Method for manufacturing an array of interferometric modulators

Information

  • Patent Grant
  • 7556917
  • Patent Number
    7,556,917
  • Date Filed
    Wednesday, November 14, 2007
    17 years ago
  • Date Issued
    Tuesday, July 7, 2009
    15 years ago
  • Inventors
  • Original Assignees
  • Examiners
    • Duda; Kathleen
    Agents
    • Knobbe, Martens, Olson & Bear, LLP
Abstract
In one embodiment, the invention provides a method for manufacturing an array of interferometric modulators. Each interferometric modulator comprises first and second optical layers which when the interferometric modulator is in an undriven state are spaced by a gap of one size, and when the interferometric modulator is in a driven state are spaced by a gap of another size, the size of the gap determining an optical response of the interferometric modulator. The method comprises fabricating interferometric modulators of a first type characterized by the size of the gap between its first and second optical layers when in the undriven state; fabricating interferometric modulators of a second type characterized by the size of the gap between its first and second optical layers when in the undriven state; and fabricating modulators of a third type characterized by the size of the gap between its first and second optical layers when in the undriven state, wherein fabricating the interferometric modulators of the first, second, and third types comprises using a sequence of deposition and patterning steps of not more than 9 masking steps to deposit and pattern layers of material on a substrate.
Description
BACKGROUND

1. Field


This invention relates generally to fabrication processes for interferometric modulator arrays and more specifically to methods for manufacturing an array of interferometric modulators.


2. Description of the Related Art


An interferometric modulator is a class of MEM (micro-electromechanical) systems devices which have been described and documented in a variety of patents including U.S. Pat. Nos. 5,835,255, 5,986,796, 6,040,937, 6,055,090, 6,574,033 (application Ser. No. 10/084,893), 6,680,792 (application Ser. No. 09/974,544), 6,867,896 (application Ser. No. 09/966,843), and 7,067,846 (application Ser. No. 10/878,282), and U.S. Patent Application Publication No. 2003/0072070 (application Ser. No. 10/082,397), herein incorporated by reference. One of the key attributes of these devices is the fact that they are fabricated monolithically using semiconductor-like fabrication processes. Specifically, these devices are manufactured in a sequence of steps which combine film deposition, photolithography, and etching using a variety of techniques. Costs in manufacturing processes of this sort are driven in large part by the number of steps in the sequence. Thus, a reduction in the number of masking steps in the overall manufacturing process will help to reduce manufacturing costs.





BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1A-1F illustrate a 9 mask step interferometric modulator fabrication process including a step for defining a black mask and steps for an additive sacrificial layer sub-process in accordance with one embodiment of the invention;



FIG. 2 illustrates a subtractive sacrificial layer sub-process in accordance with another embodiment of the invention;



FIG. 3 illustrates a subtractive sacrificial layer sub-process optimized using gray-scale lithography in accordance with another embodiment of the invention;



FIGS. 4A-4C illustrate a 4 mask interferometric modulator fabrication process without a black mask or multi-height sacrificial layer in accordance with another embodiment of the invention;



FIGS. 5A-5B illustrate a 3 mask interferometric modulator fabrication process without black mask or multi-height sacrificial layer in accordance with another embodiment of the invention;



FIG. 6 illustrates a 3 mask interferometric modulator fabrication process without a black mask or multi-height sacrificial layer in accordance with another embodiment of the invention;



FIG. 7 illustrates a technique for consolidating the formation of post holes and support posts in accordance with another embodiment of the invention;



FIG. 8 illustrates an embodiment in which the support posts are eliminated and the mechanical film is self-supporting; and



FIGS. 9A-9D illustrate a 6 mask fabrication process for building an interferometric modulator with concealed supports in accordance with another embodiment of the invention.





DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

In the following detailed description of embodiments of the invention, numerous specific details are set forth such as examples of specific materials, machines, and methods in order to provide a thorough understanding of the present invention. It will be apparent, however, to one skilled in the art that these specific details need not be employed to practice the present invention. In other instances, well known materials, machines, or methods have not been described in detail in order to avoid unnecessarily obscuring the present invention.


U.S. Pat. No. 6,794,119 (application Ser. No. 10/074,562) herein incorporated by reference describes a prototypical fabrication sequence for building interferometric modulators. In general, interferometric modulator fabrication sequences and categories of sequences are notable for their simplicity and cost effectiveness. This is due in large part to the fact that all of the films are deposited using physical vapor deposition (PVD) techniques with sputtering being the preferred and least expensive of the approaches. The materials used are common throughout the liquid crystal display (LCD) industry. This is significant because this industry represents the most cost effective means for manufacturing large area arrays of devices and provides a prime infrastructure for use in building displays and other devices based on interferometric modulators or other MEM devices. This characteristic is described in U.S. Pat. No. 6,867,896 herein incorporated by reference. The materials may be etched using low-cost wet etching processes, or higher cost dry etching techniques depending on the demands of the display application and the need for dimensional control. Photolithography may be achieved using low-cost imaging tools or higher cost step and repeat machines, also dependent on the dimensional requirements of the application. The dimensional requirements are primarily dictated by the resolution of the display in display-centric applications.



FIGS. 1A-1F illustrate one embodiment of an interferometric modulator fabrication sequence which utilizes 9 masking steps. Step 1 shows the deposition of a stack of films 100 on a substrate 102. The stack 100 is used in the definition of a black mask. More detail on how a black mask may be incorporated into an interferometric modulator array is described in U.S. Pat. No. 6,741,377 (application Ser. No. 10/190,400) herein incorporated by reference. The stack 100 is nominally deposited by sputtering and is subsequently patterned in Step 2. Patterning refers to a class of techniques which usually include a lithographic step, a development step, and a material etch step. These are well known in the art and described in detail in the aforementioned patents and patent applications.


In Step 3, an insulator 106, an optical film 108, and a conductor 1010 are deposited also using sputtering and are of a thickness and composition which has been described in the aforementioned patents and patent applications. Examples of the insulator, optical film, and conductor include silicon dioxide, chrome, and aluminum respectively. The optical film 108 and the conductor 1010 have been subsequently patterned in Step 4.


For interferometric modulator matrices that are to be multi-color displays, some mechanism must be provided for depositing and patterning sacrificial layers with multiple heights. The height of the sacrificial layer is what determines one of the color modes or states of the interferometric modulator during operation. Typical full color displays require matrices capable of display in at least three colors, Red, Green, and Blue.



FIG. 1B begins with Step 5 where the conductor 1010 has been further patterned to form the conductor rails. These rails are used to enhance the conductivity of the underlying chrome and thereby improve the performance of the overall display by reducing R/C time constants. In Step 6, an insulating film or films 1012 has been deposited. Step 7 reveals where insulator films 1012 have been patterned to expose the optical film 108 as a lead 1014 for bonding at a later step.



FIG. 1C reveals the deposition of a first sacrificial layer 1016 in Step 8 using sputtering and its subsequent patterning in Step 9. Step 10 shows the deposition of a second sacrificial layer 1018 also using sputtering.



FIG. 1D begins in Step 11 with the patterning of sacrificial layer 1018 followed by the deposition of a third sacrificial layer 1020 in Step 12. In Step 13, an etch step is performed, the goal of which is to define support post vias 1022. This may be done using either wet or dry etching techniques as all of the previous etches may be accomplished.



FIG. 1E reveals the definition of support posts 1024. More detail on how this process can be accomplished is contained in U.S. Pat. No. 6,794,119 herein incorporated by reference. In one embodiment, a negative acting photosensitive material is spun onto the structure and is exposed through the post support vias through the backside of the wafer illustrated by incident light arrows 1026. The post support vias are transparent to the light because the sacrificial layers are designed to be opaque. Thus the sacrificial layers act as a mask and save on an additional masking step. Step 14 shows support posts 1024 that are formed in each support post via 1022. The support posts 1024 may be polymeric, though they could be of any photo-definable material or material matrix. Step 15 shows the definition of a planar cover material 1027 which is used to smooth the topology presented by conductor rails 1010. This is accomplished using standard lithography. In Step 16 a mechanical film/s 1030 has been deposited.



FIG. 1F begins with Step 17 where the mechanical layer 1030 has been patterned to form the interferometric modulator matrix Red, Green, and Blue columns which are distinguished by the different sacrificial layer heights, 1032, 1034, and 1036. Finally, in Step 18, the sacrificial layer has been removed using one of a variety of etching techniques. The preferred technique uses XeF2 gas to spontaneously etch the sacrificial material. More detail on this approach can be found in U.S. Pat. No. 6,794,119 herein incorporated by reference.


Steps 8-12 of the previous sequence represent the sacrificial layer subprocess, i.e. the sequence of steps whereby the sacrificial layer heights are defined and patterned. This is an additive approach. FIG. 2 illustrates an alternative sacrificial layer sub-process that includes a subtractive approach. Referring to FIG. 2, substrate 200 is coated with a multilayer sacrificial stack which comprises two different materials which are both etchable using XeF2, but which are wet etched, or potentially dry etched, using different chemistries. Silicon and molybdenum are two candidates, though there are others, for both these substances can be etched using XeF2. However, silicon can be wet etched by hot solutions of tetramethylammonium hydroxide (among other etchants) while molybdenum can be etched using solutions of phosphoric, acetic, and nitric acid. Step 1 shows the multilayer stack deposited on substrate 200, with silicon layers 202 and 204 acting as an etch stop, and molybdenum layers 206, 208, and 210 acting as the height definition layers. The first resist layer 212 has been defined in Step 2 and in Step 3, the first patterning step has been accomplished using this layer with the pattern then transferred to the molybdenum layer 206. The next resist layer 214 has also been defined in Step 3. Step 4 shows the subsequent patterning step which involves a two stage etch step. Masked by resist layer 214, the first stage molybdenum layer 208 is patterned using the appropriate etchant, and in the second stage, silicon etch stop layer 204 has been etched through. Finally, in Step 5, molybdenum layer 210 has been etched by virtue of being masked by a resist layer 216. Because of the existence of etch stop layers 202 and 204, the etchant can be used to pattern the height definition layers without concerns about overetching. The material may be exposed for as long as possible to insure complete etching of the feature with fear of etching into the next height definition layer which would compromise the overall process.


The sub-process of FIG. 2 requires three separate lithography steps. Using gray-scale lithography this may be reduced. FIG. 3 illustrates a variation on this theme which exploits gray-scale lithography to reduce the number of masking steps to one. Referring to FIG. 3 a multilayer etch stack 310 has been deposited on substrate 312 and is identical to the etch stack of FIG. 2. A gray-scale mask 300 which is like a normal lithographic mask except that regions on it may be defined to have variable levels of transmission as opposed to binary levels in traditional masks is positioned over the stack 310. There are numerous ways of preparing such masks as is well known in the art. For this case, three regions have been defined with three different transmission levels shown with zero transmission at a region 302, moderate transmission at a region 304, and the highest at a region 306. In Step 1 when a photoresist layer 308 over the stack 310 is exposed, a well-timed development stage will result in the photoresist below region 306 developing first. The developer stage is a standard part of patterning where photoresist or other photosensitive material, which has been exposed to light, is dissolved away in a chemical solution specially designed for this task. The consequence of the first development stage is that the multilayer etch material under region 306 is exposed. In Step 2 the first etch step is accomplished which defines the first height. In Step 3, after another developer stage, the material under region 304 is exposed and etched appropriately while the region under 306 is etched to the next level. Finally a solvent or other resist removal process is used to finish off the process.



FIGS. 4A-4C, 5A-5B, and 6A-6B illustrate reduced mask fabrication sequences. These sequences differ from the sequence of FIGS. 1A-1F in that they do not contain a black mask, a conductor, or a conductor planarization layer. Certain applications and device designs may eliminate or reduce the need for a black mask. Other applications may not require the addition of a conductor or may have their conductivity sufficiently increased by the presence of a transparent conductor.



FIGS. 4A-4C illustrate a sequence that uses 4 mask steps. Beginning with Step 1 in FIG. 4A, optical film/s 402 are deposited on a substrate 400. The optical films may or may not include a transparent conductor 404. In Step 2 these films are patterned and in Step 3 an insulating film or films 406 is/are deposited followed by the deposition of a sacrificial material 408 in Step 4. FIG. 4B begins with Step 5 where post support vias 410 have been etched into the sacrificial spacer 408. Spacer posts 412 are formed in Step 6 according to the processes described above, and a mechanical film 414 has been deposited in Step 7.



FIG. 4C starts in Step 8 where sacrificial layer 408 has been etched back, optional etch hole 410 has been formed, and insulator 406 has been etched subsequently in Step 9 to expose optical film 402 for later bonding. The sacrificial layer has been removed in Step 10.



FIGS. 5A-5B illustrate a 3 mask step process. Starting with Step 1 in FIG. 5A a starter stack 502 has been deposited on substrate 500. The starter stack 502 comprises optical/conductor films 504, insulator 506, and a sacrificial layer 508. Step 2 shows the etching of the entire starter stack which constitutes the step consolidation that removes a mask step, and provides support post vias 510. In Step 3, the support posts 512 have been formed and a mechanical film 514 is deposited in Step 4.



FIG. 5B shows in Step 5 the etching of the mechanical film 514, the sacrificial layer 508, and etch hole 516. Step 6 illustrates the etching of the insulator 506. Finally the sacrificial layer is removed using XeF2 in Step 7. Steps 5 and 6 represent the consolidation of a mask step in this sequence since only one mask step is required to accomplish both.



FIG. 6A illustrates a 2 mask step process. Referring to FIG. 6A, in Step 1 a starter stack comprising a substrate 602, optical/conductor films 604, an insulator 606, and a spacer 608 is patterned to form support post vias 610. In Step 2, the vias 610 are filled with a support post material 612, and a mechanical film layer 614 is deposited in Step 3. In Step 4, the mechanical layer 614, the spacer 608, and the insulator 606 are etched to expose optical film layers 604 for subsequent bonding. Step 5 is a final step where the sacrificial layer 608 is removed.



FIG. 7 illustrates a further means for consolidating mask steps by combining the process for forming the support post vias with the formation of the support posts themselves. This approach relies on a technique which is known in the industry as lift-off. Basically this means that a pattern can be formed in a deposited material not by etching it after deposition, but by forming the pattern during the deposition. One way of achieving this is explained in FIG. 7.


In Step 1 of FIG. 7, a starter stack 702 has been deposited on a substrate 700 and a negative photoresist 704 has been has been spun on. While positive photoresist may be used, negative resist has the property that a so-called “re-entrant” profile may be formed. A re-entrant profile is one in which the top of the resist is effectively undercut during development. Negative resist differs from positive resist in that exposed negative resist remains during the development process. A mask serves to block light and prevent the exposure of the photoresist 704 below. However diffractive effects actually cause some of the incident light to be redirected underneath the mask. This redirected light produces a “lip” 706 and associated re-entrant profile during Step 2, which shows in the resist 704 after development.


The opening in the resist 704 is used as a mask to define the support post via 708 when it is etched into the starter stack 702. Step 3 illustrates a lift-off process for establishing the support posts which in this case are deposited using some form of physical vapor deposition (PVD) technique as opposed to being spun on and photopolymerized using topside or backside exposure. Because of the reentrant profile, a distinct break is formed between the post material 710 in the hole 708 and the excess post material 712 on the surface of the photoresist 704. Thus in Step 4, the excess material 712 is removed in a lift-off process which uses a liquid solvent to dissolve the remaining photoresist and remove all post material which resides on top of it.


In another embodiment, the fabrication process is further streamlined by the elimination of the support posts. This is shown in FIG. 8 and involves the use of the mechanical film in a self-supporting role. Beginning in Step 1 a starter stack, comprising optical films 802 and sacrificial film 804, is shown deposited on substrate 800. By proper application of etching techniques, a via, 806, is etched onto the stack which exhibits a sloped profile. That is to say, the sidewalls of the via have a profile which is opposite that of the re-entrant profile described in FIG. 7. Because of this, when mechanical film 808 is deposited as in Step 3, the resulting film is conformal and covers the slopes of the via without any break. When the sacrificial film, 804, is removed in step 4, the mechanical film remains standing because it supports itself by being attached to the substrate. This technique may be utilized in all of the process sequences described within this patent application. Advanced interferometric modulator architectures such as those described in patent application Ser. No. 08/769,947 filed on Dec. 19, 1996, now abandoned (a divisional application of which is U.S. Pat. No. 6,680,792 herein incorporated by reference), may also be fabricated using extensions of the previously described process sequences. In this architecture the support structure for the movable mirror is defined separately and positioned in such a way as to be hidden from view. Such a design offers improvements in fill factor, and uniformity in performance.


Referring now to FIG. 9A-9D of the drawings, beginning with Step 1 in FIG. 9, optical films 900 and 902 have been deposited and subsequently patterned in Step 2. Step 3 reveals the deposition of insulator film 904, followed by the deposition of a sacrificial layer, 908, and a mirror material, 906. The mirror is shown after it has been patterned in Step 5, and an additional sacrificial material, 910, has been deposited in Step 6. Step 7 illustrates how the supports and mechanical connections are formed. The patterning which occurs in this step is such that vias 912 etch until stopped by mirror 906, while vias 914 are etched, in the same step, until stopped by insulator film 904 which may be an oxide layer. In this way, and as shown in Step 8, polymer supports 916 are formed using backside exposure techniques to expose the vias 914. Step 9 reveals how a mechanical support layer 918, is deposited and consequently forms a mechanical connection to mirror 906 at the junctions indicated by 920. In Step 10, etch holes 22 are formed, and the entire structure is released in Step 11 using a gas phase etchant.


The fabrication sequences above are meant to illustrate various methods for building interferometric modulator matrices using different mask counts. They are not meant to be limiting in any way in terms of materials used, steps consolidated, or order of steps.

Claims
  • 1. A method for manufacturing an array of interferometric modulators, each interferometric modulator comprising first and second optical layers which when the interferometric modulator is in an undriven state are spaced by a gap of one size, and when the interferometric modulator is in a driven state are spaced by a gap of another size, the size of the gap determining an optical response of the interferometric modulator, the method comprising: fabricating interferometric modulators of a plurality of types characterized by gap sizes between its first and second optical layers when in the undriven state;wherein fabricating the interferometric modulators of the plurality of types comprises in sequence: forming a sacrificial structure over a light-transmissive substrate, the sacrificial structure having different thicknesses in each of a plurality of regions, each of the thicknesses corresponding to a gap size between the first and second optical layers in the undriven state for reflecting a particular color, the sacrificial structure being formed of an opaque material;forming vias through the sacrificial structure;depositing a photosensitive material into the vias and over the sacrificial structure, the photosensitive material being negative acting;exposing the photosensitive material to light passing through the substrate; anddeveloping the photosensitive material such that portions of the photosensitive material in the vias remain to form a plurality of supports of the array of interferometric modulators.
  • 2. The method of claim 1, wherein the photosensitive material is polymeric.
  • 3. The method of claim 1, wherein forming the sacrificial structure comprises depositing a plurality of sacrificial layers stacked over one another.
  • 4. The method of claim 3, wherein forming the sacrificial structure further comprises depositing one or more etch stop layers between the sacrificial layers.
  • 5. The method of claim 3, wherein fabricating the interferometric modulators of the plurality of types comprises fabricating interferometric modulators of first, second, and third types characterized by first, second, and third gap sizes, respectively, between its first and second optical layers when in the undriven state, and wherein forming the sacrificial structure comprises: depositing a first sacrificial layer, the first sacrificial layer having a first thickness;depositing a second sacrificial layer over the first sacrificial layer, the second sacrificial layer having a second thickness;depositing a third sacrificial layer over the second sacrificial layer, the third sacrificial layer having a third thickness;patterning at least two of the first, second, and third sacrificial layers;wherein the first gap size is equal to or greater than a sum of the first, second, and third thicknesses;wherein the second gap size is equal to or greater than a sum of two of the first, second, and third thicknesses; andwherein the third gap size is equal to or greater than one of the first, second, and third thicknesses.
  • 6. The method of claim 5, wherein the interferometric modulators of the first, second, and third types are formed in first, second, and third regions, respectively, and wherein forming the sacrificial structure comprises in sequence: depositing the first sacrificial layer in the first, second, and third regions;removing the first sacrificial layer from the second and third regions;depositing the second sacrificial layer in the first, second, and third regions;removing the second sacrificial layer from the third region; anddepositing the third sacrificial layer in the first, second, and third regions.
  • 7. The method of claim 5, wherein the interferometric modulators of the first, second, and third types are formed in first, second, and third regions, respectively, and wherein forming the sacrificial structure comprises in sequence: depositing the first sacrificial layer;depositing the second sacrificial layer over the first sacrificial layer;depositing the third sacrificial layer over the second sacrificial layer;removing the third sacrificial layer from the second and third regions; andremoving the second sacrificial layer from the third region.
  • 8. The method of claim 5, wherein the interferometric modulators of the first, second, and third types are formed in first, second, and third regions, respectively, and wherein forming the sacrificial structure comprises in sequence: depositing the first sacrificial layer;depositing the second sacrificial layer over the first sacrificial layer;depositing the third sacrificial layer over the second sacrificial layer;providing a photoresist over the third sacrificial layer;exposing the photoresist to light with a grayscale mask on top of the photoresist;removing the photoresist from the third region;etching away the third sacrificial layer from the third region;exposing the photoresist to light with the grayscale mask on top of the photoresist;removing the photoresist from the second region; andetching away the third sacrificial layer from the second region and the second sacrificial layer from the third region.
  • 9. The method of claim 8, wherein the grayscale mask comprises a substantially zero transmission region overlying the first region, a moderate transmission region overlying the second region, and a highest transmission region overlying the third region, wherein the moderate transmission region has a higher transmittance than the substantially zero transmission region, and wherein the highest transmission region has a higher transmittance than the moderate transmission region.
  • 10. The method of claim 5, wherein forming the sacrificial structure further comprises: providing an etch stop layer between the first and second sacrificial layers; andproviding an etch stop layer between the second and third sacrificial layers.
  • 11. A method for manufacturing an array of interferometric modulators, each interferometric modulator comprising first and second optical layers which when the interferometric modulator is in an undriven state are spaced by a gap of one size, and when the interferometric modulator is in a driven state are spaced by a gap of another size, the size of the gap determining an optical response of the interferometric modulator, the method comprising fabricating interferometric modulators of one or more types characterized by one or more gap sizes between its first and second optical layers when in the undriven state; wherein fabricating the interferometric modulators comprises: forming a first sacrificial structure over a light-transmissive substrate, the sacrificial structure being formed of an opaque material;forming one or more mirrors on the first sacrificial structure such that portions of the first sacrificial structure are exposed;forming a second sacrificial structure on the mirrors and on the exposed portions of the first sacrificial structure;forming first vias extending through the first and second sacrificial structures, and second vias extending through the second sacrificial structure to expose portions of the mirrors;depositing a photosensitive material into the first and second vias and on the second sacrificial structure, the photosensitive material being negative acting;exposing the photosensitive material to light passing through the substrate; anddeveloping the photosensitive material after exposing the photosensitive material.
  • 12. The method of claim 11, wherein developing the photosensitive material comprises developing the photosensitive material such that portions of the photosensitive material in the first vias remain to form a plurality of supports of the array of interferometric modulators.
  • 13. The method of claim 11, wherein the photosensitive material is polymeric.
CROSS-REFERENCE TO RELATED APPLICATION

This application is a continuation of U.S. patent application Ser. No. 10/414,594, filed Apr. 15, 2003 and published as U.S. patent application publication No. 2006/0261852 A1 on Nov. 23, 2006. The disclosure of the foregoing application is hereby incorporated by reference in its entirety.

US Referenced Citations (133)
Number Name Date Kind
4500171 Penz et al. Feb 1985 A
4519676 te Velde May 1985 A
4566935 Hornbeck Jan 1986 A
4710732 Hornbeck Dec 1987 A
4859060 Kitagiri et al. Aug 1989 A
4900395 Syverson et al. Feb 1990 A
4954789 Sampsell Sep 1990 A
4956619 Hornbeck Sep 1990 A
5034351 Sun et al. Jul 1991 A
5083857 Hornbeck Jan 1992 A
5099353 Hornbeck Mar 1992 A
5124834 Cusano et al. Jun 1992 A
5216537 Hornbeck Jun 1993 A
5231532 Magel et al. Jul 1993 A
5233456 Nelson Aug 1993 A
5287215 Warde et al. Feb 1994 A
5293272 Jannson et al. Mar 1994 A
5324683 Fitch et al. Jun 1994 A
5345328 Fritz et al. Sep 1994 A
5454906 Baker et al. Oct 1995 A
5497262 Kaeriayama Mar 1996 A
5526172 Kanack Jun 1996 A
5583688 Hornbeck Dec 1996 A
5600383 Hornbeck Feb 1997 A
5606441 Florence et al. Feb 1997 A
5646768 Kaeiyama Jul 1997 A
5650881 Hornbeck Jul 1997 A
5673139 Johnson Sep 1997 A
5726480 Pister Mar 1998 A
5745281 Yi et al. Apr 1998 A
5751469 Arney et al. May 1998 A
5783864 Dawson et al. Jul 1998 A
5784212 Hornbeck Jul 1998 A
5808781 Arney et al. Sep 1998 A
5822110 Dabbaj Oct 1998 A
5825528 Goosen Oct 1998 A
5835255 Miles Nov 1998 A
5838484 Goossen et al. Nov 1998 A
5867302 Fleming et al. Feb 1999 A
5914803 Hwang et al. Jun 1999 A
5920421 Choi Jul 1999 A
5967163 Pan et al. Oct 1999 A
5986796 Miles Nov 1999 A
5998293 Dawson et al. Dec 1999 A
6031653 Yu Feb 2000 A
6038056 Florence et al. Mar 2000 A
6040937 Miles Mar 2000 A
6100477 Randall et al. Aug 2000 A
6165890 Kohl et al. Dec 2000 A
6204080 Hwang Mar 2001 B1
6215221 Cabuz et al. Apr 2001 B1
6218056 Pinarbasi et al. Apr 2001 B1
6284560 Jech et al. Sep 2001 B1
6288472 Cabuz et al. Sep 2001 B1
6297072 Tilmans et al. Oct 2001 B1
6358021 Cabuz Mar 2002 B1
6359673 Stephenson Mar 2002 B1
6377233 Colgan et al. Apr 2002 B2
6407851 Islam et al. Jun 2002 B1
6447126 Hornbeck Sep 2002 B1
6448622 Franke et al. Sep 2002 B1
6465355 Horsley Oct 2002 B1
6574033 Chui et al. Jun 2003 B1
6602791 Ouellet et al. Aug 2003 B2
6618187 Pilossof Sep 2003 B2
6632698 Ives Oct 2003 B2
6635919 Melendez et al. Oct 2003 B1
6650455 Miles Nov 2003 B2
6657832 Williams et al. Dec 2003 B2
6674090 Chua et al. Jan 2004 B1
6674562 Miles Jan 2004 B1
6677225 Ellis et al. Jan 2004 B1
6680792 Miles Jan 2004 B2
6713235 Ide et al. Mar 2004 B1
6720267 Chen et al. Apr 2004 B1
6747800 Lin Jun 2004 B1
6756317 Sniegowski et al. Jun 2004 B2
6782166 Grote et al. Aug 2004 B1
6788175 Prophet et al. Sep 2004 B1
6794119 Miles Sep 2004 B2
6806110 Lester et al. Oct 2004 B2
6812482 Fleming et al. Nov 2004 B2
6867896 Miles Mar 2005 B2
6953702 Miller et al. Oct 2005 B2
6999236 Lin Feb 2006 B2
7008812 Carley Mar 2006 B1
7027202 Hunter et al. Apr 2006 B1
7041224 Patel et al. May 2006 B2
7049164 Bruner May 2006 B2
7110158 Miles Sep 2006 B2
7123216 Miles Oct 2006 B1
7172915 Lin et al. Feb 2007 B2
7250315 Miles Jul 2007 B2
20010003487 Miles Jun 2001 A1
20010040675 True et al. Nov 2001 A1
20020014579 Dunfield Feb 2002 A1
20020021485 Pilossof Feb 2002 A1
20020027636 Yamada Mar 2002 A1
20020054422 Carr et al. May 2002 A1
20020055253 Rudhard May 2002 A1
20020058422 Jang et al. May 2002 A1
20020071169 Bowers et al. Jun 2002 A1
20020086455 Franosch et al. Jul 2002 A1
20020110948 Huang et al. Aug 2002 A1
20020117728 Brosnihhan et al. Aug 2002 A1
20020146200 Kudric et al. Oct 2002 A1
20020186483 Hagelin et al. Dec 2002 A1
20020197761 Patel et al. Dec 2002 A1
20030006468 Ma et al. Jan 2003 A1
20030016428 Kato et al. Jan 2003 A1
20030053078 Missey et al. Mar 2003 A1
20030053233 Felton Mar 2003 A1
20030072070 Miles Apr 2003 A1
20030123126 Meyer et al. Jul 2003 A1
20030202264 Weber et al. Oct 2003 A1
20030202265 Reboa et al. Oct 2003 A1
20030210851 Fu et al. Nov 2003 A1
20030231373 Kowarz et al. Dec 2003 A1
20040027671 Wu et al. Feb 2004 A1
20040035821 Doan et al. Feb 2004 A1
20040051929 Sampsell et al. Mar 2004 A1
20040053434 Bruner Mar 2004 A1
20040100680 Huibers et al. May 2004 A1
20040124483 Partridge et al. Jul 2004 A1
20040124495 Chen et al. Jul 2004 A1
20040125347 Patel et al. Jul 2004 A1
20040136045 Tran Jul 2004 A1
20040150915 Thomas et al. Aug 2004 A1
20040191937 Patel et al. Sep 2004 A1
20040191946 Patel et al. Sep 2004 A1
20040240032 Miles Dec 2004 A1
20050024557 Lin Feb 2005 A1
20080130089 Miles Jun 2008 A1
Foreign Referenced Citations (27)
Number Date Country
199 38 072 Mar 2000 DE
0 069 226 Jan 1983 EP
0 035 299 Sep 1983 EP
0 695 959 Feb 1996 EP
0 788 005 Aug 1997 EP
1 209 738 May 2002 EP
1 275 997 Jan 2003 EP
49-004993 Jan 1974 JP
05275401 Oct 1993 JP
07-014985 Jan 1995 JP
9-127439 May 1997 JP
10-148644 Jun 1998 JP
11-097799 Apr 1999 JP
2001-085519 Mar 2001 JP
2002-287047 Mar 2001 JP
2002-062490 Feb 2002 JP
2002-207182 Jul 2002 JP
2002-243937 Aug 2002 JP
2002-328313 Nov 2002 JP
2003-001598 Jan 2003 JP
WO 9105284 Apr 1991 WO
WO 9210925 Jun 1992 WO
WO 0114248 Mar 2001 WO
WO 0163657 Aug 2001 WO
WO 0224570 Mar 2002 WO
WO 02079853 Oct 2002 WO
WO 03014789 Feb 2003 WO
Related Publications (1)
Number Date Country
20080068699 A1 Mar 2008 US
Continuations (1)
Number Date Country
Parent 10414594 Apr 2003 US
Child 11939746 US