The present invention pertains to a method for isolating a polynucleotide of interest that is present in the genome of a mycobacterium strain and/or is expressed by said mycobacterium strain and that is absent or altered in the genome of a different mycobacterium strain and/or is not expressed in said different mycobacterium strain, said method comprising the use of at least one clone belonging to a genomic DNA library of a given mycobacterium strain, said DNA library being cloned in a bacterial artificial chromosome (BAC). The invention concerns also polynucleotides identified by the above method, as well as detection methods for mycobacteria, particularly Mycobacterium tuberculosis, and kits using said polynucleotides as primers or probes. Finally, the invention deals with BAC-based mycobacterium DNA libraries used in the method according to the invention and particularly BAC-based Mycobacterium tuberculosis and Mycobacterium bovis BCG DNA libraries.
Radical measures are required to prevent the grim predictions of the World Health Organisation for the evolution of the global tuberculosis epidemic in the next century becoming a tragic reality. The powerful combination of genomics and bioinformatics is providing a wealth of information about the etiologic agent, Mycobacterium tuberculosis, that will facilitate the conception and development of new therapies. The start point for genome sequencing was the integrated map of the 4.4 Mb circular chromosome of the widely-used, virulent reference strain, M. tuberculosis H37Rv and appropriate cosmids were subjected to systematic shotgun sequence analysis at the Sanger Centre.
Cosmid clones (Balasubramanian et al., 1996; Pavelka et al., 1996) have played a crucial role in the M. tuberculosis H37Rv genome sequencing project. However, problems such as under-representation of certain regions of the chromosome, unstable inserts and the relatively small insert size complicated the production of a comprehensive set of canonical cosmids representing the entire genome.
In order to avoid the numerous technical constraints encountered in the state of the art, as described hereabove, when using genomic mycobacterial DNA libraries constructed in cosmid clones, the inventors have attempted to realize genomic mycobacterial DNA libraries in an alternative type of vectors, namely Bacterial Artificial Chromosome (BAC) vectors.
The success of this approach depended on whether the resulting BAC clones could maintain large mycobacterial DNA inserts. There are various reports describing the successful construction of a BAC library for eucaryotic organisms (Cai et al., 1995; Kim et al., 1996; Misumi et al., 1997; Woo et al., 1994; Zimmer et al., 1997) where inserts up to 725 kb (Zimmer et al., 1997) were cloned and stably maintained in the E. coli host strain.
Here, it is shown that, surprisingly, the BAC system can also be used for mycobacterial DNA, as 70% of the clones contained inserts in the size of 25 to 104 kb.
This is the first time that bacterial, and specifically mycobacterial, DNA is cloned in such BAC vectors.
In an attempt to obtain complete coverage of the genome with a minimal overlapping set of clones, a Bacterial Artificial Chromosome (BAC) library of M. tuberculosis was constructed, using the vector pBeloBAC11 (Kim et al., 1996) which combines a simple phenotypic screen for recombinant clones with the stable propagation of large inserts (Shizuya et al., 1992). The BAC cloning system is based on the E. coli F-factor, whose replication is strictly controlled and thus ensures stable maintenance of large constructs (Willets et al., 1987). BACs have been widely used for cloning of DNA from various eucaryotic species (Cai et al., 1995; Kim et al., 1996; Misumi et al., 1997; Woo et al., 1994; Zimmer et al., 1997). In contrast, to our knowledge this report describes the first attempt to use the BAC system for cloning bacterial DNA.
A central advantage of the BAC cloning system over cosmid vectors used in prior art is that the F-plasmid is present in only one or a maximum of two copies per cell reducing the potential for recombination between DNA fragments and, more importantly, avoiding the lethal overexpression of cloned bacterial genes. However, the presence of the BAC as just a single copy means that plasmid DNA has to be extracted from a large volume of culture to obtain sufficient DNA for sequencing and it is described here in the examples a simplified protocol to achieve this.
Further, the stability and fidelity of maintenance of the clones in the BAC library represent ideal characteristics for the identification of genomic differences possibly responsible for phenotypic variations in different mycobacterial species.
As it will be shown herein, BACs can be allied with conventional hybridization techniques for refined analyses of genomes and transcriptional activity from different mycobacterial species.
Having established a reliable procedure to screen for genomic polymorphisms, it is now possible to conduct these comparisons on a more systematic basis than in prior art using representative BACs throughout the chromosome and genomic DNA from a variety of mycobacterial species.
As another approach to display genomic polymorphisms, the inventors have also started to use selected H37Rv BACs for “molecular combing” experiments in combination with fluorescent in situ hybridization (Bensimon et al., 1994; Michalet et al., 1997). With such techniques the one skilled in the art is enabled to explore the genome of mycobacteria in general and of M. tuberculosis in particular for further polymorphic regions.
The availability of BAC-based genomic mycobacterial DNA libraries constructed by the inventors have allowed them to design methods and means both useful to identify genomic regions of interest of pathogenic mycobacteria, such as Mycobacterium tuberculosis, that have no counterpart in the corresponding non-pathogenic strains, such as Mycobacterium bovis BCG, and useful to detect the presence of polynucleotides belonging to a specific mycobacterium strain in a biological sample.
By a biological sample according to the present invention, it is notably intended a biological fluid, such as plasma, blood, urine or saliva, or a tissue, such as a biopsy.
Thus, a first object of the invention consists of a method for isolating a polynucleotide of interest that is present in the genome of a mycobacterium strain and/or is expressed by said mycobacterium strain and that is absent or altered in the genome of a different mycobacterium strain and/or is not expressed in said different mycobacterium strain, said method comprising the use of at least one clone belonging to a genomic DNA library of a given mycobacterium strain, said DNA library being cloned in a bacterial artificial chromosome (BAC).
The invention is also directed to a polynucleotide of interest that has been isolated according to the above method and in particular a polynucleotide containing one or several Open Reading Frames (ORFs), for example ORFs encoding either a polypeptide involved in the pathogenicity of a mycobacterium strain or ORFs encoding Polymorphic Glycine Rich Sequences (PGRS).
Such polynucleotides of interest may serve as probes or primers in order to detect the presence of a specific mycobacterium strain in a biological sample or to detect the expression of specific genes in a particular mycobacterial strain of interest.
The BAC-based genomic mycobacterial DNA libraries generated by the present inventors are also part of the invention, as well as each of the recombinant BAC clones and the DNA insert contained in each of said recombinant BAC clones.
The invention also pertains to methods and kits for detecting a specific mycobacterium in a biological sample using either at least one recombinant BAC clone or at least one polynucleotide according to the invention, as well as to methods and kits to detect the expression of one or several specific genes of a given mycobacterial strain present in a biological sample.
In order to better understand the present invention, reference will be made to the appended figures which depicted specific embodiments to which the present invention is in no case limited in scope with.
As already mentioned hereinbefore, the present invention is directed to a method for isolating a polynucleotide of interest that is present in the genome of a mycobacterium strain and/or is expressed by said mycobacterium strain and that is absent or altered in the genome of a different mycobacterium strain and/or is not expressed in said different mycobacterium strain, said method comprising the use of at least one clone belonging to a genomic DNA library of a given mycobacterium strain, said DNA library being cloned in a bacterial artificial chromosome (BAC).
For this purpose, the inventors have constructed several BAC-based mycobacterial genomic DNA libraries that may be used in order to perform the above described method.
Because it is the first time that mycobacterial genomic DNA has been successfully cloned in BA type vectors, and because these DNA libraries are then novel and nonobvious, an object of the present invention consists in a myobacterial genomic DNA library cloned in such a BAC type vector.
As an illustrative example, a BAC-based DNA library of Mycobacterium tuberculosis has been realized. Forty-seven cosmids chosen from the integrated map of the 4.4 Mb circular chromosome (Philipp et al., 1996a) were shotgun-sequenced during the initial phase of the H37Rv genome sequence project The sequences of these clones were used as landmarks in the construction of a minimally overlapping BAC map. Comparison of the sequence data from the termini of 420 BAC clones allowed us to establish a minimal overlapping BAC map and to fill in the existing gaps between the sequence of cosmids. As well as using the BAC library for genomic mapping and sequencing, we also tested the system in comparative genomic experiments in order to uncover differences between two closely related mycobacterial species. As shown in a previous study (Philipp et al., 1996b), M. tuberculosis, M. bovis and M. bovis BCG, specifically BCG Pasteur strain, exhibit a high level of global genomic conservation, but certain polymorphic regions were also detected. Therefore, it was of great interest to find a reliable, easy and rapid way to exactly localize polymorphic regions in mycobacterial genomes using selected BAC clones. This approach was validated by determining the exact size and location of the polymorphisms in the genomic region of DraI fragment Z4 (Philipp et al., 1996b), taking advantage of the availability of an appropriate BAC clone covering the polymorphic region and the H37Rv genome sequence data. This region is located approximately 1.7 Mb from the origin of replication.
The Bacterial Artificial Chromosome (BAC) cloning system is capable of stably propagating large, complex DNA inserts in Escherichia coli. As part of the Mycobacterium tuberculosis H37Rv genome sequencing project, a BAC library was constructed in the pBeloBAC11 vector and used for genome mapping, confirmation of sequence assembly, and sequencing. The library contains about 5000 BAC clones, with inserts ranging in size from 25 to 104 kb, representing theoretically a 70 fold coverage of the M. tuberculosis genome (4.4 Mb). A total of 840 sequences from the T7 and SP6 termini of 420 BACs were determined and compared to those of a partial genomic database. These sequences showed excellent correlation between the estimated sizes and positions of the BAC clones and the sizes and positions of previously sequenced cosmids and the resulting contigs. Many BAC clones represent linking clones between sequenced cosmids, allowing full-coverage of the H37Rv chromosome, and they are now being shotgun-sequenced in the framework of the H37Rv sequencing project. Also, no chimeric, deleted or rearranged BAC clones were detected, which was of major importance for the correct mapping and assembly of the H37Rv sequence. The minimal overlapping set contains 68 unique BAC clones and spans the whole H37Rv chromosome with the exception of a single gap of 150 kb. As a post-genomic application, the canonical BAC set was used in a comparative study to reveal chromosomal polymorphisms between M. tuberculosis, M. bovis and M. bovis BCG Pasteur, and a novel 12.7 kb segment present in M. tuberculosis but absent from M. bovis and M. bovis BCG was characterized. This region contains a set of genes whose products show low similarity to proteins involved in polysaccharide biosynthesis. The H37Rv BAC library therefore provides the one skilled in the art with a powerful tool both for the generation and confirmation of sequence data as well as for comparative genomics and a plurality of post-genomic applications.
The above described BAC-based Mycobacterium tuberculosis genomic DNA library is part of the present invention and has been deposited in the Collection Nationale de Cultures de Microorganismes (CNCM) on Nov. 19, 1997 under the accession number I-1945.
Another BAC-based DNA library has been constructed with the genomic DNA of Mycobacterium bovis BCG, Pasteur strain, and said DNA library has in the Collection Nationale de Cultures de Microorganismes (CNCM) on XX XX, 1998 under the accession number I-XXXX.
Thus, as a specific embodiment of the above described method for isolating a polynucleotide of interest said method makes use of at least one BAC-based DNA library that has been constructed from the genomic DNA of Mycobacterium tuberculosis, more specifically of the H37Rv strain and particularly of the DNA library deposited in the accession number I-1945.
In another specific embodiment of the above described method for isolating a polynucleotide of interest said method makes use of at least one BAC-based DNA library has been constructed from the genomic DNA of Mycobacterium bovis BCG, more specifically of the Pasteur strain and particularly of the DNA library deposited in the accession number I-X.
In more details, the method according to the invention for isolating a polynucleotide of interest may comprise the following steps:
Following the above procedure, the at least one polynucleotide of step a) may be prepared as follows:
The above method of the invention allows the one skilled in the art to perform comparative genomics between different strains or species of mycobacteria cells, for example between pathogenic strains or species and their non pathogenic strains or species counterparts, as it is the illustrative case for the genomic comparison between Mycobacterium tuberculosis and Mycobacterium bovis BCG that is described herein in the examples.
Restriction digests of a given clone of a BAC library according to the invention may be blotted to membranes, and then probed with radiolabeled DNA form another strain or another species of mycobacteria, allowing the one skilled in the art to identify, characterize and isolate a polynucleotide of interest that may be involved in important metabolically and/or physiological pathways of the mycobacterium under testing, such as a polynucleotide functionally involved in the pathogenicity of said given mycobacteria for its host organism.
More specifically, the inventors have shown in Example 6 that when restriction digests of a given clone of the library identified by the CNCM accession number I-1945 are blotted to membranes and then probed with radiolabeled total genomic DNA from, for example, Mycobacterium bovis BCG Pasteur, it is observed that restriction fragments that fail to hybridize with the M. bovis BCG Pasteur DNA are absent from its genome, hence identifying polymorphic regions between M. bovis BCG Pasteur and M. tuberculosis H37Rv.
Thus, a further object of the present invention consists in a polynucleotide of interest that has been isolated according to the method described herein before.
In Example 6, a polynucleotide of approximately 12.7 kilobases has been isolated that is present in the genome of M. tuberculosis but is absent of the genome of M. bovis BCG. This polynucleotide of interest contains 11 ORFs that may be involved in polysaccharide biosynthesis. In particular, two of said ORFs are of particular interest, namely ORF6 (MTCY277.33; Rv1511) that encodes a protein that shares significant homology with bacterial GDP-D-mannose dehydratases, whereas the protein encoded by ORF7 (MTCY277.34; Rv1512) shares significant homology with a nucleotide sugar epimerase. As polysaccharide is a major constituent of the mycobacterial cell wall these deleted genes may cause the cell wall of M. bovis BCG to differ from that of M. tuberculosis, a fact that may have important consequences for both the immune response to M. bovis BCG and virulence. Detection of such a polysaccharide is of diagnostic interest and possibly useful in the design of tuberculosis vaccines.
Consequently, the polynucleotide of interest obtained following the method according to the invention may contain at least one ORF, said ORF preferably encoding all or part of a polypeptide involved in an important metabolically and/or physiological pathway of the mycobacteria under testing, and more specifically all or part of a polypeptide that is involved in the pathogenicity of the mycobacteria under testing such as for example Mycobacterium tuberculosis, and more generally mycobacteria belonging to the Mycobacterium tuberculosis complex.
The Mycobacterium tuberculosis complex has its usual meaning, i.e. the complex of mycobacteria causing tuberculosis which are Mycobacterium tuberculosis, Mycobacterium bovis, Mycobacterium africanum, Mycobacterium microti and the vaccine strain Mycobacterium bovis BCG.
An illustrative polynucleotide of interest according to the present invention comprises all or part of the polynucleotide of approximately 12.7 kilobases that is present in the genome of M. tuberculosis but is absent from the genome of M. bovis BCG disclosed hereinbefore. This polynucleotide is contained in clone Rv58 of the BAC DNA library I-1945.
Generally, the invention also pertains to a purified polynucleotide comprising the DNA insert contained in a recombinant BAC vector belonging to a BAC-based mycobacterial genomic DNA library, such as for example the I-1945 BAC DNA library.
Advantageously, such a polynucleotide has been identified according to the method of the invention.
Such a polynucleotide of interest may be used as a probe or a primer useful for specifically detecting a given mycobacterium of interest, such as Mycobacterium tuberculosis or Mycobacterium bovis BCG.
More specifically, the invention then deals with a purified polynucleotide useful as probe or a primer comprising all or part of the nucleotide sequence SEQ ID No1:
The location, on the Mycobacterium tuberculosis chromosome, of the above polynucleotide of sequence SEQ ID No1 has now been ascribed to begin, at its 5′end at nucleotide at position nt 1696015 and to end, at its 3′end, at nucleotide at position nt 1708746.
For diagnostic purposes, this 12.7 kb deletion should allow a rapid PCR screening of tubercle isolates to identify whether they are bovine or human strains. The primers listed in Table 1 are flanking the deleted region and give a 722 bp amplicon in M. bovis or M. bovis BCG strains, but a fragment of 13,453 bp in M. tuberculosis that is practically impossible to amplify under the same PCR conditions. More importantly, assuming that some of the gene products from this region represent proteins with antigenic properties, it could be possible to develop a test that can reliably distinguish between the immune response induced by vaccination with M. bovis BCG vaccine strains and infection with M. tuberculosis or that the products (e.g. polysaccharides) are specific immunogens
The invention also provides for a purified polynucleotide useful as a probe or as a primer, said polynucleotide being chosen in the following group of polynucleotides:
For the purpose of defining a polynucleotide or oligonucleotide hybridizing under stringent hybridization conditions, such as above, it is intended a polynucleotide that hybridizes with a reference polynucleotide under the following hybridization conditions:
The hybridization step is realized at 65° C. in the presence of 6×SSC buffer, 5× Denhardt's solution, 0.5% SDS and 100 μg/ml of salmon sperm DNA.
For technical information, 1×SSC corresponds to 0.15 M NaCl and 0.05M sodium citrate; 1× Denhardt's solution corresponds to 0.02% Ficoll, 0.02% polyvinylpyrrolidone and 0.02% bovine serum albumin.
The hybridization step is followed by four washing steps:
A second illustrative useful polynucleotide that is included in the polynucleotide of sequence SEQ ID No1 is the following polynucleotide of sequence SEQ ID No3 that corresponds to the T7 endsequence of SEQ ID No1, located on the opposite strand:
The polynucleotide of sequence SEQ ID No1 contains 11 ORFs, the respective locations of which, taking into account the orientation of each ORF on the chromosome, on the sequence of the Mycobacterium tuberculosis chromosome, is given hereafter:
The location of ORF7 is comprised between nucleotide at position nt 1704091 and nucleotide at position nt1705056. ORF7 encodes a protein having the characteristics of a nucleotide sugar epimerase involved in colonic acid biosynthesis.
A polynucleotide of interest obtained by the above-disclosed method according to the invention may also contain at least one ORF that encodes all or part of acidic, glycine-rich proteins, belonging to the PE and PPE families, whose genes are often clustered and based on multiple copies of the polymorphic repetitive sequences. The names PE and PPE derive from the fact that the motifs ProGlu (PE, positions 8, 9) and ProProGlu (PPE, positions 7 to 9) are found near the N-terminus in almost all cases. The PE protein family all have a highly conserved N-terminal domain of ˜110 amino acid residues, that is predicted to have a globular structure, followed by a C-terminal segment which varies in size, sequence and repeat copy number. Phylogenetic analysis separated the PE family into several groups, the larger of which is the highly repetitive PGRS class containing 55 members whereas the other groups share very limited sequence similarity in their C-terminal domains. The predicted molecular weights of the PE proteins vary considerably as a few members only contain the ˜110 amino acid N-terminal domain while the majority have C-terminal extensions ranging in size from 100 up to >1400 residues. A striking feature of the PGRS proteins is their exceptional glycine content (up to 50%) due to the presence of multiple tandem repetitions of GlyGlyAla or GlyGlyAsn motifs or variations thereof.
Like the PE family, the PPE protein family also has a conserved N-terminal domain that comprises ˜180 amino acid residues followed by C-terminal segments that vary considerably in sequence and length. These proteins fall into at least three groups, one of which constitutes the MPTR class characterised by the presence of multiple, tandem copies of the motif AsnXGlyXGlyAsnXGly. The second subgroup contains a characteristic, well-conserved motif around position 350 (GlyXXSerValProXXTrp), whereas the other group contains proteins that are unrelated except for the presence of the common 180-residue PPE domain. C-terminal extensions may range in size from 00 up to 3500 residues
One member of the PGRS sub-family, the WHO antigen 22T (Abou-Zeid et al., 1991), a 55 kD protein capable of binding fibronectin, is produced during disease and elicits a variable antibody response suggesting either that individuals mount different immune responses or that this PGRS-protein may not be produced in this form by all strains of M. tuberculosis. In other words, at least some PE_PGRS coding sequences encode for proteins that are involved in the recognition of M. tuberculosis by the immune system of the infected host Therefore, differences in the PGRS sequences could represent the principal source of antigenic variation in the otherwise genetically and antigenically homogeneous bacterium.
By performing the method of the invention using the M. tuberculosis BAC based DNA library 1-1945, the inventors have discovered the occurrence of sequence differences between a given PGRS encoding ORF (ORF reference on the genomic sequence of M. tuberculosis Rv0746) of M. tuberculosis and its counterpart sequence in the genome of M. bovis BCG.
More precisely, the inventors have determined that one ORF contained in BAC vector No Rv418 of the M. tuberculosis BCG I-1945 DNA library carries both base additions and base deletions when compared with the corresponding ORF in the genome of M. bovis BCG that is contained in the BAC vector No X0175 of the M. bovis BCG I-XXXX DNA library. The variations observed in the base sequences correspond to variations in the C-terminal part of the amino acid sequence of the PGRS ORF translation product.
As shown in
Furthermore,
Similar observations were made with PPE ORF Rv0442, which showed a 5 codon deletion relative to a M. bovis amino acid sequence.
Given that the polymorphism associated with the PE-PGRS or PEE ORFS resulted in extensive antigenic variability or reduced antigen presentation, this would be of immense significance for vaccine design, for understanding protective immunity in tuberculosis and, possibly, explain the varied responses seen in different BCG vaccination programmes.
There are several striking parallels between the PGRS proteins and the Epstein-Barr virus-encoded nuclear antigens (EBNA). Both polypeptide families are glycine-rich, contain Gly-Ala repeats that represent more than one third of the molecule, and display variation in the length of the repeat region between different isolates. The Gly-Ala repeat region of EBNA1 has been shown to function as a cis-acting inhibitor of antigen processing and MHC class I-restricted antigen presentation (Levitskaya et al., 1995). The fact that MHC class I knock-out mice are extremely susceptible to M. tuberculosis underlines the importance of MHC class I antigen presentation in protection against tuberculosis. Therefore, it is possible that the PE/PPE protein family also play some role in inhibiting antigen presentation, allowing the bacillus to hide from the host's immune system.
As such the novel and nonobvious PGRS polynucleotide from M. bovis which is homolog to the M. tuberculosis ORF Rv0746, and which is contained in the BAC clone No X0175 (See Table 4 for SP6 and T7 endsequences of clone no X0175) of the I-XXXX M. bovis BCG BAC DNA library is part of the present invention, as it represents a starting material in order to define specific probes or primers useful for detection of antigenic variability in mycobacterial strains, possible inhibition of antigen processing as well as to differentiate M. tuberculosis from M. bovis BCG.
Thus, a further object of the invention consists in a polynucleotide comprising the following sequence SEQ II No4:
Polynucleotides of interest have been defined by the inventors as useful detection tools in order to differentiate M. tuberculosis from M. bovis BCG. Such polynucleotides are contained in the 45 amino acid length coding sequence that is present in M. bovis BCG but absent from M. tuberculosis. This polynucleotide has a sequence beginning (5′end) at the nucleotide at position nt 729 of the sequence SEQ ID No4 and ending (3′end) at the nucleotide in position nt 863 of the sequence SEQ D No4.
Thus, part of the present invention is also a polynucleotide which is chosen among the following group of polynucleotides:
The stringent hybridization conditions for the purpose of defining the above disclosed polynucleotide are defined herein before in the specification.
The invention also provides for a BAC-based Mycobacterium tuberculosis strain H37Rv genomic DNA library that has been deposited in the Collection Nationale de Cultures de Microorganismes on Nov. 19, 1997 under the accession number I-1945.
A further object of the invention consists in a recombinant BAC vector which is chosen among the group consisting of the recombinant BAC vectors belonging to the BAC-based DNA library I-1945.
Generally, a recombinant BAC vector of interest may be chosen among the following set or group of BAC vectors contained in the BAC-based DNA library I-1945:
Rv101; Rv102; Rv103; Rv104; Rv105; Rv106; Rv107; Rv108; Rv109; Rv10; Rv110; Rv111; Rv112; Rv113; Rv114; Rv115; Rv116; Rv117; Rv118; Rv119; Rv11; Rv120; Rv121; Rv122; Rv123; Rv124; Rv126; Rv127; Rv128; Rv129; Rv130; Rv132; Rv134; Rv135; Rv136; Rv137; Rv138; Rv139; Rv13; Rv140; Rv141; Rv142; Rv143; Rv144; Rv145; Rv146; Rv147; Rv148; Rv149; Rv14; Rv150; Rv151; Rv152; Rv153; Rv154; Rv155; Rv156; Rv157; Rv159; Rv15; Rv160; Rv161; Rv162; Rv163; Rv164; Rv165; Rv166; Rv167; Rv169; Rv16; Rv170; Rv171; Rv172; Rv173; Rv174; Rv175; Rv176; Rv177; Rv178; Rv179; Rv17; Rv180; Rv181; Rv182; Rv183; Rv184; Rv185; Rv186; Rv187; Rv188; Rv18; Rv190; Rv191; Rv192; Rv193; Rv194; Rv195; Rv196; Rv19; Rv1; Rv201; Rv204; Rv205; Rv207; Rv209; Rv20; Rv214; Rv215; Rv217; Rv218; Rv219; Rv21; Rv220; Rv221; Rv222; Rv223; Rv224; Rv225; Rv226; Rv227; Rv228; Rv229; Rv22; Rv230; Rv231; Rv232; Rv233; Rv234; Rv235; Rv237; Rv240; Rv241; Rv243; Rv244; Rv245; Rv246; Rv247; Rv249; Rv24; Rv251; Rv252; Rv253; Rv254; Rv255; Rv257; Rv258; Rv259; Rv25; Rv260; Rv261; Rv262; Rv263; Rv264; Rv265; Rv266; Rv267; Rv268; Rv269; Rv26; Rv270; Rv271; Rv272; Rv273; Rv274; Rv275; Rv276; Rv277; Rv278; Rv279; Rv27; Rv280; Rv281; Rv282; Rv283; Rv284; Rv285; Rv286; Rv287; Rv288; Rv289; Rv28; Rv290; Rv291; Rv292; Rv293; Rv294; Rv295; Rv296; Rv29; Rv2; Rv301; Rv302; Rv303; Rv304; Rv306; Rv307; Rv308; Rv309; Rv30; Rv310; Rv311; Rv312; Rv313; Rv314; Rv315; Rv316; Rv317; Rv318; Rv319; Rv31; Rv32; Rv322; Rv327; Rv328; Rv329; Rv32; Rv330; Rv331; Rv333; Rv334; Rv335; Rv336; Rv337; Rv338; Rv339; Rv33; Rv340; Rv341; Rv343; Rv344; Rv346; Rv347; Rv348; Rv349; Rv34; Rv350; Rv351; Rv352; Rv353; Rv354; Rv355; Rv356; Rv357; Rv358; Rv359; Rv35; Rv360; Rv361; Rv363; Rv364; Rv365; Rv366; Rv367; Rv368; Rv369; Rv36; Rv370; Rv371; Rv373; Rv374; Rv375; Rv376; Rv377; Rv378; Rv379; Rv37; Rv381; Rv382; Rv383; Rv384; Rv385; Rv386; Rv387; Rv388; Rv389; Rv38; Rv390; Rv391; Rv392; Rv393; Rv396; Rv39; Rv3; Rv40; Rv412; Rv413; Rv414; Rv415; Rv416; Rv417; Rv418, Rv419; Rv41; Rv42; Rv43; Rv44; Rv45; Rv46; Rv47; Rv48; Rv49; Rv4; Rv50; Rv51; Rv52; Rv53; Rv54; Rv55; Rv56; Rv57; Rv58; Rv59; Rv5; Rv60; Rv61; Rv62; Rv63; Rv64; Rv65; Rv66; Rv67; Rv68; Rv69; Rv6; Rv70; Rv71; Rv72; Rv73; Rv74; Rv75; Rv76; Rv77; Rv78; Rv79; Rv7; Rv80; Rv81; Rv82; Rv83; Rv84; Rv85; Rv86; Rv87; Rv88; Rv89; Rv8; Rv90; Rv91; Rv92; Rv94; Rv95; Rv96; Rv9.
The end sequences of the polynucleotide inserts of each of the above clones corresponding respectively to the sequences adjacent to the T7 promoter and to the Sp6 promoter on the BAC vector are shown in Table 3.
It has been shown by the inventors that the minimal overlapping set of BAC vectors of the BAC-based DNA library I-1945 contains 68 unique BAC clones and practically spans almost the whole H37Rv chromosome with the exception of a single gap of approximately 150 kb.
More specifically, a recombinant BAC vector of interest is chosen among the following set or group of BAC vectors from the BAC-based DNA library I-1945, the location of which vector DNA inserts on the chromosome of M. tuberculosis is shown in
Rv234; Rv351; Rv166; Rv35; Rv415; Rv404; Rv209; Rv272; Rv30; Rv228; Rv233; Rv38; Rv280; Rv177; Rv48; Rv374; Rv151; Rv238; Rv156; Rv92; Rv3; Rv403; Rv322; Rv243; Rv330; Rv285; Rv233; Rv219; Rv416; Rv67; Rv222; Rv149; Rv279; Rv87; Rv273; Rv266; Rv25; Rv136; Rv414; Rv13; Rv289; Rv60; Rv104; Rv5; Rv165; Rv215; Rv329; Rv240; Rv19; Rv74; Rv44; Rv167; Rv56; Rv80; Rv164; Rv59; Rv313; Rv265; Rv308; Rv220; Rv258; Rv339; Rv121; Rv419; Rv418; Rv45; Rv217; Rv134; Rv17; Rv103; Rv21; Rv22; Rv2; Rv270; Rv267; Rv174; Rv257; Rv144; Rv71; Rv7; Rv27; Rv191; Rv230; Rv128; Rv407; Rv268; Rv58; Rv173; Rv264; Rv417; Rv401; Rv144; Rv302; Rv81; Rv163; Rv281; Rv221; Rv420; Rv175; Rv86; Rv412; Rv73; Rv269; Rv214; Rv287; Rv42; Rv143.
The polynucleotides disclosed in Table 3 may be used as probes in order to select a given clone of the BAC DNA library I-1945 for further use.
The invention also provides for a BAC-based Mycobacterium bovis strain Pasteur genomic DNA library that has been deposited in the Collection Nationale de Cultures de Microorganismes on XXXX XX, 1998 under the accession number I-XXXX.
A further object of the invention consists in a recombinant BAC vector which is chosen among the group consisting of the recombinant BAC vectors belonging to the BAC-based DNA library I-XXXX. This DNA library contains approximately 1600 clones. The average insert size is estimated to be ˜80 kb.
Generally, a recombinant BAC vector of interest may be chosen among the following set or group of BAC vectors contained in the BAC-based DNA library I-XXXX:
X0001; X0002; X0003; X0004; X0006; X0007; X0008; X0009; X0010; X0012; X0013; X0014; X0015; X0016; X0017; X0018; X0019; X0020; X0021; X0175.
The endsequences of the polynucleotide inserts of each of the above clones, corresponding respectively to the sequences adjacent to the T7 promoter and to the Sp6 promoter on the BAC vector are shown in Table 4.
The polynucleotides disclosed in Table 4 may be used as probes in order to select a given clone of the BAC DNA library I-XXXX for further use.
Are also part of the invention the polynucleotide inserts that are contained in the above described BAC vectors, that are useful as primers or probes.
These polynucleotides and nucleic acid fragments may be used as primers for use in amplification reactions, or as nucleic probes.
PCR is described in the U.S. Pat. No. 4,683,202. The amplified fragments may be identified by an agarose or a polyacrylamide gel electrophoresis, or by a capillary electrophoresis or alternatively by a chromatography technique (gel filtration, hydrophobic chromatography or ion exchange chromatography). The specificity of the amplification may be ensured by a molecular hybridization using, for example, one of the initial primers as nucleic probes.
Amplified nucleotide fragments are used as probes in hybridization reactions in present invention or in order to detect mutations in the genome of the given mycobacterium of interest, specifically a mycobacterium belonging to the Mycobacterium tuberculosis complex and more specifically Mycobacterium tuberculosis and Mycobacterium bovis BCG.
Are also part of the present invention the amplified nucleic fragments (<<amplicons>>) defined herein above.
These probes and amplicons may be radioactively or non-radioactively labeled, using for example enzymes or fluorescent compounds.
Other techniques related to nucleic acid amplification may also be used and are generally preferred to the PCR technique.
The Strand Displacement Amplification (SDA) technique (Walker et al., 1992) is an isothermal amplification technique based on the ability of a restriction enzyme to cleave one of the strands at his recognition site (which is under a hemiphosphorothioate form) and on the property of a DNA polymerase to initiate the synthesis of a new strand from the 3′OH end generated by the restriction enzyme and on the property of this DNA polymerase to displace the previously synthesized strand being localized downstream. The SDA method comprises two main steps:
The SDA technique was initially realized using the restriction endonuclease HincII but is now generally practised with an endonuclease from Bacillus stearothermophilus (BSOBI) and a fragment of a DNA polymerase which is devoid of any 5′→3′exonuclease activity isolated from Bacillius cladotenax (exo-Bca) [=exo-minus-Bca]. Both enzymes are able to operate at 60° C. and the system is now optimized in order to allow the use of dUTP and the decontamination by UDG. When using this technique, as described by Spargo et al. in 1996, the doubling time of the target DNA is of 26 seconds and the amplification rate is of 1010 after an incubation time of 15 min at 60° C.
The SDA amplification technique is more easy to perform than PCR (a single thermostated waterbath device is necessary) and is faster than the other amplification methods.
Thus, another object of the present invention consists in using the nucleic acid fragments according to the invention (primers) in a method of DNA or RNA amplification according to the SDA technique. For performing SDA, two pairs of primers are used: a pair of external primers (B1, B2) consisting of a sequence specific for the target polynucleotide of interest and a pair of internal primers (S1, S2) consisting of a fusion oligonucleotide carrying a site that is recognized by a restriction endonuclease, for example the enzyme BSOBI.
The operating conditions to perform SDA with such primers are described in Spargo et al. 1996.
The polynucleotides of the invention and their above described fragments, especially the primers according to the invention, are useful as technical means for performing different target nucleic acid amplification methods such as:
The polynucleotides according to the invention are also useful as technical means for performing methods for amplification or modification of a nucleic acid used as a probe, such as:
When the target polynucleotide to be detected is a RNA, for example a mRNA, a reverse transcriptase enzyme will be used before the amplification reaction in order to obtain a cDNA from the RNA contained in the biological sample. The generated cDNA is subsequently used as the nucleic acid target for the primers or the probes used in an amplification process or a detection process according to the present invention.
The non-labeled polynucleotides or oligonucleotides of the invention may be directly used as probes. Nevertheless, the polynucleotides or oligonucleotides are generally labeled with a radioactive element (32P, 35S, 3H, 125I) or by a non-isotopic molecule (for example, biotin, acetylaminofluorene, digoxigenin, 5-bromodesoxyuridin, fluorescein) in order to generate probes that are useful for numerous applications.
Examples of non-radioactive labeling of nucleic acid fragments are described in the french patent No FR-7810975 or by Urdea et al. or Sanchez-Pescador et al., 1988.
In the latter case, other labeling techniques may be also used such as those described in the french patents FR-2,422,956 and 2,518,755. The hybridization step may be performed in different ways (Matthews et al., 1988). The more general method consists of immobilizing the nucleic acid that has been extracted from the biological sample onto a substrate (nitrocellulose, nylon, polystyrene) and then to incubate, in defined conditions, the target nucleic acid with the probe. Subsequently to the hybridization step, the excess amount of the specific probe is discarded and the hybrid molecules formed are detected by an appropriate method (radioactivity, fluorescence or enzyme activity measurement).
Advantageously, the probes according to the present invention may have structural characteristics such that they allow the signal amplification, such structural characteristics being, for example, branched DNA probes as those described by Urdea et al. in 1991 or in the European patent No EP-0225,807 (Chiron).
In another advantageous embodiment of the probes according to the present invention, the latters may be used as <<capture probes>>, and are for this purpose immobilized on a substrate in order to capture the target nucleic acid contained in a biological sample. The captured target nucleic acid is subsequently detected with a second probe which recognizes a sequence of the target nucleic acid which is different from the sequence recognized by the capture probe.
The oligonucleotide probes according to the present invention may also be used in a detection device comprising a matrix library of probes immobilized on a substrate, the sequence of each probe of a given length being localized in a shift of one or several bases, one from the other, each probe of the matrix library thus being complementary to a distinct sequence of the target nucleic acid. Optionally, the substrate of the matrix may be a material able to act as an electron donor, the detection of the matrix positions in which an hybridization has occurred being subsequently determined by an electronic device. Such matrix libraries of probes and methods of specific detection of a target nucleic acid is described in the European patent application No EP-0713,016 (Affymax technologies) and also in the U.S. Pat. No. 5,202,231 (Drmanac).
Since almost the whole length of a mycobacterial chromosome is covered by a BAC-based genomic DNA libraries according to the present invention (i.e. 97% of the M. tuberculosis chromosome is covered by the BAC library I-1945), these DNA libraries will play an important role in a plurality of post-genomic applications, such as in mycobacterial gene expression studies where the canonical set of BACs could be used as a matrix for hybridization studies. Probing such matrices with cDNA probes prepared from total mRNA will uncover genetic loci induced or repressed under different physiological conditions (Chuang et al., 1993; Trieselmann et al., 1992). As such, the H37Rv BAC library represents a fundamental resource for present and future genomics investigations.
The BAC vectors or the polynucleotide inserts contained therein may be directly used as probes, for example when immobilized on a substrate such as described herein before.
The BAC vectors or their polynucleotide inserts may be directly absorbed on a nitrocellulose membrane, at predetermined locations on which one or several polynucleotides to be tested are then put to hybridize therewith.
Preferably, a collection of BAC vectors that spans the whole genome of the mycobacterium under testing will be immobilized, such as, for example, the set of 68 BAC vectors of the I-1945 DNA library that is described elsewhere in the specification and shown in
The immobilization and hybridization steps may be performed as described in the present Materials and Methods Section.
As another illustrative embodiment of the use of the BAC vectors of the invention as polynucleotide probes, these vectors may be useful to perform a transcriptional activity analysis of mycobacteria growing in different environmental conditions, for example under conditions in which a stress response is expected, as it is the case at an elevated temperature, for example 40° C.
In this specific embodiment of the invention, Genescreen membranes may be used to immobilize the restriction endonuclease digests (HindIII digests for the BAC DNA library I-1945) of the BAC vectors by transfer from a gel (Trieselmann et al., 1992).
Alternatively, the BAC vectors may be immobilized for dot blot experiments as follows. First, the DNA concentration of each BAC clone is determined by hybridization of blots of clone DNAs and of a BAC vector concentration standard with a BAC vector specific DNA probe. Hybridization is quantified by the Betascope 603 blot analyzer (Betagen Corp.), which collects beta particles directly from the blot with high efficiency. Then, 0.5 μg of each clone DNA is incubated in 0.25 M NaOH and 10 mM EDTA at 65° C. for 60 min to denature the DNA and degrade residual RNA contaminants. By using a manifold filtration system (21 by 21 wells), each clone DNA is blotted onto a GeneScreen Plus nylon membrane in the alkaline solution. After neutralization, the blots are baked at 85° C. for 0.2 h under vacuum. Positive and negative controls are added when necessary. In order to perform this procedure, it may be referred to the article of Chuang et al. (1993).
For RNA extractions, cells grown in a suitable volume of culture medium may, for example, be immediately mixed with an equal volume of crushed ice at −70° C. and spun at 4° C. in a 50 ml centrifugation tube. The cell pellet is then suspended in 0.6 ml of ice-cold buffer (10 mM KCl, 5 mM MgCl, 10 mM Tris; pH 7.4) and then immediately added to 0.6 ml of hot lysis buffer (0.4 M NaCl, 40 mM EDTA, 1% beta-mercaptoethanol 1% SDS, 20 mM Tris; pH 7.4) containing 100 μl of water saturated phenol. This mixture is incubated in a boiling water bath for 40 s. The debris are removed by centrifugation. The supernatant is extracted with phenol-chloroform five times, ethanol precipitated, and dried. The dried RNA pellet is dissolved in water before use.
Then labeled total cDNA may be prepared by the following method. The reaction mixture contains 15 μg of the previously prepared total RNA, 5 μg of pd(N6) (random hexamers from Pharmacia Inc.), 0.5 mM dATP, 0.5 mM dGTP and 0.5 mM DTTP, 5 μM dCTP, 100 μCi of [α-32P]dCTP (3,000 Ci/mmol), 50 mM Tris-HCl (pH 8.3), 6 mM MgCl2, 40 mM Kcl, 0.5 U of avian myeloblastosis virus reverse transcriptase (Life Science Inc.) in a total volume of 50 μl. The reaction is allowed to continue overnight at room temperature. EDTA and NaOH are then added to final concentrations of 50 mM and 0.25 M, respectively, and the mixture is incubated at 65° C. for 30 min to degrade the RNA templates. The cDNA is then ready to use after neutralization by adding Hcl and Tris buffer.
The hybridization step may be performed as described by Chuang et al. (1993) and briefly disclosed hereinafter. The DNA dot blot is hybridized to 32P-labeled total cDNA in a solution containing 0.1% polyvinylpyrrolidone, 0.1% Ficoll, 0.1% sodium Ppi, 0.1% bovine serum albumin, 0.5% SDS, 100 mM NaCl, and 0.1 mM sodium citrate, pH 7.2, at 65° C. for 2 days and then washed with a solution containing 0.1% SDS, 100 mM NaCl, and 10 mM Na-citrate, pH 7.2. The same dot blot is used for hybridization with both control and experimental cDNAs, with an alkaline probe stripping procedure (soaked twice in 0.25M NaOH-0.75 M NaCl at room temperature, 30 min each, neutralized, and completely dried at 65° C. for at least 30 min) between the two hybridizations. Quantification may be done with the Betascope 603 blot analyzer (Betagen Corp.).
As it flows from the above technical teachings, another object of the invention consists in a method for detecting the presence of mycobacteria in a biological sample comprising the steps of:
The invention further deals with a method for detecting the presence of mycobacteria in a biological sample comprising the steps of:
Another object of the invention consists in a method for detecting the presence of mycobacteria in a biological sample comprising the steps of:
In one specific embodiment of the above detection and/or amplification methods, said methods comprise an additional step wherein before step a), the nucleic acid molecules of the biological sample have been made available to a hybridization reaction.
In another specific embodiment of the above detection methods, said methods comprise an additional step, wherein, before the detection step, the nucleic acid molecules that are not hybridized with the immobilized purified polynucleotide are
Also part of the invention is a kit for detecting mycobacteria in a biological sample comprising:
The invention also pertains to a kit for detecting a mycobacteria in a biological sample comprising:
Moreover, the invention provides for a kit for detecting mycobacteria in a biological sample comprising:
The invention embraces also a method for detecting the presence of a genomic DNA, a cDNA or a mRNA of mycobacteria in a biological sample, comprising the steps of:
The invention also provides a kit for detecting the presence of genomic DNA, cDNA or mRNA of a mycobacterium in a biological sample, comprising:
Additionally, the recombinant BAC vectors according to the invention and the polynucleotide inserts contained therein may be used for performing detection methods based on <<molecular combing>>. Said methods consist in methods for aligning macromolecules, especially DNA and are applied to processes for detecting, for measuring intramolecular distance, for separating and/or for assaying a macromolecule, especially DNA in a sample.
These <<molecular combing>> methods are simple methods, where the triple line S/A/B (meniscus) resulting form the contact between a solvent A and the surface S and a medium B is caused to move on the said surface S, the said macromolecules (i.e. DNA) having a part, especially an end, anchored on the surface S, the other part, especially the other end, being in solution in the solvent A. These methods are particularly fully described in the PCT Application no PCT/FR 95/00165 files on Feb. 11, 1994 (Bensimon et al.).
When performing the <<molecular combing>> method with the recombinant BAC vectors according to the inventions or their polynucleotide inserts, the latters may be immobilized (<<anchored>>) on a suitable substrate and aligned as described in the PCT Application no PCT/FR 95/00165, the whole teachings of this PCT Application being herein incorporated by reference. Then, polynucleotides to be tested, preferably under the form of radioactively or non radioactively labeled polynucleotides, that may consist of fragments of genomic DNA, cDNA etc. are brought into contact with the previously aligned polynucleotides according to the present invention and then their hybridization position on the aligned DNA molecules is determined using any suitable means including a microscope or a suitable camera device.
Thus, the present invention is also directed to a method for the detection of the presence of a polynucleotide of mycobacterial origin in a biological sample and/or for physical mapping of a polynucleotide on a genomic DNA, said method comprising:
The invention finally provides for a kit for performing the above method, comprising:
In conclusion, it may be underlined that the alliance of such BAC-based approaches such as described in the present specification to the advances in comparative genomics by the availability of an increased number of complete genomes, and the rapid increase of well-characterized gene products in the public databases, will allow the one skilled in the art an exhaustive analysis of the mycobacterial genome.
Materials and Methods
Partial HindIII fragments of H37Rv DNA in the size range of 25 to 180 kb were ligated into pBeloBAC11 and electroporated into strain E. coli DH10B. While cloning of fractions I (25 to 75 kb) and II (75 to 120 kb) gave approximately 4×104 transformants (white colonies), cloning of fraction III (120 to 180 kb) repeatedly resulted in empty clones. Parallel cloning experiments using partial HindIII digests of human DNA resulted in stable inserts for all three fractions (data not shown), suggesting that the maximum size of large inserts in BAC clones is strongly dependent on the source of the DNA. Analysis of the clones for the presence of inserts revealed that 70% of the clones had an insert of the appropriate size while the remaining 30% of white colonies represented empty or lacZ′-mutated clones. Size determination of randomly selected, DraI-cleaved BACs via PFGE showed that the insert sizes ranged for the majority of the clones between 40 kb and 100 kb with an average size of 70 kb. Clones with inserts of appropriate size were designated with “Rv” numbers, recultured and stored at −80° C. for further use.
To characterize the BAC clones, they were systematically subjected to insert termini sequencing. Two approaches, direct sequencing of BAC DNA and PCR with degenerate oligonucleotide primers (DOP), adapted to the high G+C content of mycobacterial DNA, were used. In a first screening phase, 50 BAC clones designated Rv1 to Rv50 were analysed using both methods in parallel. Except for two clones, where the sequences diverged significantly, the sequences obtained by the two methods only differed in length. Sequences obtained directly were on average about 350 bp long and for 95% of the clones both the SP6 and T7 endsequences were obtained at the first attempt. Sequences obtained by DOP-PCR were mostly shorter than 300 bp. For 40% of the BACs we obtained only very short amplicons of 50 to 100 base pairs from one end. In two cases the sequence obtained with the DOP-PCR differed from the sequences obtained by direct sequencing, and in these cases E. coli or vector sequences were amplified (data not shown). Taking the advantages and disadvantages of both methods into account, we decided to use direct termini sequencing for the systematic determination of the SP6 ad T7 end-sequences.
After having determined the end-sequences of 400 BACs a certain redundancy was seen; The majority of clones were represented at least 3 to 4 times. Maximum redundancy was seen in the vicinity of the unique rrn operon, as 2.5% of the clones carried identical fragments that bridge the cosmids Y50 and Y130 (
Using all endsequence and shotgun-sequence data from the H37Rv genome sequencing project, most of the BAC clones could then be localized by sequence comparison on the integrated map of the chromosome of M. tuberculosis strain H37Rv (Philipp et al., 1996b) and an ordered physical map of the BAC-clones was established. PCR with primers from the termini sequences of selected BACs were used for chromosomal walking and confirmation of overlapping BACs (data not shown). The correct order of BACs on the map was also coded more recently, using 40,000 whole genome shotgun reads established at the Sanger Centre. In addition, pulsed-field gel electrophoresis of DraI digests of selected BACs was performed (
M. tuberculosis
M. leprae
M. tuberculosis
M. tuberculosis
M. leprae
M. tuberculosis
M. tuberculosis
M. tuberculosis
Repetitive sequences can seriously confound mapping and sequence assembly. In the case of the BAC endsequences, no particular problems with repetitive sequences were observed. Although nine clones with one end in an IS1081 (Collins et al., 1991) sequence were identified, it was possible to correctly locate their position on the map using the sequence of the second terminus. Moreover, these BACs were used to determine the exact locations of IS1081 sequences on the map. Five copies of this insertion sequence, which harbors a HindIII cleavage site, were mapped on the previous physical and genetic map. In contrast, BAC endsequence data revealed an additional copy of IS1081 on the M. tuberculosis H37Rv chromosome. The additional copy was identified by six clones (Rv27, Rv118, Rv142, Rv160, Rv190, Rv371) which harbored an identical fragment linking Y50 to I364 (
In addition, a sequence of 1165 bp in length containing a HindIII site was found in two copies in the genome of H37Rv in different regions. The endsequences of BAC clones Rv48 and Rv374, covering cosmid Y164, as well as Rv419 and Rv45, that cover cosmid Y92, had perfect identity with the corresponding parts of this 1165 bp sequence (
The minimal overlapping set of BAC clones represents a powerful tool for comparative genomics. For example, with each BAC clone containing on average an insert of 70 kb, it should be possible to cover a 1 Mb section of the chromosome with 15 BAC clones. Restriction digests of overlapping clones can then be blotted to membranes, and probed with radiolabelled total genomic DNA from, for example, M. bovis BCG Pasteur. Restriction fragments that fail to hybridize with the M. bovis BCG Pasteur DNA must be absent from its genome, hence identifying polymorphic regions between M. bovis BCG Pasteur and M. tuberculosis H37Rv. The results of such an analysis with clone Rv58 (
As it appears from the teachings of the specification, the invention is not limited in scope to one or several of the above detailed embodiments; the present invention also embraces all the alternatives that can be performed by one skilled in the same technical field, without deviating from the subject or from the scope of the instant invention.
References
This is a division of application Ser. No. 10/259,678, filed Sep. 30, 2002, now U.S. Pat. No. 6,991,904, which is a continuation of application Ser. No. 09/670,314, filed Sep. 26, 2000, now U.S. Pat. No. 6,492,506, which is a division of application Ser. No. 09/060,756, filed Apr. 16, 1998, now U.S. Pat. No. 6,183,957, which are each herein incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
6641814 | Andersen et al. | Nov 2003 | B1 |
Number | Date | Country |
---|---|---|
WO9303187 | Feb 1993 | WO |
WO9318166 | Sep 1993 | WO |
WO 979429 | Mar 1997 | WO |
WO9723624 | Jul 1997 | WO |
WO9954487 | Oct 1999 | WO |
WO9954487 | Oct 1999 | WO |
Entry |
---|
Greenspan et al. (Nature Biotechnology 7: 936-937, 1999). |
Colman et al. (Research in Immunology 145: 33-36, 1994, p. 33 col. 2, p. 35 col. 1). |
GenBank Z79701[gi:1524225] (submitted Sep. 2, 1996; posted Sep. 6, 1996; replaced Jun. 27, 1998) (23 pages). |
GenBank Z79701 Revision history (1 page), (submitted Sep. 2, 1996, posted Sep. 6, 1996; replaced Jun. 27, 1998)). |
“On the Preparation and Utilization of Isolated and Purified Oligonucleotides,” including attached disk of polynucleotides, Mar. 9, 2002. |
Brosch et al., “Use of a Mycobacterium tuberculosis H37Rv Bacterial Aritificial Chromosome Library for Genome Mapping Sequencing, and Comparative Genomics,” Infection and Immunity, vol. 66, No. 5, pp. 2221-2229 (May 1998). |
Cole et al., “Deciphering the Biology of Mycobacterium tuberculosis from the Complete Genome Sequence,” Nature, vol. 393, pp. 537-545 (Jun. 11, 1998). |
Cole et al., Novartis Foundation Symposium, pp. 160-177 (1998). |
Kim et al., “Construction and Characterization of a Human Bacterial Artificial Chromosome Library,” Genomics, vol. 34, pp. 213-218 (Jun. 1, 1996). |
International Search Report of PCT/IB99/00740, Oct. 28, 1999. |
Philipp et al., “Physical Mapping of Mycobacterium bovis BCG Pasteur Reveals Differences from the Genome Map of Mycobacterium tuberculosis H37Rv and from M. bovis,” Microbiology, vol. 142:3135-3145 (1996). |
Philipp et al., “An Integrated Map of the Genome of the Tubercle Bacillus, Mycobacterium tuberculosis H37Rv, and Comparison with Mycobacterium leprae,”, P.N.A.S., vol. 93:3132-3137 (1996). |
Zimmer et al., “Construction and Characterization of Large-Fragmented Chicken Bacterial Artificial Chromosome Library”, Genomics, vol. 42:217-226 (1997). |
GenEmbl AD00001 Dec. 3, 1996. |
GenEmbl AD000017 Dec. 10, 1996. |
GenEmbl 400013 Mar. 1, 1994. |
GenEmbl X63508 Nov. 20, 1996. |
Number | Date | Country | |
---|---|---|---|
20070092884 A1 | Apr 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10259678 | Sep 2002 | US |
Child | 11341914 | US | |
Parent | 09060756 | Apr 1998 | US |
Child | 09670314 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09670314 | Sep 2000 | US |
Child | 10259678 | US |