The present invention is directed, in general, to a method for manufacturing a semiconductor device and, more specifically, to a method for manufacturing a semiconductor device using a nitrogen containing oxide layer.
The trend in semiconductor technology to double the functional complexity of its products every 18 months (e.g., Moore's “law”) has several implicit consequences. First, the cost per functional unit should drop with each generation of complexity so that the cost of the product with its doubled functionality would increase only slightly. Second, the higher product complexity should largely be achieved by shrinking the feature sizes of the chip components while holding the package dimensions constant; preferably, even the package dimensions should shrink. And third, but not least, the increased functional complexity should be paralleled by an equivalent increase in reliability of the product.
The scaling of the components in the lateral dimension requires vertical scaling as well, so as to achieve adequate device performance. This vertical scaling requires the thickness of the gate dielectric, commonly silicon dioxide, to be reduced. Thinning of the silicon dioxide gate dielectric provides a smaller barrier to dopant diffusion from a polysilicon gate structure (or metal diffusion from a metal gate structure) through the underlying dielectric, often resulting in devices with diminished electrical performance (e.g., leakage) and reliability.
One well-established technique for mitigating the problems associated with silicon dioxide gate dielectrics includes using a nitrided gate dielectric (e.g., for example a silicon oxynitride gate dielectric, nitrided high-k dielectric, nitrided silicate gate dielectric, etc.) to raise the dielectric constant thereof. This allows the use of a thicker gate dielectric where a thinner dielectric would ordinarily be needed, providing for less leakage through the gate dielectric. Unfortunately, nitrided gate dielectrics are susceptible to having non-uniform nitrogen profiles therein, which negatively affect the reliability thereof.
Accordingly, what is needed in the art is a semiconductor device having a nitrided gate dielectric layer therein and a method of manufacture therefor which do not experience the drawbacks of the prior art.
To address the above-discussed deficiencies of the prior art, the present invention provides a method for forming a semiconductor device, as well as a semiconductor device. The method for manufacturing a semiconductor device, among others, includes providing a gate structure over a substrate, the gate structure including a gate electrode located over a nitrided gate dielectric, and forming a nitride region in a sidewall of the nitrided gate dielectric.
Another embodiment of the present invention is a semiconductor device. The semiconductor device includes a gate structure positioned over a substrate, the gate structure including a gate electrode located over a nitrided gate dielectric, and a nitride region located in a sidewall of the nitrided gate dielectric.
For a more complete understanding of the present invention, reference is now made to the following descriptions taken in conjunction with the accompanying drawings, in which:
The present invention is based, at least in part, on the recognition that the conventional formation of an oxide liner (e.g., poly-Si oxidation) surrounding the gate electrode and nitrided gate dielectric layer of a gate structure tends to change the doping profile of the nitrogen located within the nitrided gate dielectric layer. The present invention has particularly recognized that the conventional formation of the oxide liner decreases the nitrogen concentration profile at the edge, as compared to the center of the nitrided gate dielectric layer.
Given these recognitions, the present invention acknowledges that a nitrogen containing oxide layer, alone or in combination with a nitride region in the sidewall of the nitrided gate dielectric layer, can be used to improve the uniformity of the nitrogen across a length of the nitrided gate dielectric layer. Without this nitrogen containing oxide layer, whether recognized in the art or not, the nitrided gate dielectric layer would have lower amounts of nitrogen at its edge than center.
Turning now to
Additionally located over the substrate 110 and well region 120 is a gate structure 140. The gate structure 140 illustrated in
Located in the sidewall of the nitrided gate dielectric 143 is a nitride region 150. In the embodiment of
The nitride region 150, in one embodiment, contains a sufficient amount of nitrogen therein to reduce the aforementioned drop-off in the nitrogen profile at the edge of the nitrided gate dielectric 143. For example, in one embodiment the nitride region 150 contains from about 5 atomic percent to about 10 atomic percent of nitrogen therein. However, the present invention should not be limited to any specific amount of nitrogen. Accordingly, edges of the nitrided gate dielectric 143 may ultimately have substantially the same concentration of nitrogen that a center of the nitrided gate dielectric 143 would have. Alternatively, the amount of nitrogen in the nitride region 150 may be such that the edges of the nitrided gate dielectric 143 have a higher amount of nitrogen than a center of the nitrided gate dielectric 143 would have.
Positioned over the nitride region 150 is a nitrogen containing oxide layer 155. In the embodiment shown, the nitrogen containing oxide layer 155 is located along all of the sidewalls of the nitrided gate dielectric 143 as well as along all of the sidewalls of the gate electrode 148. Accordingly, the nitride region 150 of
The gate structure 140 further contains gate sidewall spacers 160 located on both sides of the nitrided gate dielectric 143 and gate electrode 148. While the gate sidewall spacers 160 of
The semiconductor device 100 illustrated in
Turning now to
Located within the substrate 210 in the embodiment shown in
Located within the substrate 210 proximate the well region 220 are isolation structures 230. The isolation structures 230 are generally used to isolate the semiconductor device 200 illustrated in
Located over the substrate 210 in the embodiment of
The nitrided gate dielectric 243 may, again, comprise many different nitrogen containing gate dielectric materials. For example, the nitrided gate dielectric 243 may comprise a silicon oxynitride gate dielectric, a nitrided high-k gate dielectric, a nitrided silicate gate dielectric, among others. In the embodiment of
Any one of a plurality of manufacturing techniques could be used to form the nitrided gate dielectric 243. In the example wherein the nitrided gate dielectric 243 is a silicon oxynitride gate dielectric, such as shown in
The gate electrode 248, in one embodiment, may comprise a conventional polysilicon gate electrode. Alternatively, however, the gate electrode 248 might comprise an amorphous polysilicon gate electrode, or even possibly a partially or fully silicided gate electrode or metal gate electrode. Accordingly, the present invention should not be limited to any specific gate electrode material.
In the embodiment wherein the gate electrode 248 comprises a polysilicon gate electrode, the polysilicon gate electrode could be deposited using a pressure ranging from about 100 torr to about 300 torr, a temperature ranging from about 620° C. to about 700° C., and a SiH4 or Si2H6 gas flow ranging from about 50 sccm to about 150 sccm. If, however, amorphous polysilicon were desired, the amorphous polysilicon gate electrode could be deposited using a pressure ranging from about 100 torr to about 300 torr, a temperature ranging from about 450° C. to about 550° C., and a SiHh or Si2H6 gas flow ranging from about 100 sccm to about 300 sccm. In any instance, the gate electrode 248 desirably has a thickness ranging from about 50 nm to about 150 nm.
Turning now to
The nitride region 310 may be formed using various different processes. In one embodiment, the nitride region 310 is formed by subjecting the semiconductor device 200 to a nitrogen containing plasma. For instance, the nitrogen containing plasma might be a pulse RF plasma using a flow rate of nitrogen gas ranging from about 50 sccm to about 100 sccm, a pressure ranging from about 20 mTorr to about 40 mTorr, an RF power ranging from about 800 Watts to about 1200 Watts, a duty cycle (e.g., the ratio of the sum of all pulse durations during a specified period of continuous operation to the total specified period of operation) ranging from about 5% to about 10%, a pulse frequency ranging from about 0.5 kHz to 1.5 kHz, for a time period ranging from about 5 seconds to about 15 seconds. Alternatively, the nitrogen containing plasma might be a microwave plasma using a flow rate of nitrogen gas ranging from about 100 sccm to about 300 sccm, a flow rate of an inert gas (e.g., argon) ranging from about 1000 sccm to about 2000 sccm, a pressure ranging from about 500 mTorr to about 2 Torr, a microwave power ranging from about 500 Watts to about 1500 Watts, at a temperature ranging from about 200° C. to about 500° C., for a time period ranging from about 5 seconds to about 15 seconds. Other conditions outside of the aforementioned ranges could also be used.
After completing the formation of the nitride region 310, the nitride region 310, and more particularly the nitrided gate dielectric 243 and gate electrode 248, may be subjected to a reoxidation step. The reoxidation step is configured to remove damage, particularly plasma damage, which may have been caused during the formation of the nitride region 310. In one embodiment, the reoxidation step is a low-temperature reoxidation process. For example, the low temperature reoxidation process might include subjecting the semiconductor device 200 to about 1% to about 50% oxygen gas (O2) in nitrogen gas (N2) for a time period ranging from about 30 seconds to about 60 seconds, in the presence of a pressure ranging from about 700 Torr to about 800 Torr and a temperature ranging from about 400° C. to about 600° C. However, other processing conditions could also be used.
Turning now to
The nitrogen containing oxide layer 410 may be formed using various different processes. However, in one embodiment the nitrogen containing oxide layer 410 is formed by the oxynitridation of the nitride region 310 in the presence of a nitrogen containing gas. For instance, the oxynitridation might occur in the presence of nitrous oxide (N2O) gas or nitric oxide (NO) gas or its mixtures, among others. The formation of the oxide layer might occur in the presence of a temperature ranging from about 700° C. to about 1000° C., a pressure ranging from about 50 Torr to about 500 Torr, for a time period ranging from about 30 seconds to about 60 seconds. Other conditions outside of the aforementioned ranges could also be used, as well as the nitrogen containing oxide layer 410 might be deposited in an alternative embodiment. The resulting stack of the nitride region 310 and the nitrogen containing oxide layer 410 should, desirably, have a thickness ranging from about 1.5 nm to about 2.5 nm.
Turning now to
Turning now to
Turning now to
After formation of the highly doped source/drain implants 710, the semiconductor device 200 may be subjected to a standard source/drain anneal, thereby activating source/drain regions. It is believed that a source/drain anneal conducted at a temperature ranging from about 1000° C. to about 1100° C. and a time period ranging from about 1 second to about 5 seconds would be sufficient. It should be noted that other temperatures, times, and processes could be used to activate the source/drain regions. What results, at least after various other well-known processing steps, is a semiconductor device substantially similar to the semiconductor device 100 shown and discussed with respect to
It should be noted that the exact order of the steps illustrated with respect to
The method of manufacturing the semiconductor device as discussed with respect to
Referring finally to
Although the present invention has been described in detail, those skilled in the art should understand that they can make various changes or substitutions herein without departing from the spirit and scope of the invention in its broadest form.
This is a continuation of application Ser. No. 11/359,120 filed Feb. 21, 2006, the entirety of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
5405791 | Ahmad et al. | Apr 1995 | A |
5552332 | Tseng et al. | Sep 1996 | A |
5972804 | Tobin et al. | Oct 1999 | A |
6049114 | Maiti et al. | Apr 2000 | A |
6348420 | Raaijmakers et al. | Feb 2002 | B1 |
6548366 | Niimi et al. | Apr 2003 | B2 |
6583013 | Rodder et al. | Jun 2003 | B1 |
6635938 | Nakahata et al. | Oct 2003 | B1 |
7015534 | Colombo | Mar 2006 | B2 |
7091119 | Colombo | Aug 2006 | B2 |
7098110 | Saiki | Aug 2006 | B2 |
7456115 | Chou et al. | Nov 2008 | B2 |
20020072210 | Hsu et al. | Jun 2002 | A1 |
20030042526 | Weimer | Mar 2003 | A1 |
20040152253 | Guo | Aug 2004 | A1 |
20040159898 | Hattangady et al. | Aug 2004 | A1 |
20040209418 | Knoll et al. | Oct 2004 | A1 |
20050079696 | Colombo | Apr 2005 | A1 |
20050106797 | Colombo | May 2005 | A1 |
20060114736 | Ozawa | Jun 2006 | A1 |
Number | Date | Country | |
---|---|---|---|
20120028431 A1 | Feb 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11359120 | Feb 2006 | US |
Child | 13101860 | US |