1. Field of the Invention
The invention relates generally to enhanced heat transfer surfaces and a method of and tool for forming enhanced heat transfer surfaces.
2. General Background of the Invention
The invention relates to enhanced heat transfer surfaces that facilitate heat transfer from one side of the surface to the other. Heat transfer surfaces are commonly used in equipment such as, for example, flooded evaporators, falling film evaporators, spray evaporators, absorption chillers, condensers, direct expansion coolers, and single phase coolers and heaters, used in the refrigeration, chemical, petrochemical and food-processing industries. A variety of heat transfer mediums may be used in these applications including, but not limited to, pure water, a water-glycol mixture, any type of refrigerant (such as R-22, R-134a, R-123, etc.), ammonia, petrochemical fluids, and other mixtures.
Some types of heat transfer surfaces work by using the phase change of a liquid to absorb heat. Thus, heat transfer surfaces often incorporate a surface for enhancing boiling or evaporating. It is generally known that the heat transfer performance of a surface can be enhanced by increasing nucleation sites on the boiling surfaces, by inducing agitation near a single-phase heat transfer surface, or by increasing area and surface tension effects on condensation surfaces. One method for enhancing boiling or evaporating is to roughen the heat transfer surface by sintering, radiation-melting or edging methods to form a porous layer thereon. A heat transfer surface having such a porous layer is known to exhibit better heat transfer characteristics than that of a smooth surface. However, the voids or cells formed by the above-mentioned methods are small and impurities contained in the boiling liquid may clog them so that the heat transfer performance of the surface is impaired. Additionally, since the voids or cells formed are non-uniform in size or dimension, the heat transfer performance may vary along the surface. Furthermore, known heat transfer tubes incorporating boiling or evaporating surfaces often require multiple steps or passes with tools to create the final surface.
Tube manufacturers have gone to great expense to experiment with alternative designs including those disclosed in U.S. Pat. No. 4,561,497 to Nakajima et al., U.S. Pat. No. 4,602,681 to Daikoku et al., U.S. Pat. No. 4,606,405 to Nakayama et al., U.S. Pat. No. 4,653,163 to Kuwahara et al., U.S. Pat. No. 4,678,029 to Sasaki et al., U.S. Pat. No. 4,794,984 to Lin and U.S. Pat. No. 5,351,397 to Angeli.
While all of these surface designs aim to improve the heat transfer performance of the surface, there remains a need in the industry to continue to improve upon tube designs by modifying existing designs and creating new designs that enhance heat transfer performance. Additionally, a need also exists to create designs and patterns that can be transferred onto tube surfaces more quickly and cost effectively. As described below, the geometries of the heat transfer surfaces of the invention, as well as tools to form those geometries, have significantly improved heat transfer performance.
Embodiments of the invention provide an improved heat transfer surface, such as may be formed on a tube, and a method of formation thereof that can be used to enhance heat transfer performance of tubes used in at least all of the above-referenced applications (i.e., flooded evaporators, falling film evaporators, spray evaporators, absorption chillers, condensers, direct expansion coolers and single phase coolers and heaters, used in the refrigeration, chemical, petrochemical and food-processing industries). The surface is enhanced with a plurality of cavities that significantly decrease the transition time to move from one phase to the next, for example to move from boiling to evaporation. The cavities create additional paths for fluid flow within the tube and thereby enhance turbulence of heat transfer mediums flowing within the tube. Protrusions creating cavities also provide extra surface area for additional heat exchange. Tests show that performance of tubes according to embodiments of the invention is significantly enhanced.
Certain embodiments of the invention include a method for using a tool, which can be easily added to existing manufacturing equipment, having a mirror image of a pattern of grooves desired to formed on the tube surface. Certain embodiments of the invention also include using a tool, which also can be easily added to existing manufacturing equipment, having a cutting edge to cut through the surface of tube and a lifting edge to lift the surface of the tube to form protrusions. In this way, protrusions are formed without removal of metal from the inner surface of the tube, thereby eliminating debris which can damage the equipment in which the tubes are used. Finally, certain embodiments of the invention include using a tool, which also can be easily added to existing manufacturing equipment, for flattening or bending the tips of the protrusions, such as a mandrel. The grooves, protrusions and flattened tips on the tube surface can be formed in the same or a different operation. In certain embodiments of the invention, the three tools are secured on a single shaft and the tube surfaces are formed in one operation.
Heat transfer surfaces formed in accordance with embodiments of the invention may be used on the inner or outer surface of a heat transfer tube or may be used on flat heat transfer surfaces, such as are used to cool micro-electronics. Such surfaces may be suitable in any number of applications, including, for example, applications for use in the HVAC, refrigeration, chemical, petrochemical and food processing industries. The physical geometries of the protrusions may be changed to tailor the tube to a particular application and fluid medium.
It should be understood that a tube in accordance with this invention is generally useful in, but not limited to, any application where heat needs to be transferred from one side of the tube to the other side of the tube, such as in multi-phase (both pure liquids or gases or liquid/gas mixtures) evaporators and condensers. While the following discussion provides desirable dimensions for a tube of this invention, the tubes of this invention are in no way intended to be limited to those dimensions. Rather, the desirable geometries of the tube will depend on many factors, not the least important of which are the properties of the fluid flowing through the tube. One skilled in the art would understand how to alter the geometry of the surfaces of the tube to maximize heat transfer used in various applications and with various fluids. Furthermore, although the drawings show the surface as it would be when found on the inner surface of a tube, it should be understood that the surface is suitable for use on the outer surface of a tube or on a flat surface, such as is used in micro-electronics.
As shown in
The depth of primary grooves 108 should generally be greater the more viscous the liquid flowing through tube 100. For example, a depth of greater than zero, but less than the thickness of the tube wall 102 will generally be desirable. For purposes of this application, the thickness of tube wall 102 is measured from inner surface 104 to outer surface 106.
The axial pitch of the primary grooves 108 depends on many factors, including helix angle α, the number of primary grooves 108 formed on inner surface 104 of tube 100, and the inside diameter of tube 100. For purposes of this application, the inside diameter is measured from inner surface 104 of tube 100. An axial pitch of 0.5-5.0 mm is generally desirable, with 1.5 mm.
Certain embodiments of the invention also include protrusions or fins 110. Protrusions 110 may be cut and lifted from the inner surface 104 of tube 100 located between primary grooves 108 so as to have a width Ws defined by adjacent primary grooves 108, as shown in FIGS. 1 and 2A-C. Protrusions 110 are preferably at an angle θ to axis s to tube 100. The height ep of protrusions 110 is dependent on the cutting depth t and angle θ at which inner surface 104 is cut. The height ep of protrusions 110 is preferably a value at least as great as the cutting depth t, up to three times the cutting depth t. Preferably, the depth of cutting/lifting tool 300 is greater than the depth of primary grooves 108.
The axial pitch Pa,p of protrusions 110 may be any value greater than zero and generally will depend on, among other factors, the relative revolutions per minute between the cutting/lifting tool 300 and the tube 100 during manufacture, the relative axial feed rate between the cutting/lifting tool 300 and the tube 100 during manufacture, and the number of tips 302 provided on the cutting/lifting tool 300 used to form the protrusions 110 during manufacture. Preferably, protrusions 110 have an axial pitch Pa,p of between 0.05-5.0 mm. The axial pitch Pa,p and height will generally depend on the number of protrusions, which height ep decreases as the number of protrusions increases.
The shape of protrusions 110 is dependent on the shape of inner surface 104 and the orientation of inner surface 104 after primary grooves 108 have been cut relative to the direction of movement of cutting/lifting tool 300. In the embodiment of
The tips 124 of protrusions 110 optionally may be flattened to create boiling cavities 114, as shown in
The protrusions 110 of this invention are in no way intended to be limited to the illustrated embodiment, however, but rather can be formed in any shape. Moreover, protrusions 110 in tube 100 need not be the same shape or have the same geometry.
As shown in
Certain embodiments of the invention also include methods and tools for making boiling surfaces on a tube. A grooving tool 200, such as that shown in
Cutting/lifting tool 300, shown in
Each tip 302 is formed by the intersection of planes A, B, and C. The intersection of planes A and B form cutting edge 304 that cuts through inner surface 104 to form layers as a first step to forming protrusions 110. Plane B is oriented at an angle φ relative to a plane perpendicular to the tool axis q (see
The intersection of planes A and C form lifting edge 306 that lifts inner surface 104 upwardly to form protrusions 110. Angle φ1 is defined by plane C and a plane perpendicular to tool axis q. Angle φ1 determines the angle of inclination ω (the angle between a plane perpendicular to the longitudinal axis s of tube and the plane of the longitudinal axis of protrusions 110) at which protrusions 110 are lifted by lifting edge 306. Angle φ1=angle ω, and thus angle φ1 on cutting/lifting tool 300 can be adjusted to directly impact the angle of inclination ω of protrusions 110. The angle of inclination ω (and angle φ1) is preferably the absolute value of any angle between approximately −45° to 45° relative to the plane perpendicular to the longitudinal axis s of tube. In this way, protrusions 110 can be aligned with the plane perpendicular to the longitudinal axis s of tube or incline to the left and right relative to the plane perpendicular to the longitudinal axis s of tube 100. Moreover, the tips 302 can be formed to have different geometries (i.e., angle φ1 may be different on different tips 302), and thus the protrusions 110 within tube 100 may incline at different angles (or not at all) and in different directions relative to the plane perpendicular to the longitudinal axis s of tube 100.
As shown in
Thus, the gap g obtained may be calculated as follows:
Where:
p is the axial pitch of the protrusions 110;
φ is the angle between plane B and a plane perpendicular to tool axis q;
φ1 is the angle of the tool 300 between plane C and a plane perpendicular to tool axis q; and
t is the depth of cutting.
While preferred ranges of values for the physical dimensions of protrusions 110 have been identified, one skilled in the art will recognize that the physical dimensions of cutting/lifting tool 300 may be modified to impact the physical dimensions of resulting protrusions 110. For example, the depth t that cutting edge 304 cuts into inner surface 104 and angle φ affect the height ep of protrusions 110. Therefore, the height ep of protrusions 110 may be adjusted using the expression:
ep=t/sin(90−φ)
or, given that φ=90−θ,
ep=t/sin(θ)
Where:
t is the cutting depth;
φ is the angle between plane B and a plane perpendicular to tool axis q; and
θ is the angle at which the layers are cut relative to the longitudinal axis s of the tube 100.
Thickness Sp of protrusions 110 depends on pitch Pa,p of protrusions 110 and angle φ. Therefore, thickness Sp can be adjusted using the expression:
Sp=Pa,p·sin(90−φ)
or, given that φ=90−θ,
Sp=Pa,p·sin(θ)
Where:
Pa,p is the axial pitch of protrusions 110;
φ is the angle between plane B and a plane perpendicular to tool axis q; and
θ is the angle at which inner surface 104 is cut relative to the longitudinal axis s of the tube 100.
In certain embodiments of the invention, the tips 124 of protrusions 110 may be flattened or bent using flattening tool 400, shown in
In other embodiments, the tips 124 of protrusions 110 may achieve a shape similar to the flattened or bent tips 124 shown in
Boiling surfaces for use on heat transfer surfaces may also be achieved by creating protrusions 110 with thickened tips 124. As shown in
Where:
φ2 is the angle between projection of the first site of a cutting edge and direction of tool feed;
φ3 is the angle between projection of the second site of a cutting edge and direction of tool feed;
t is the full depth of cutting; and
t1 is the depth of cutting for the first site of cutting edge, then the protrusion tips 124 will be as shown in
If the following is true:
then the protrusion tips 124 will be as shown in
g=p·cos(φ3−φ2)·(1·sin(φ2)·cos(φ2)·(tg(φ3−φ2)).
In one example of a way to enhance inner surface 104 of tube 100, a shaft 130, onto which flattening tool 400 is rotatably mounted through aperture 402, extends into tube 100. Cutting/lifting tool 300 is mounted onto shaft 130 through aperture 308. Grooving tool 200 is mounted onto shaft 130 through aperture 202. Bolt 132 secures all three tools 200, 300, 400 in place. The tools 200, 300, 400 are preferably locked in rotation with shaft 130 by any suitable means.
Although not shown, when the method and/or tool of the invention is used to create an inner surface of a tube, the manufacturing set-up may include arbors that can be used to enhance the outer surface of tube. Each arbor generally includes a tool set-up having finning disks which radially extrude from one to multiple start outside fins having axial pitch Pa,o. The tool set-up may include additional disks, such as notching or flattening disks, to further enhance the outer surface of tube. Note, however, that depending on the tube application, enhancements need not be provided on outer surface of tube at all. In operation, tube wall moves between mandrel and the arbors, which exert pressure on tube wall.
The mirror image of a desired inner surface pattern is provided on grooving tool 200 so that grooving tool 200 will form inner surface 104 of tube 100 with the desired pattern as tube 100 engages grooving tool 200. A desirable inner surface 104 includes primary grooves 108, as shown in
When protrusions 110 are formed simultaneously with outside finning and cutting/lifting tool 300 is fixed (i.e., not rotating or moving axially), tube 100 automatically rotates and has an axial movement. In this instance, the axial pitch of protrusions 110 Pa,p is governed by the following formula:
Where:
To obtain a specific protrusion axial pitch Pa,p, cutting/lifting tool 300 can also be rotated. Both tube 100 and cutting/lifting tool 300 can rotate in the same direction or, alternatively, both tube 100 and cutting/lifting tool 300 can rotate, but in opposite directions. To obtain a predetermined axial protrusion pitch Pa,p, the necessary rotation (in revolutions per minute (RPM)) of the cutting/lifting tool 300 can be calculated using the following formula:
Where:
RPMtube is the frequency of rotation of tube 100;
Pa,o is the axial pitch of outer fins;
Zo is the number of fin starts on the outer diameter of tube;
Pa,p is the desirable axial pitch of protrusions 110; and
Zi is the number of tips 302 on cutting/lifting tool 300.
If the result of this calculation is negative, then cutting/lifting tool 300 should rotate in the same direction of tube 100 to obtain the desired pitch Pa,p. Alternatively, if the result of this calculation is positive, then cutting/lifting tool 300 should rotate in the opposite direction of tube 100 to obtain the desired pitch Pa,p.
Note that while formation of protrusions 110 is shown in the same operation as formation of primary grooves 108, protrusions 110 may be produced in a separate operation from primary grooves 108 by using a tube 100 with pre-formed primary grooves 108. This would generally require an assembly to rotate cutting/lifting tool 300 or tube 100 and to move cutting/lifting tool 300 or tube 100 along the tube axis. Moreover, a support (not shown) is preferably provided to center cutting/lifting tool 300 relative to the inner tube surface 14.
In this case, the axial pitch Pa,p of protrusions 110 is governed by the following formula:
Pa,p=Xa/(RPM·Zi)
Where:
Xa is the relative axial speed between tube 100 and cutting/lifting tool 300 (distance/time);
RMP is the relative frequency of rotation between cutting/lifting tool 300 and tube 100;
Pa,p is the desirable axial pitch of protrusions 110; and
Zi is the number of tips 302 on cutting/lifting tool 300.
This formula is suitable when (1) the tube 100 moves only axially (i.e., does not rotate) and the cutting/lifting tool 300 only rotates (i.e., does not move axially); (2) the tube 100 only rotates and the cutting/lifting tool 300 moves only axially; (3) the cutting/lifting tool 300 rotates and moves axially but the tube 100 is both rotationally and axially fixed; (4) the tube 100 rotates and moves axially but the tool 10 is both rotationally and axially fixed; and (5) any combination of the above.
With the inner tube surface 104 of this invention, additional paths for fluid flow are created (between protrusions 110 through secondary grooves 112) to optimize heat transfer and pressure drop.
Where:
The foregoing description is provided for describing various embodiments and structures relating to the invention. Various modifications, additions and deletions may be made to these embodiments and/or structures without departing from the scope and spirit of the invention.
This application is a divisional of U.S. patent application Ser. No. 10/972,734, filed Oct. 25, 2004, now U.S. Pat. No. 7,311,137 which claims the benefit of U.S. Application Ser. No. 60/514,418, filed on Oct. 23, 2003 and is a continuation-in-part of U.S. application Ser. No. 10/458,398, filed Jun. 10, 2003, now abandoned which claims the benefit of U.S. Application Ser. No. 60/387,328, filed Jun. 10, 2002.
Number | Name | Date | Kind |
---|---|---|---|
2314084 | Fried | Mar 1943 | A |
3202212 | Kritzer | Aug 1965 | A |
3454081 | Kun et al. | Jul 1969 | A |
3753364 | Runyan et al. | Aug 1973 | A |
3776018 | French | Dec 1973 | A |
3847212 | Withers, Jr. et al. | Nov 1974 | A |
3886639 | Pasternak | Jun 1975 | A |
3987539 | Gravener | Oct 1976 | A |
4166498 | Fujie et al. | Sep 1979 | A |
4203311 | O'Connor et al. | May 1980 | A |
4561497 | Nakajima et al. | Dec 1985 | A |
4577381 | Sato et al. | Mar 1986 | A |
4602681 | Daikoku et al. | Jul 1986 | A |
4606405 | Nakayama et al. | Aug 1986 | A |
4624122 | Bridier | Nov 1986 | A |
4646548 | Zimmerli et al. | Mar 1987 | A |
4653163 | Kuwahara et al. | Mar 1987 | A |
4672834 | Alberto | Jun 1987 | A |
4678029 | Sasaki et al. | Jul 1987 | A |
4706355 | Kuhns et al. | Nov 1987 | A |
4794984 | Lin | Jan 1989 | A |
4819525 | Rabe | Apr 1989 | A |
4938282 | Zohler | Jul 1990 | A |
5052476 | Sukumoda et al. | Oct 1991 | A |
5181810 | Heule | Jan 1993 | A |
5332034 | Chiang et al. | Jul 1994 | A |
5351397 | Angeli | Oct 1994 | A |
5458191 | Chiang et al. | Oct 1995 | A |
5555622 | Yamamoto et al. | Sep 1996 | A |
5597039 | Rieger | Jan 1997 | A |
5655599 | Kasprzyk | Aug 1997 | A |
5669441 | Spencer | Sep 1997 | A |
5682946 | Schmidt et al. | Nov 1997 | A |
5690167 | Rieger | Nov 1997 | A |
5692560 | Messant et al. | Dec 1997 | A |
5697430 | Thors et al. | Dec 1997 | A |
5704424 | Kohno et al. | Jan 1998 | A |
5709029 | Innes | Jan 1998 | A |
5755538 | Heule | May 1998 | A |
5775187 | Nikolai et al. | Jul 1998 | A |
5775411 | Schuez et al. | Jul 1998 | A |
5782121 | Wetzels | Jul 1998 | A |
5791405 | Takiura et al. | Aug 1998 | A |
5803164 | Schuez et al. | Sep 1998 | A |
5803165 | Shikazono et al. | Sep 1998 | A |
5862857 | Ishikawa et al. | Jan 1999 | A |
5915467 | Ishikawa et al. | Jun 1999 | A |
5933953 | Spencer et al. | Aug 1999 | A |
5934128 | Takiura et al. | Aug 1999 | A |
5950716 | Appelquist et al. | Sep 1999 | A |
5950718 | Sugitani et al. | Sep 1999 | A |
5975196 | Gaffaney et al. | Nov 1999 | A |
5996686 | Thors et al. | Dec 1999 | A |
6000466 | Aoyagi et al. | Dec 1999 | A |
6018963 | Itoh et al. | Feb 2000 | A |
6026892 | Kim et al. | Feb 2000 | A |
6056048 | Takahashi et al. | May 2000 | A |
6067712 | Randlett et al. | May 2000 | A |
6164370 | Rbinson et al. | Dec 2000 | A |
6167950 | Gupte et al. | Jan 2001 | B1 |
6173762 | Ishida et al. | Jan 2001 | B1 |
6173763 | Sano et al. | Jan 2001 | B1 |
6176301 | Bennett et al. | Jan 2001 | B1 |
6176302 | Takahashi et al. | Jan 2001 | B1 |
6182743 | Bennett et al. | Feb 2001 | B1 |
6298909 | Fukatami et al. | Oct 2001 | B1 |
6336501 | Ishikawa et al. | Jan 2002 | B1 |
6766817 | da Silva | Jul 2004 | B2 |
6918404 | da Silva | Jul 2005 | B2 |
20060112535 | Thors et al. | Jun 2006 | A1 |
20060213346 | Thors et al. | Sep 2006 | A1 |
Number | Date | Country |
---|---|---|
0865838 | Sep 1998 | EP |
0522985 | Feb 2000 | EP |
0845646 | Sep 2001 | EP |
1391675 | Feb 2004 | EP |
2268580 | Nov 1975 | FR |
54-068554 | Jun 1979 | JP |
56-059194 | May 1981 | JP |
S56-59194 | May 1981 | JP |
61-175486 | Aug 1986 | JP |
62237295 | Oct 1987 | JP |
09108759 | Apr 1997 | JP |
09141361 | Jun 1997 | JP |
09295037 | Nov 1997 | JP |
10052714 | Feb 1998 | JP |
10103886 | Apr 1998 | JP |
10197184 | Jul 1998 | JP |
10206061 | Aug 1998 | JP |
10281676 | Oct 1998 | JP |
11226635 | Aug 1999 | JP |
2000193345 | Jul 2000 | JP |
Entry |
---|
Patent Abstracts of Japan, JP-02034237, Furukawa Electric Co Ltd, Published Feb. 5, 1990. |
Patent Abstracts of Japan, JP-02108410, Furukawa Electric Co Ltd, Published Apr. 20, 1990. |
Patent Abstracts of Japan, JP-02112822, Furukawa Electric Co Ltd, Published Apr. 25, 199. |
Patent Abstracts of Japan, JP-02133798 , Hitachi Cable Ltd, Published May 22, 1990. |
Patent Abstracts of Japan, JP-03124337, Zexel Corp, Published May 27, 1991. |
Patent Abstracts of Japan, JP-03268816, Matsushita Refrig Co Ltd, Published Nov. 29, 1991. |
Patent Abstracts of Japan, JP-04009210, Matsushita Electric Ind Co Ltd, Published Jan. 14, 1992. |
Patent Abstracts of Japan, JP-04091819, Mitsubishi Heavy Ltd, Published Mar. 25, 1992. |
Patent Abstracts of Japan, JP-04151473, Hitachi Zosen Crop, Published May 25, 1992. |
Patent Abstracts of Japan, JP-04266418, Sumitomo Light Metal Ind Ltd, Published Sep. 22, 1992. |
Patent Abstracts of Japan, JP-04319019, Kobe Steel Ltd, Published Nov. 10, 1992. |
Patent Abstracts of Japan, JP-04333339, Segawa Kihachiro, Published Nov. 20, 1992. |
Patent Abstracts of Japan, JP-05106990, Mitsubishi Shindoh Co., Ltd, Published Apr. 27, 1993. |
Patent Abstracts of Japan, JP-05231790 Kobe Steel ltd, Published Sep. 7, 1993. |
Patent Abstracts of Japan, JP-08035739, Sumitomo Light Metal Ind Ltd, Published Feb. 6, 1996. |
Patent Abstracts of Japan, JP-08313182, Matsushita Electric Ind Co Ltd, Published Nov. 29, 1996. |
Patent Abstracts of Japan, JP-08099206, Showa Aluminum Corp., Published Apr. 16, 1996. |
Patent Abstracts of Japan, JP-09113169, Matsushita Refrig Co Ltd, Published May 2, 1997. |
U.S. Appl. No. 12/622,487, Final Office Action, mailed Oct. 21, 2011. |
U.S. Appl. No. 12/622,487, Response to Final Office Action, mailed Dec. 20, 2011. |
U.S. Appl. No. 12/622,487, non Final Office Action, mailed Feb. 3, 2012. |
U.S. Appl. No. 12/622,487, Notice of Allowance, mailed Jul. 3, 2012, 10 pages. |
Number | Date | Country | |
---|---|---|---|
20070234871 A1 | Oct 2007 | US |
Number | Date | Country | |
---|---|---|---|
60514418 | Oct 2003 | US | |
60387328 | Jun 2002 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10972734 | Oct 2004 | US |
Child | 11759835 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10458398 | Jun 2003 | US |
Child | 10972734 | US |