinger technique is utilized. In the Seldinger technique, which is well-known and will not be described in detail herein, access is provided from the thigh to the femoral artery and a guidewire is advanced to the aorta. The delivery catheter is advanced over the guidewire. Once the delivery catheter is at its intended position, and in accord with the method herein, an anti-reflux infusion catheter is advanced through the delivery catheter and over the guidewire.


Then the anti-reflux catheter is displaced relative to the delivery catheter to expose the distal end of the anti-reflux catheter. The anti-reflux catheter is deployed.


Then, the immunotherapy agent, including immunotherapy T-cells, is infused through the catheter and under pressure to the tumor. Infusion is continued until the prescribed dose of immunotherapy is completely infused. This can occur at sub-stasis, at stasis, or beyond stasis. At stasis, the immunotherapy can be infused without any reflux. Further, by either manually inflating the balloon of a balloon catheter to block flow past the balloon in the vessel, or by use of the dynamically adjustable anti-reflux infusion catheter with valve, the immunotherapy can be infused beyond stasis without concern that the immunotherapy will reflux back toward the vessels of non-target tissues and/or organs.


After the infusion of the immunotherapy agent, the anti-reflux catheter is removed from the patient, and an arterial closure device is used to close the arterial access point for the procedure.


There have been described and illustrated herein embodiments of apparatus and methods for delivering immunotherapy agents to target tissue. While particular embodiments of the invention have been described, it is not intended that the invention be limited thereto, as it is intended that the invention be as broad in scope as the art will allow and that the specification be read likewise. Particularly, it is intended that various aspects presented with respect to coated and structurally modifying the lining of the lumen described herein can be used either alone, or in combination with one or multiple other aspects. To such extent, it is anticipated that the lumen can include both structural modification and/or multiple coatings to facilitate passage of the immunotherapy with the least negative effect on the T-cells in the therapy. It will therefore be appreciated by those skilled in the art that yet other modifications could be made to the provided invention without deviating from its spirit and scope as claimed.

Claims
  • 1. A method of delivering an immunotherapy agent through a target vessel in communication with a tumor, the vessel having an initial intravascular pressure, the method comprising: a) providing an immunotherapy delivery device including a flexible catheter having a proximal end and a distal end, an expandable fluid pressure modulating structure fixed adjacent the distal end of the catheter, an agent delivery lumen extending through the catheter and opening to an orifice at a distal tip of the catheter;b) providing an immunotherapy agent;c) inserting said device into the target vessel;d) using the expandable fluid pressure modulating structure to modulate the pressure in the target vessel relative to the initial intravascular pressure; and thene) infusing the immunotherapy agent through the lumen and out of the orifice of the catheter.
  • 2. The method of claim 1, wherein: the pressure in the vessel is modulated to reduce the pressure in the vessel relative to the initial intravascular pressure prior to infusing.
  • 3. The method of claim 1, wherein: the immunotherapy agent is infused at a pressure different than the initial intravascular pressure.
  • 4. The method of claim 1, further comprising: while infusing, preventing reflux of the immunotherapy agent into non-target vessels.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a divisional of U.S. Ser. No. 15/064,158, filed Mar. 8, 2016, which claims priority under 35 U.S.C. § 119(e) to U.S. provisional application Ser. No. 62/140,651, filed Mar. 31, 2015, the entire contents of which are hereby incorporated herein by reference.

US Referenced Citations (305)
Number Name Date Kind
926591 Odquist Jun 1909 A
4261341 Hakim Apr 1981 A
4311587 Nose Jan 1982 A
4655771 Wallsten Apr 1987 A
4714460 Calderon Dec 1987 A
4738740 Pinchuk Apr 1988 A
4800016 Yang Jan 1989 A
4840542 Abbott Jun 1989 A
4883459 Calderon Nov 1989 A
4892518 Cupp Jan 1990 A
5030199 Barwick Jul 1991 A
5071407 Termin et al. Dec 1991 A
5084015 Moriuchi Jan 1992 A
5234425 Fogarty Aug 1993 A
5397307 Goodin Mar 1995 A
5411478 Stillabower May 1995 A
5419763 Hildebrand May 1995 A
5484399 DiResta Jan 1996 A
5484412 Pierpont Jan 1996 A
5496277 Termin et al. Mar 1996 A
5607466 Imbert et al. Mar 1997 A
5668237 Popall Sep 1997 A
5688237 Rozga Nov 1997 A
5725571 Imbert et al. Mar 1998 A
5755769 Richard et al. May 1998 A
5759205 Valentini Jun 1998 A
5810789 Powers Sep 1998 A
5836905 Lemelson Nov 1998 A
5836967 Schneider Nov 1998 A
5893869 Barnhart Apr 1999 A
5895399 Barbut Apr 1999 A
5897567 Ressemann Apr 1999 A
5910154 Tsugita Jun 1999 A
5911734 Tsugita Jun 1999 A
5957974 Thompson et al. Sep 1999 A
6001118 Daniel Dec 1999 A
6010522 Barbut Jan 2000 A
6027520 Tsugita Feb 2000 A
6042598 Tsugita Mar 2000 A
6051014 Jang Apr 2000 A
6059745 Gelbfish May 2000 A
6152946 Broome Nov 2000 A
6165199 Barbut Dec 2000 A
6165200 Tsugita Dec 2000 A
6168579 Tsugita Jan 2001 B1
6179851 Barbut Jan 2001 B1
6231551 Barbut May 2001 B1
6235044 Root May 2001 B1
6258120 McKenzie Jul 2001 B1
6306074 Waksman Oct 2001 B1
6306163 Fitz Oct 2001 B1
6309399 Barbut Oct 2001 B1
6361545 Macoviak Mar 2002 B1
6371969 Tsugita Apr 2002 B1
6371971 Tsugita Apr 2002 B1
6383206 Gillick May 2002 B1
6395014 Macoviak May 2002 B1
6416495 Kriesel Jul 2002 B1
6436112 Wensel Aug 2002 B2
6443926 Kletschka Sep 2002 B1
6478783 Moorehead Nov 2002 B1
6485456 Kletschka Nov 2002 B1
6485502 Don Michael Nov 2002 B2
6499487 McKenzie Dec 2002 B1
6500203 Thompson et al. Dec 2002 B1
6520183 Amar Feb 2003 B2
6530935 Wensel Mar 2003 B2
6533800 Barbut Mar 2003 B1
6537294 Boyle Mar 2003 B1
6537297 Tsugita Mar 2003 B2
6540722 Boyle Apr 2003 B1
6551303 Van Tassel Apr 2003 B1
6565552 Barbut May 2003 B1
6569146 Werner May 2003 B1
6582396 Parodi Jun 2003 B1
6589264 Barbut Jul 2003 B1
6592546 Barbut Jul 2003 B1
6607506 Kletschka Aug 2003 B2
6620148 Tsugita Sep 2003 B1
6635070 Leeflang Oct 2003 B2
6641553 Chee Nov 2003 B1
6641572 Cherkassky Nov 2003 B2
6645220 Huter Nov 2003 B1
6645222 Parodi Nov 2003 B1
6645223 Boyle Nov 2003 B2
6652555 VanTassel Nov 2003 B1
6652556 VanTassel Nov 2003 B1
6656351 Boyle Dec 2003 B2
6673090 Root et al. Jan 2004 B2
6676682 Tsugita Jan 2004 B1
6689150 VanTassel Feb 2004 B1
6692508 Wensel Feb 2004 B2
6692509 Wensel Feb 2004 B2
6692513 Streeter Feb 2004 B2
6695813 Boyle Feb 2004 B1
6695858 Dubrul Feb 2004 B1
6699231 Sterman Mar 2004 B1
6702834 Boylan Mar 2004 B1
6706053 Boylan Mar 2004 B1
6706055 Douk Mar 2004 B2
6730108 VanTassel May 2004 B2
6746469 Mouw Jun 2004 B2
6746489 Dua et al. Jun 2004 B2
6802317 Goebel Oct 2004 B2
6818006 Douk Nov 2004 B2
6830579 Barbut Dec 2004 B2
6837898 Boyle Jan 2005 B2
6855154 Abdel-Gawwad Feb 2005 B2
6866677 Douk Mar 2005 B2
6887258 Denison May 2005 B2
6896690 Lambrecht May 2005 B1
6902540 Dorros Jun 2005 B2
6908474 Hogendijk Jun 2005 B2
6911036 Douk Jun 2005 B2
6936060 Hogendijk Aug 2005 B2
6939362 Boyle Sep 2005 B2
6964670 Shah Nov 2005 B1
6964673 Tsugita Nov 2005 B2
6974469 Broome Dec 2005 B2
6989027 Allen Jan 2006 B2
6997898 Forman Feb 2006 B2
7044958 Douk May 2006 B2
7044966 Svanidze May 2006 B2
7066946 Douk Jun 2006 B2
7101396 Artof Sep 2006 B2
7118600 Dua et al. Oct 2006 B2
7162303 Levin Jan 2007 B2
7169164 Borillo Jan 2007 B2
7172614 Boyle Feb 2007 B2
7172621 Theron Feb 2007 B2
7214237 Don Michael May 2007 B2
7217255 Boyle May 2007 B2
7223253 Hogendijk May 2007 B2
7232452 Adams Jun 2007 B2
7232453 Shimon Jun 2007 B2
7241304 Boyle Jul 2007 B2
7250041 Chiu Jul 2007 B2
7252675 Denison Aug 2007 B2
7279000 Cartier Oct 2007 B2
7306575 Barbut Dec 2007 B2
7322957 Kletschka Jan 2008 B2
7326226 Root et al. Feb 2008 B2
7331973 Gesswein Feb 2008 B2
7338510 Boylan Mar 2008 B2
7344549 Boyle Mar 2008 B2
7364566 Elkins Apr 2008 B2
7371249 Douk May 2008 B2
7425215 Boyle et al. Sep 2008 B2
7503904 Choi Mar 2009 B2
7537600 Eskuri May 2009 B2
7544202 Cartier Jun 2009 B2
7572272 Denison Aug 2009 B2
7582100 Johnson Sep 2009 B2
7585309 Larson Sep 2009 B2
7591832 Eversull Sep 2009 B2
7604650 Bergheim Oct 2009 B2
7647115 Levin Jan 2010 B2
7653438 Deem Jan 2010 B2
7658747 Forde Feb 2010 B2
7686781 Vinten-Johansen Mar 2010 B2
7833242 Gilson Nov 2010 B2
7842084 Bicer Nov 2010 B2
7846139 Zinn Dec 2010 B2
7853333 Demarais Dec 2010 B2
7873417 Demarais Jan 2011 B2
7922691 Kletchka Apr 2011 B2
7935075 Tockman May 2011 B2
7937143 Demarais May 2011 B2
7938799 Epstein May 2011 B2
7993324 Barbut Aug 2011 B2
8162879 Hattangadi Apr 2012 B2
8172792 Wang May 2012 B2
8182446 Schaeffer May 2012 B2
8200312 Degani Jun 2012 B2
8251948 Goldman Aug 2012 B2
8257384 Bates Sep 2012 B2
8262611 Teesllink Sep 2012 B2
8397578 Miesel Mar 2013 B2
8409166 Wiener Apr 2013 B2
8500775 Chomas et al. Aug 2013 B2
8696698 Chomas et al. Apr 2014 B2
8696699 Chomas Apr 2014 B2
8821476 Agah Sep 2014 B2
8852207 Simpson Oct 2014 B2
9023010 Chiu May 2015 B2
9061117 Roberts Jun 2015 B2
9078982 Lane Jul 2015 B2
9089341 Chomas Jul 2015 B2
9126016 Chomas Sep 2015 B2
9174020 Allen Nov 2015 B2
9205226 Allen Dec 2015 B2
9265914 Fulton, III Feb 2016 B2
9364358 Cohen Jun 2016 B2
9457171 Agah Oct 2016 B2
9463304 Agah Oct 2016 B2
9474533 Mathis Oct 2016 B2
9539081 Chomas Jan 2017 B2
9550046 Allen Jan 2017 B1
9597480 Purdy Mar 2017 B2
9604037 Fischer, Jr. Mar 2017 B2
9770319 Pinchuk Sep 2017 B2
9808332 Chomas Nov 2017 B2
9844383 Allen Dec 2017 B2
9913959 Purdy Mar 2018 B2
9968740 Pinchuk et al. May 2018 B2
10092742 Genstler Oct 2018 B2
10099040 Agah Oct 2018 B2
10130762 Allen Nov 2018 B2
20010041862 Glickman Nov 2001 A1
20020042593 Mickley Apr 2002 A1
20020161390 Mouw Oct 2002 A1
20020161394 Macoviak Oct 2002 A1
20030097114 Duriel May 2003 A1
20030125790 Fastovsky Jul 2003 A1
20030187474 Keegan Oct 2003 A1
20030212361 Boyle Nov 2003 A1
20030233115 Eversull et al. Dec 2003 A1
20040054315 Levin Mar 2004 A1
20040068288 Palmer Apr 2004 A1
20040143185 Zatezalo Jul 2004 A1
20040215142 Matheis Oct 2004 A1
20040220511 Scott et al. Nov 2004 A1
20040220521 Barbut Nov 2004 A1
20040220609 Douk Nov 2004 A1
20040225354 Allen Nov 2004 A1
20040256584 Zimmerling Dec 2004 A1
20040260333 Dubral Dec 2004 A1
20050004517 Courtney et al. Jan 2005 A1
20050010285 Lambrecht Jan 2005 A1
20050015048 Chiu Jan 2005 A1
20050015112 Cohn Jan 2005 A1
20050119688 Burgheim Jun 2005 A1
20050149112 Barbut Jul 2005 A1
20050261759 Lambrecht Nov 2005 A1
20060124140 Forsell Jun 2006 A1
20060167537 Larsson Jul 2006 A1
20060173490 LaFontaine Aug 2006 A1
20060177478 Humes Aug 2006 A1
20060264898 Beasley Nov 2006 A1
20070106324 Gamer May 2007 A1
20070179590 Lu Aug 2007 A1
20070239135 Barbut Oct 2007 A9
20080031740 Miyazaki Feb 2008 A1
20080031962 Boyan et al. Feb 2008 A1
20080033341 Grad Feb 2008 A1
20080039786 Epstein Feb 2008 A1
20080097273 Levin Apr 2008 A1
20080103523 Chiu May 2008 A1
20080147007 Freyman Jun 2008 A1
20090018498 Chiu Jan 2009 A1
20090076409 Wu Mar 2009 A1
20090088676 Murata Apr 2009 A1
20090198321 Sutermeister et al. Aug 2009 A1
20090222035 Schneiderman Sep 2009 A1
20090234266 Solomon Sep 2009 A1
20090234283 Burton Sep 2009 A1
20090264819 Diethrich Oct 2009 A1
20100168785 Parker Jul 2010 A1
20100331815 Alt Dec 2010 A1
20110046542 Evans Feb 2011 A1
20110130657 Chomas Jun 2011 A1
20110137399 Chomas Jun 2011 A1
20110218494 Gerrans et al. Sep 2011 A1
20110288529 Fulton Nov 2011 A1
20110295114 Agah Dec 2011 A1
20110295203 Hayes Dec 2011 A1
20120116351 Chomas et al. May 2012 A1
20120259206 Roberts Oct 2012 A1
20130079731 Chomas Mar 2013 A1
20130116655 Bacino May 2013 A1
20130226166 Chomas Aug 2013 A1
20140066830 Lad et al. Mar 2014 A1
20140073536 Lin Mar 2014 A1
20140207178 Chomas Jul 2014 A1
20140276135 Agah Sep 2014 A1
20140276411 Cowan Sep 2014 A1
20140364835 Allen Dec 2014 A1
20140378951 Dye Dec 2014 A1
20150272716 Pinchuk Oct 2015 A1
20150306311 Pinchuk et al. Oct 2015 A1
20160015948 Agah Jan 2016 A1
20160074633 Schaffner Mar 2016 A1
20160082178 Agah Mar 2016 A1
20160235942 Alt Aug 2016 A1
20160235950 Murata Aug 2016 A1
20160256626 Chomas Sep 2016 A9
20160310148 Allen Oct 2016 A1
20170000493 Boehm, Jr. Jan 2017 A1
20170049946 Kapur Feb 2017 A1
20170056629 Agah Mar 2017 A1
20170157370 Agah Jun 2017 A1
20170173309 Fischer, Jr. Jun 2017 A1
20170209666 Quigley Jul 2017 A1
20170319820 Johnson Nov 2017 A1
20170368306 Tal Dec 2017 A1
20180055620 Chomas Jan 2018 A1
20180116522 Brenneman May 2018 A1
20180125502 Allen May 2018 A1
20180250469 Pinchuk Sep 2018 A1
20180263752 Pinchuk Sep 2018 A1
20180289464 Kassab Oct 2018 A1
20180333563 Agah Nov 2018 A1
20190046157 Unser Feb 2019 A1
20190083705 Allen Mar 2019 A1
20200078555 Agah Mar 2020 A1
Foreign Referenced Citations (19)
Number Date Country
8910603 Dec 1989 DE
0533511 Mar 1993 EP
0554579 Aug 1993 EP
0416662 Mar 1996 EP
1226795 Jul 2002 EP
1527740 May 2005 EP
1743524 Jan 2007 EP
1803423 Jul 2007 EP
2652267 Mar 1991 FR
2020557 Jan 1983 GB
8905667 Jun 1989 WO
199916382 Apr 1999 WO
199944510 Sep 1999 WO
200141679 Jun 2001 WO
200145592 Jun 2001 WO
200149215 Jul 2001 WO
0197879 Dec 2001 WO
2004043293 May 2004 WO
2011068946 Jun 2011 WO
Non-Patent Literature Citations (25)
Entry
International Search Report and Written Opinion of Application No. PCT/US16/23723 dated Sep. 2, 2016.
“Allogenic Chimeric Antigen Receptor-Modified Cells for Adoptive Cell Therapy of Cancer”, Marcus, Assaf et al., Mar. 24, 2014, Expert Opinion of Biological Therapy, vol. 14, Issue 7.
A Study of the Geometrical and Mechanical Properties of a Self-Expandig Metallic Stent Theory and Experiment, Dr. Michael R. Jedwab, Claude 0. Clerc, Journal of Applied Biomaterials, vol. 4, Issue 1, pp. 77-85, Spring 1993.
U.S. Appl. No. 61/266,068, filed Dec. 2, 2009, Chomas et al.
U.S. Appl. No. 61/382,290, filed Sep. 13, 2010, Chomas et al.
Catheter-Based Renal Sympathetic Denervation for Resistant Hypertension: a Multicentre Safety and Proof-of Principle Cohort Study, Krum et al, The Lancet, 2009.
Embolization II, Scientific Session 11, JVIR, Mar. 27, 2012.
Embolization procedure lowers levels of “hunger hormone,” leads to weight loss, EurekAlert Public Release, Mar. 7, 2013.
Finite Element Stent Design, M. De Beule, R. Van Impe, P. Verdonck, B. Verhegghe, Computer Methods in Biomechanics and Biomedical Engineering, 2005.
First-In-Man Study of Left Gastric Artery Embolization for Weight Loss, Nicholas Kipshidze et al., ACC.13, E2056, UACC Mar. 12, 2013, vol. 61, Issue 10.
Fusion Drug Delivery System-Novel Catheter/Stent Design for Targeted Drug Delivery, Gerschwind & Barnett, Non-Published US provisional patent application filed Sep. 17, 2007.
International Search Report of PCT/US18/22171 dated Aug. 3, 2018.
Left Gastric Embolization Leads to Weight Loss, Bariatriac News, Owen Haskins, Dec. 4, 2013.
Renal Denervation as a Therapeutic Approach for Hypertension: Novel Implications for an Old Concept, Schlaich et al., Hypertension, Journal of the American Heart Association, 2009, 54:1195-1201.
Renal Sympathetic-Nerve Ablation for Uncontrolled Hypertension, Schlaich et al, The New England Journal of Medicine, 2009, pp. 932-934, Aug. 27, 2009.
RenovoCath(tm) RC120 The Future of Targeted Delivery, RenovoRx Inc., web brochure downloaded from Internet on Feb. 2, 2015.
Cannulation of the Cardiac Lymphatic Sytem in Swine, Vazquez-Jiminez et al., European Journal of Cardio-thoracic Surgery 18 (2000) 223-232.
Development of Repeatable Microcatheter Access Port for Intra-arterial Therapy of Liver Cancer, Yasushi Fukuoka et al., Cardiovasc Intervent Radiol (2019) 42:298-303.
Long-Term Catheterization of the Intestinal Lymph Trunk and Collection of Lymph in Neonatal Pigs, Richard R. Uwiera et al., Journal of Visualized Experiments, Mar. 2016, 109, e53457.
Lymphaniography to Treat Postoperative Lymphatic Leakage: A Technical Review, Edward Wolfgang Lee, et al., Korean Journal of Radiology 15(6), Nov./Dec. 2014.
Radiologic Placement of Side-hole Catheter with Tip Fixation for Hepatic Arterial Infusion Chemotherapy, Toshihiro Tanaka et al., J Vasc Interv Radiol 2003: 14:63-68.
Superselective Retrograde Lymphatic Duct Embolization for Management of Postoperataive Lymphatic Leak, Bulent Arslan et al., Diagn Interv Radiol 2017; 23:379-380.
International Search Report and Written Opinion of Application No. PCT/US19/13482 dated Jun. 10, 2019.
Estimation of Tumor Interstitial Fluid Pressure (TIFP) Noninvasively, Long Lian Liu et al., PLoS One | DOI:10.1371/journal.pone.0140892 Jul. 28, 2016.
Search Report and Written Opinion dated Jan. 6, 2020 of application No. PCT/US 19/54406.
Related Publications (1)
Number Date Country
20190111234 A1 Apr 2019 US
Provisional Applications (1)
Number Date Country
62140651 Mar 2015 US
Divisions (1)
Number Date Country
Parent 15064158 Mar 2016 US
Child 16219738 US