The present invention relates to a method for manufacturing a metallic body having a core and a cladding according to the preamble of claim 1.
Hot Isostatic Pressing (HIP) is a conventional method for manufacturing components of metallic material. The method allows for manufacturing of complex components in near-net shape and also for integration of different materials in the same product. In HIP, a steel capsule which defines the final shape of the component is filled with metallic powder and thereafter subjected to high temperature and high pressure so that the particles of the metallic powder bond into a solid component.
Hot Isostatic Pressing may be used to apply claddings of metallic materials onto pre-manufactured cores. WO2004/030850A1 describes a method for manufacturing fuel valve nozzles. According to the method, a metallic tube section is arranged to form a space around a pre-forged nozzle core. The space is filled with metallic powder and the arrangement is enclosed in a capsule and subjected to HIP so that the metallic powder, the core and the tube section bond to a solid component.
A similar method for manufacturing a valve nozzle is described in Applicants European Patent Application EP12173411. This method comprises the steps of forming a solid blank in a metal machining operation into a pre-manufactured body which comprises a bottom wall from which a core extends and a lateral wall which encloses a space around core. The space is filled with metal cladding material and closed by an upper wall and subsequently subjected to HIP.
After HIP, the solid components are typically subjected to machining in order to expose the cladding on the core. Typically, machining is performed by turning or milling.
However, often the final consolidated component is deformed during the HIP process. The deformation causes a problem in the machining of the component since it becomes difficult to accurately clamp and center the component in the machining tool. As a consequence thereof, the dimensions of the cladding may not be very accurate. A further drawback with the prior art is that the machining of the components is time consuming and costly due to cumbersome manual labor and a poor yield of acceptable components.
Consequently, it is an object of the present invention to present an improved method which allows for manufacturing by HIP of metallic components having a cladding whereby the cladding on the final components has low thickness variation. A further object of the present invention is to achieve a cost effective method for manufacturing of metallic components having a cladding. Yet a further object of the present invention is to present a method for manufacturing of metallic component having a cladding whereby the method can be performed in short time and with little effort.
According to the invention at least one of the above objects is achieved by a method for manufacturing a metallic component 50 having a core 5 and a metallic cladding 60, comprising the following steps:
By providing at least one centering means in the core prior to the step of Hot Isostatic Pressing it is possible to accurately center the solid body in a machining tool with respect to the center of core of the solid body, even if the solid body is deformed due to the HIP process. By subsequently machining the metallic cladding to a predetermined thickness which is determined as a distance from the center of the core, the thickness of the cladding on the core may be held within a very narrow tolerance range.
The principle of invention is further explained with reference to
It should however be appreciated that
According to the invention, the centering means 11 and 12 are applied prior to HIP in the center of the end surfaces 3a and 4a of the core 5 (position X1). During densification, the periphery of the solid body 20 is deformed anisotropic in radial direction. However, the position of the centering means 11 and 12 in the end surfaces 3a and 4a of the core is not affected by the deformation. When the solid body subsequently is subjected to a machining operation, for example turning, the solid body will be centered along the line X1 by corresponding centers in the machining tool. The solid body will then be centered with respect to the true center of the core 5 and the machining operation will yield a cladding with a very small thickness variation around the core.
In the case of conventional manufacturing of a cladded component (which does not comprise centering means), the end of the solid body 20 is typically gripped by a chuck and the solid body will therefore be centered with respect to the center of the chuck. However, since the circumference of the solid body is deformed anisotropic, the center of the chuck will not be aligned with the center of the core. Instead, the solid body will be centered along the line X2 which is offset from the center of the core. When the solid body is machined the offset centering will cause the solid body to rotate eccentrically and cause the thickness to vary on the core.
The inventive method will in the following be described in a general manner with reference to
In a first step, see
The core may for example be manufactured by forging, casting or by machining of a solid piece of material, for instance. The material of the core depends on the application in question, one example of a suitable material is tool steel such as AISI H13/SS2242, another example is alloyed, austenitic valve steel such as SNCrW-steel. In the present example, the core is manufactured by machining of a cylindrical bar of tool steel.
According to the invention, at least one centering means 11, 12 is provided in the core 5 prior to the step of Hot Isostatic Pressing. In the present embodiment two centering means 11, 12 are provided in the core 5.
Preferably, the centering means 11 and 12 are located opposite to each other in the center of the first and second end surfaces 3a, 4a or the core 5. Thereby, the centering means 11, 12 are aligned along a straight line 13 which runs longitudinally through the center of the core portion 5 and through the both centering means 11, 12. This allows for very accurate centering in a lathe.
The centering means in both the first and second end surfaces of the core are designed to be engaged by corresponding centers in conventional metal machining apparatuses. According to the present invention, a “metal machining apparatus” also known as “metal machine tool” or “machine tool” may be a metal cutting machine such as a lathe or milling cutter. The metal machining apparatus may also be an Electrical Discharge Machining device.
In the described embodiment, the metal machining apparatus is a lathe. As will be described further below, the centers for lathes are so called “male centers” in form of cones or truncated cones. Alternatively, the centers in lathes are so called “female centers” in the form of a sleeve with a conically, or truncated cone, shaped opening also known as “tapered sleeve”. Such centers are commercially available for example by the company Röhm GmbH (RÖHM GmbH, Heinrich-Röhm-Straβe 50, 89567 Sontheim/Brenz, Germany).
Consequently, the centering means in the core are in the form of “male centering means” or “female centering means” The male centering means is a protruding element, for example in the form of a cone or a truncated cone. The female centering means is a recess i.e. a bore. For example the female centering means is in the form of a recess or a bore with the shape of a cone or a truncated cone.
In the embodiment shown in
It is obvious that either a male centering means or a female centering means could be provided in the first end surface or in the second end surface of the core. For example, a male centering means could be provided in the first end of the core and a female centering means in the second end surface or vice versa. It is also possible to provide male centering means in both the first and the second ends of the core. Or to provide female centering means in both first and the second ends of core.
Female centering means, e.g. recesses or bores, the bores may be achieved by drilling or milling. Male centering means, for example cones, or truncated cones, may be achieved by pre-manufacturing steel cones and subsequently attaching the cones to the top or the bottom end surfaces of the core. The cones could be pre-manufactured by turning of cylindrical rods. The pre-manufactured cones may be attached by welding. It is also possible to form the male centering means by machining the core itself.
In the present embodiment, the component is a cylindrical object in the form of a roll and it is therefore suitable to provide the centering means in the end surfaces of the cylindrical core. However, it is obvious that, dependent on the shape of the core and the type of the final component, the centering means may be provided on other surfaces of the core.
In a next step a capsule 10 is provided. The capsule 10, also referred to as mold or form, defines the general outer contour of at least a portion of the final component and is typically manufactured from steel sheets that have been formed into a desired shape and welded together. In the present embodiment, the capsule is cylindrical and comprises a bottom 10a and a circumferential side wall 10b. However, the capsule may have any form suitable for the component in question, for example rectangular. The capsule 10 may for example be manufactured from low carbon steel such as SSAB DC04.
In a further step, the core 5 and the capsule 10 are arranged such that the capsule surrounds at least a portion of the core and such that a space 6 is formed between the capsule and the core, see
In the present embodiment, the core 5 is placed on its first end surface 3a in the center of the bottom 10b of the capsule 10. The core 5 and the capsule 10 are positioned such that the core and capsule are coaxial. The core 5 and the capsule 10 are thereby arranged such that a space 6 of uniform radial extension is formed between the walls of the capsule and the surface 5a of core 5, i.e. the cylindrical surface of the core 5. The distance between the cylindrical surface 5a and the inner surface of the capsule wall 10b thereby limits the space 6 in radial direction. In axial direction, the space 6 is limited downwards by the bottom wall 10a of the capsule and upwards by the axial extension of the capsule wall 10b, i.e. the length of the capsule.
In a second step, see
Preferably, the metallic cladding material 8 is a metal powder. The advantage of using powder is that the space 6 thereby easily can be completely filled even if the core has a complicated form.
The metallic cladding material 8 has a different chemical composition than the core 5. The present embodiment relates to a roll for cold rolling of steel and therefore the cladding material is powder-metallurgical high-speed steel in order to provide an adequate combination of wear resistance and toughness of the cladding on the final roll.
However, the in the case of other components, such as valve spindles, cladding materials which requests other properties could be used. For example, if the cladding material should be corrosion resistant a nickel-based alloy, for example NiCr49Nb1 or NiCr22A16 or NiCr22MoNbTi could be used. After filling, the metallic cladding material 8 may be compacted by shaking to ensure that all voids are filled in the space 6 (not shown).
Thereafter, a lid 10c with an opening (not shown) is welded over the upper end of the capsule. After filling the capsule may contain air which is trapped in the cladding material
If not removed the trapped air may have a negative effect on the mechanical properties of the HIPed material and bonding. The air is evacuated from the capsule 10 by drawing a vacuum in the capsule. The vacuum is drawn through the opening in the lid to remove the air in the capsule. Subsequently, the opening in the lid is welded shut so that the capsule is sealed.
Thereafter, the capsule is subjected to Hot Isostatic Pressing (HIP). The capsule with the core and the cladding material is thereby placed in a HIP furnace and subjected to a predetermined temperature and a predetermined pressure for a predetermined period of time so that the metallic cladding material and the core bond to each other into a dense and solid body.
In the final step of the inventive method, the solid body is subjected to a machining operation in which the cladding material 8 is machined, by removal of material, to a cladding of predetermined thickness. In the present embodiment of the invention the machining operation is performed by turning in a lathe, but also other machining operations are possible, for example milling or Electric Discharge Machining During machining the capsule 10, if present, is removed and the cladding is machined to a predetermined thickness.
The tailstock 35 of the lathe comprises a female center 36 which consists of a tapered sleeve 37 with an inner shape in the form of a truncated cone. The sleeve 37 is adopted to receive the male centering means 12 in the top wall 9 of the solid body 20. The center further comprises a shaft (not shown) by which it is attached to the tail stock of the lathe. In this case the center is a live center which is rotatable arranged in the tailstock. However, it could also be a so called dead center. A metal cutting tool 38, i.e. a lathe tool or lathe steel is provided to remove metal from the solid body.
In operation the male center 34 of the face drive is inserted into the female centering means 11 in the first end surface 3a of the solid body and the female center 37 of the tailstock of the lathe receives the male centering means 12 in the second end surface 4a of the solid body 20. The face driver presses the solid body towards the female center in the tailstock of the lathe and simultaneously the drive pins 33 are forced into the end surface 3a of the solid body. The solid body is centered in the lathe when both the male and female centers of the lathe are in engagement with the male and female centering means of the solid body.
If necessary, the centring means 11, 12 in the solid body 20 may be exposed prior to centring the solid body in the lathe. For example, by removing a portion of the capsule by grinding with a hand held tool.
After centering of the solid body, turning is performed until a cladding of desired thickness is achieved. This is achieved in that the control system of the lathe is programmed with a pre-determined distance between the center of the solid body and the lathe tool. During turning the capsule (if present) is removed by the lathe cutting tool 38 so that the cladding material is exposed. A portion of the exposed cladding material is then also removed in radial direction by the lathe tool until the pre-determined distance is reached and a cladding of a predetermined thickness is obtained.
Preferably, the male centering means is in the form of a truncated cone with an inclination angle of maximum 60°, preferably 40-60°. The female centering means is a recess, i.e. a bore, with the shape of truncated cone with an inclination angle of maximum 60°, preferably 40-60°.
When covering pieces are used, it is preferred that the recesses or the protrusions 40c also are in the form of truncated cones with an inclination angle of 40-60°. Tests have shown that a male centering means in the form of a truncated cone with an inclination angle of 40-60° after HIP is easy to separate from a covering piece having a recess with the same shape. The reason for this is believed to be due to that little deformation occurs to the recess during HIP.
It is important that the centering means are not covered by cladding material. In particular when metallic cladding material in the form of powder is used, it may therefore be advantageously to arrange a sealing element in the capsule to prevent cladding material from entering between the capsule and the centering means in the core.
Although particular embodiments have been described in detail, this has been done for illustrative purposes only and is not intended to be limiting. In particular it is contemplated that various substitutions, alterations and modifications may be made within the scope of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
13198979.0 | Dec 2013 | EP | regional |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2014/075108 | 11/20/2014 | WO | 00 |