The invention relates to a method for managing the operating range of an electric accumulator battery.
One field of application envisioned is in particular, but not exclusively, the management of lithium-ion batteries used in electric, hybrid or rechargeable hybrid vehicles. This type of battery comprises a plurality of electric accumulators or cells, including a rechargeable electrochemical system designed to supply a nominal voltage.
The operating range of the battery corresponds to the permissible range of state of charge for the battery, in terms of both charge and discharge. This operating range is characterized, on the one hand, by a maximum state of charge, corresponding to a state of charge above which the battery is not permitted to rise, and, on the other hand, by a minimum state of charge, below which the battery is not permitted to drop.
The maximum permissible state of charge is defined by the end-of-charge voltage or cutoff voltage, which may, for example, be measured across the terminals of the battery. This voltage is in effect representative of the charging limit of the cells that form the battery. In other words, it is the value that the maximum voltage across the terminals of each cell must reach at the end of charging in order to judge that charging has in fact finished. A high end-of-charge voltage increases the energy available at the start of life of the battery, but, in contrast, brings about faster ageing of the battery. Thus, in order to manage the end-of-charge voltage, it is necessary to find a compromise between the energy level provided by the battery in the short term and the durability of the battery.
It will be seen that the problem of managing the minimum state of charge of the battery is just as acute. In effect, if the minimum state of charge is too high, the energy available for the user will not be at the desired level with respect to a required minimum energy level, whereas, if it is too low, in certain instances of use, in particular in conditions involving cold temperatures, the battery risks being at a level of state of charge at which it will not be able to supply the required minimum power level. Thus, in order to manage the minimum permissible state of charge for the battery, it is also necessary to find a compromise between the desired energy level that one wishes to ensure for the user and the available discharge power of the battery over the entire operating range of the battery, including when cold.
In terms of performance, the battery system, consisting primarily of the cells and the dedicated BMS (Battery Management System) computer, must therefore ensure a required minimum energy level, not only at the start of life but also after a certain number of years, and a required minimum power level, not only at the start of life, over the entire operating range, but also after a certain number of years.
Patent document WO2012074406 discloses a method for managing the charging of a battery of an electric vehicle, wherein the BMS is able to determine a modifiable charging algorithm intended to be provided to the charger in order to ensure charging of the battery in such a way as to adapt the charging as a function of different conditions, such as temperature, electric network and type of charger. This method makes it possible to charge the battery to a desired energy level in nominal conditions. However, said method does not allow management of all of the causes of “dispersion” that can influence the available energy level. In effect, one of the difficulties lies in the fact that, for a predetermined end-of-charge voltage, the energy available for a user is not the same, in line primarily with three factors:
Therefore, one problem that arises and that the present invention aims to solve is to provide a method for managing the operating range of the battery, making it possible to ensure the strictly necessary required minimum energy level and required minimum power level, in line with the ageing of the battery.
To this end, the present invention provides a method for managing a permissible operating range of a battery, said permissible operating range being bounded between a minimum level and a maximum level of state of charge of the battery, said method comprising a step of estimating a state of health in terms of power of said battery, said state of health in terms of power characterizing the capacity of the battery to supply a required minimum power level over the entirety of said operating range, said method being characterized in that it furthermore comprises a step of determining said minimum level of state of charge of said battery as a function of said estimated state of health in terms of power, said minimum level of state of charge being increased when the state of health in terms of power decreases.
Thus, by virtue of this modulation of the minimum permissible level of state of charge as a function of the state of health in terms of power of the battery, it is possible to compensate for the progressive reduction, with ageing, of the permissible discharge power for the battery.
Advantageously, the method can furthermore comprise a step of determining said maximum level of state of charge of said battery as a function of said estimated state of health in terms of power of said battery, said maximum level of state of charge being increased when the state of health in terms of power decreases. This advantageously makes it possible to compensate for the progressive reduction of the permissible discharge power with ageing.
Advantageously, so as to compensate for the loss of capacity of the battery, the method can also comprise steps of;
According to another advantageous feature, the method can comprise a step including reducing said minimum level of state of charge of said battery at the start of life of said battery, so as to make it possible to guarantee the strictly necessary required minimum power level over the entire lifetime of the battery.
According to another advantageous feature, the method can also comprise a step including reducing said maximum level of state of charge of said battery at the start of life of said battery, so as to make it possible to limit the degradation of the battery at the start of life by limiting its operating range.
Advantageously, the estimation of said state of health in terms of power of said battery includes comparing the internal resistance of the battery in given temperature and state of charge conditions with the value of said internal resistance in said conditions when the battery is new.
According to another aspect, the invention relates to a computer program comprising instructions for carrying out the steps of the method of the invention when these instructions are executed by a processor.
The method for managing the operating range of the battery, described above, can be implemented by digital processing means, for example a microprocessor, a microcontroller, or another means. It can advantageously be implemented by the dedicated battery system computer (BMS).
Also provided is a device for managing a permissible operating range of a battery, said permissible operating range being bounded between a minimum level and a maximum level of state of charge of the battery, said device comprising means for estimating a state of health in terms of power of said battery, said state of health in terms of power characterizing the capacity of said battery to supply a required minimum power level over the entirety of said operating range, and processing means able to determine said minimum level of state of charge of said battery as a function of said estimated state of health in terms of power, such that said minimum level of state of charge increases when the state of health in terms of power of said battery decreases.
Advantageously, said processing means are able to determine said maximum level of state of charge of said battery as a function of said estimated state of health in terms of power of said battery, such that said maximum level of state of charge increases when the state of health in terms of power of said battery decreases.
Preferably, the device comprises means for estimating a state of health in terms of energy of said battery, said state of health in terms of energy characterizing the capacity of said battery to supply a required minimum energy level over the entirety of said operating range, said processing means being able to determine said maximum level of state of charge of said battery as a function of said estimated state of health in terms of energy of said battery, such that said maximum level of state of charge increases when the state of health in terms of energy of said battery decreases.
This device can for example comprise or be integrated into one or a plurality of processors.
The invention also relates to a motor vehicle comprising a battery and the device for managing the permissible operating range of said battery, such as described above.
Other features and advantages of the invention will emerge clearly from the description thereof given hereinafter of one particular embodiment of the invention, given by way of wholly nonlimiting indication, with reference to the appended drawings, in which:
The variables that will be used in the remainder of the description are listed below:
N: the number of cells in the battery.
Vcelli: the voltage of the i-th cell—unit [V],
Vcellmax=max(Vcelli, i∈1 . . . N): the maximum cell voltage—unit [V],
Vcellmin=max(Vcelli, i∈1 . . . N): the minimum cell voltage—unit [V],
BSOC: the state of charge of the battery (SOC for State Of Charge)—unit [%],
OCV: the no-load voltage of the cell—unit [V]. To given values of BSOC and temperature there corresponds to an OCV level.
BSOCmin: the minimum level of state of charge, below which the battery is not permitted to drop—unit [%],
BSOCmax: the maximum level of state of maximum charge, above which the battery is not permitted to rise—unit [%],
Qmax: the total capacity of the battery—unit [A.h.],
SOHE: the state of health in terms of energy of the battery—unit [%]. The state of health in terms of energy indicates the capacity of the battery to supply a required minimum energy level and is defined hereinafter as being the ratio between, on the one hand, the energy that can be discharged with the battery fully charged, at a reference temperature (for example 25° C.), at a constant reference current level (for example 1 C), until a cutoff voltage is reached (for example 2.5 V) at a given time of life of the battery and, on the other hand, the energy that can be discharged with the battery in the same conditions when it is new. Thus, at the start of life, this ratio is 100%, and it decreases gradually. In effect, during the lifetime of a battery, its health (its performance) tends to deteriorate progressively as a result of irreversible physical and chemical changes that take place during use and ageing, until eventually the battery can no longer be used. The SOHE thus reflects a state of health of the battery and its capacity to supply the specified performance in terms of energy available with respect to a new battery.
DCRcelli: the internal resistance of the cell—unit [ohm].
SOHP: the state of health in terms of power of the battery—unit [%]. The state of health in terms of power indicates the capacity of the battery to supply a required minimum power level and is defined hereinafter as being the ratio between, on the one hand, the internal resistance at 10 seconds of the battery at a reference temperature (for example −20° C.), at a reference state of charge (for example BSOC=20%), at a given time of life of the battery and, on the other hand, the internal resistance in the same conditions when the battery is new. Thus, at the start of life, this ratio is 100%, and it decreases gradually (at least beyond a certain level of ageing of the battery). The SOHP thus reflects a state of health of the battery and its capacity to supply the specified performance in terms this time of permissible available discharge power for the battery with respect to a new battery.
The BMS system defines, at all times, a permissible operating range for the battery, the latter possibly being able to depend on the temperature. By default, as illustrated in the graph in
In this case, if the capacity of the battery is sized in order to simultaneously guarantee the required minimum energy level at ambient temperature for a minimum period (typically 2 years) and the required minimum power level at BSOCmin when cold (typically at −20° C.), then, at the start of life of the battery, it is found, as illustrated in the graphs in
Thus, as illustrated in the graphs in
Thus, as illustrated in the graphs in
With respect to the foregoing, according to one preferred embodiment, the BMS system is therefore designed to implement logic for modulating the minimum permissible level of state of charge of the battery: BSOCmin as a function of the state of health in terms of power of the battery SOHP, so as to compensate for the progressive reduction of the permissible discharge power for the battery with ageing. More precisely, the minimum permissible level of state of charge is increased as a function of the increasing state of ageing of the battery, up to a limit value in order to ensure the required minimum power level over the entire lifetime of the battery. As indicated in
Furthermore, the BMS system is preferably designed to implement logic for modulating the maximum permissible level of state of charge of the battery BSOCmax as a function of the state of health in terms of energy of the battery SOHE, so as to compensate for the loss of total capacity of the battery and thus maintain a required minimum energy level over a sufficiently long period while preserving durability.
Thus, the minimum level of state of charge below which the battery is not permitted to drop is managed, according to the invention, on the basis of the calculation of the state of health in terms of power of the battery, which depends on ageing. The general principle of the calculation of the state of health in terms of power of the battery is described with reference to
which thus defines a ratio that characterizes the increase in the internal resistance of the cell.
It will be possible to choose to determine a single value of SOHP that is valid over the entire temperature and state of charge range, or else it will be possible to choose to determine values of SOHP as a function of the battery temperature.
The BMS system is thus provided in order to determine the minimum permissible level of state of charge for the battery as a function of the state of health in terms of power of the battery thus estimated.
The available discharge power corresponds to the maximum value of power that the battery knows to supply, on the one hand, without dropping below a cutoff voltage level Vmin and, on the other hand, without exceeding a maximum discharge current Ibat_max.
Thus, mathematically, the available discharge power from a level of state of charge can be calculated in the following manner:
Thus, as illustrated with reference to
It appears that a reduction in the state of health in terms of power of the battery SOHP with the ageing of the battery results in a reduction of the available power for a given state of charge. Thus, for an aged battery, that is to say having an SOHP of less than 100%, in order to ensure the recurred minimum power level, it is necessary to increase the no-load voltage OCV and, consequently, increase the minimum level of state of charge BSOCmin.
Thus, at each temperature (a fortiori when cold), and for each level of SOHP, it is possible to determine the minimum level of state of charge BSOCmin, making it possible to ensure the required minimum power. As illustrated in
The BMS system is also provided in order to estimate the state of health in terms of energy of the battery SOHE. There are several methods for estimating the state of health in terms of energy of the battery. For this estimation, use may be made by way of example of one of the methods set forth in the patent “METHOD AND APPARATUS OF ESTIMATING STATE OF HEALTH OF BATTERY” (US2007/0001679 A1) or in the article “R. Spotnitz, “Simulation of capacity fade in lithium ion batteries”, journal of Power Sources 113 (2003) 72-80”.
It has been seen above that, in addition to the first way of optimization consisting of a modulation of the minimum permissible level of state of charge BSOCmin as a function of the state of health in terms of power SOHP in order to guarantee the strictly necessary required minimum power level over the entire lifetime of the battery, it is also possible to modulate the maximum permissible level of state of charge BSOCmax as a function of the state of health in terms of power SOHP, in order to keep the same amount of energy with respect to the configuration of the reference operating range illustrated in
In the context of the second way of optimizing the management of the operating range of the battery set forth above, the maximum permissible level of state of charge of the battery BSOCmax is determined in order to ensure the strictly necessary required energy level. That is to say, it is no longer determined as a function of the state of health in terms of power of the battery SOHP, but as a function of the state of health in terms of energy of the battery SOHE. To do this, a map VcutOff=f(SOHE), implemented in the BMS, makes it possible to determine the end-of-charge voltage VCutOff on the basis of the SOHE estimated in the manner set forth above and makes it possible to compensate for the loss of capacity of the battery (reduction of the state of health in terms of energy of the battery SOHE) by increasing the end-of-charge voltage VCutOff, as illustrated in
The maximum permissible level of state of charge for the battery BSOCmax can thus be determined not only as a function of the state of health in terms of energy of the battery SOHE, as has just been explained, but also as a function of the state of health in terms of power of the battery SOHP, this being done, as has been explained above, in order to take into consideration the fact that the minimum level of state of charge BSOCmin increases in line with a reduction in the state of health in terms of power of the battery SOHP, and thus maintain the same energy level for the user with respect to the reference operating range. To do this, it may be useful to take into consideration the fact that a correlation exists between the progression of SOHP and of SOHE, this correlation being able to be determined empirically on the basis of (offline) tests performed on cells. In other words, in order to manage the maximum level of state of charge above which the battery is not permitted to rise, the BMS system is designed to implement logic for modulating the maximum permissible level of state of charge BSOCmax, either as a function of the calculation of SOHP only, or as a function of the calculation of SOHE only, or else as a function of a combination of the two (SOHP and SOHE).
The optimized strategy for the management of the operating range of the battery according to the invention thus makes it possible, at the start of life, to ensure the strictly necessary required minimum energy level and required minimum power level by constraining the battery (that is to say its operating range) to what is strictly necessary, for both the minimum permissible level of state of charge and the maximum permissible level of state of charge. During the initial years in which the vehicle is used, this strategy makes it possible to compensate for the loss of available discharge power by gradually increasing the minimum level of state of charge below which the battery is not permitted to drop. Furthermore, by limiting the operating range of the battery at the start of life and by gradually increasing the end-of-charge voltage (therefore the maximum permissible level of state of charge) as a function of ageing, it also makes it possible, during the initial years in which the vehicle is used, to compensate for the loss of capacity of the battery. This strategy advantageously makes it possible to mask the fact that the battery is degrading (in terms of available power and in terms of available energy), at least during the initial years, and also makes it possible to limit the degradation of the battery at the start of life, since it is used over a limited operating range (with a reduced end-of-charge voltage).
Number | Date | Country | Kind |
---|---|---|---|
14 58508 | Sep 2014 | FR | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/FR2015/052318 | 9/2/2015 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2016/038276 | 3/17/2016 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
9316693 | Benjamin | Apr 2016 | B2 |
20070148532 | Lim | Jun 2007 | A1 |
20110313613 | Kawahara | Dec 2011 | A1 |
20120112754 | Kawai | May 2012 | A1 |
20120208672 | Sujan | Aug 2012 | A1 |
20130184908 | Sujan et al. | Jul 2013 | A1 |
20130184909 | Sujan et al. | Jul 2013 | A1 |
20130184910 | Sujan et al. | Jul 2013 | A1 |
20130184911 | Sujan et al. | Jul 2013 | A1 |
20130184912 | Sujan et al. | Jul 2013 | A1 |
20130184913 | Sujan | Jul 2013 | A1 |
20130184914 | Sujan et al. | Jul 2013 | A1 |
20130229154 | Benjamin | Sep 2013 | A1 |
20140217976 | McGrath | Aug 2014 | A1 |
20140287278 | Despesse | Sep 2014 | A1 |
20140302355 | Boehm | Oct 2014 | A1 |
20150061687 | Shim | Mar 2015 | A1 |
20150188198 | Bonhomme | Jul 2015 | A1 |
20150239364 | Baughman | Aug 2015 | A1 |
20150291050 | Luo et al. | Oct 2015 | A1 |
20150291150 | Sujan et al. | Oct 2015 | A1 |
20160052423 | Zhou | Feb 2016 | A1 |
20160176311 | Liggins | Jun 2016 | A1 |
20160218511 | Li | Jul 2016 | A1 |
20160221465 | Kratzer | Aug 2016 | A1 |
20170299660 | Saint-Marcoux | Oct 2017 | A1 |
Number | Date | Country |
---|---|---|
2014-96958 | May 2014 | JP |
Entry |
---|
International Search Report dated Nov. 12, 2015, in PCT/FR2015/052318 filed Sep. 2, 2015. |
French Search Report dated May 22, 2015, in French Patent Application FR 1458508 filed Sep. 10, 2014. |
Anonymous: “State of Health—Wikipeclia, the free encyclopedia”, (Mar. 7, 2014), 3 pages, XP055191086. |
Spotnitz, “Simulation of capacity fade in lithium-ion batteries”, Journal of Power Sources, vol. 113, No. 1, (Jan. 1, 2003), pp. 72-80, XP004399047. |
Number | Date | Country | |
---|---|---|---|
20170299660 A1 | Oct 2017 | US |