The present invention relates to magnetoresistive sensors and more particularly to a sensor having a reduced gap thickness for increased data density.
The heart of a computer is an assembly that is referred to as a magnetic disk drive. The magnetic disk drive includes a rotating magnetic disk, write and read heads that are suspended by a suspension arm adjacent to a surface of the rotating magnetic disk and an actuator that swings the suspension arm to place the read and write heads over selected circular tracks on the rotating disk. The read and write heads are directly located on a slider that has an air bearing surface (ABS). The suspension arm biases the slider into contact with the surface of the disk when the disk is not rotating but, when the disk rotates, air is swirled by the rotating disk. When the slider rides on the air bearing, the write and read heads are employed for writing magnetic impressions to and reading magnetic impressions from the rotating disk. The read and write heads are connected to processing circuitry that operates according to a computer program to implement the writing and reading functions.
The write head includes a coil layer embedded in first, second and third insulation layers (insulation stack), the insulation stack being sandwiched between first and second pole piece layers. A gap is formed between the first and second pole piece layers by a gap layer at an air bearing surface (ABS) of the write head and the pole piece layers are connected at a back gap. Current conducted to the coil layer induces a magnetic flux in the pole pieces which causes a magnetic field to fringe out at a write gap at the ABS for the purpose of writing the aforementioned magnetic impressions in tracks on the moving media, such as in circular tracks on the aforementioned rotating disk.
In recent read head designs a spin valve sensor, also referred to as a giant magnetoresistive (GMR) sensor, has been employed for sensing magnetic fields from the rotating magnetic disk. The sensor includes a nonmagnetic conductive layer, hereinafter referred to as a spacer layer, sandwiched between first and second ferromagnetic layers, hereinafter referred to as a pinned layer and a free layer. First and second leads are connected to the spin valve sensor for conducting a sense current therethrough. The magnetization of the pinned layer is pinned perpendicular to the air bearing surface (ABS) and the magnetic moment of the free layer is located parallel to the ABS, but free to rotate in response to external magnetic fields. The magnetization of the pinned layer is typically pinned by exchange coupling with an antiferromagnetic layer.
The thickness of the spacer layer is chosen to be less than the mean free path of conduction electrons through the sensor. With this arrangement, a portion of the conduction electrons is scattered by the interfaces of the spacer layer with each of the pinned and free layers. When the magnetizations of the pinned and free layers are parallel with respect to one another, scattering is minimal and when the magnetizations of the pinned and free layer are antiparallel, scattering is maximized. Changes in scattering alter the resistance of the spin valve sensor in proportion to cos θ, where θ is the angle between the magnetizations of the pinned and free layers. In a read mode the resistance of the spin valve sensor changes proportionally to the magnitudes of the magnetic fields from the rotating disk. When a sense current is conducted through the spin valve sensor, resistance changes cause potential changes that are detected and processed as playback signals.
The need for ever increased data density is pushing researches to develop data recording systems that can read and record ever smaller bit lengths in order to increase the density of data recorded on a magnetic medium. This has led a push to decrease the gap size of a read head such as a GMR head. However, the amount by which such gap lengths can be decreased using conventional GMR heads has limitations. For example, physical requirements of the various layers making up a magnetoresistive sensor have certain physical requirements that limit the amount by which they can be made thinner. Therefore, there is a strong felt need for a method for manufacturing a magnetoresistive sensor that can overcome these limitations and to produce a sensor having a reduced gap thickness, thereby increasing data density.
In addition, researchers have worked to develop current perpendicular to plane (CPP) magnetoresistive sensors. Such sensors are constructed such that the sense current travels perpendicular to the plane of the sensor layers, rather than parallel with the planes of the sensors. Examples of such CPP sensors include current perpendicular to plane giant magnetoresistive sensors (CPP GMR sensors) and tunnel valve sensors. A tunnel valve sensor operates based on the spin dependent tunneling of electrons through a thin, electrically insulating barrier layer.
The present invention provides a method for manufacturing a magnetoresistive sensor having a reduced gap thickness for increased data density and improved linear resolution. The method involves forming a sensor stack having a layer of Ru and a layer of Ta formed at the top of the sensor stack. An annealing process is performed to set a magnetization of the pinned layer, and then, after the annealing has been completed, an ion milling process is used to remove the Ta layer.
The method for manufacturing a sensor significantly decreases the stack height of the sensor by eliminating the Ta layer after it is no longer needed to achieve desired sensor properties. All or a portion of the Ru layer remains so that the free layer will not be exposed, which would destroy the free layer and render the sensor inoperable.
The reduced sensor stack height advantageously improves linear resolution. In addition, the decreased stack height improves data density by allowing the sensor to read a shorter data bit, thereby allowing more data bits to fit onto a magnetic medium.
These and other features and advantages of the invention will be apparent upon reading of the following detailed description of preferred embodiments taken in conjunction with the Figures in which like reference numerals indicate like elements throughout.
For a fuller understanding of the nature and advantages of this invention, as well as the preferred mode of use, reference should be made to the following detailed description read in conjunction with the accompanying drawings which are not to scale.
The following description is of the best embodiments presently contemplated for carrying out this invention. This description is made for the purpose of illustrating the general principles of this invention and is not meant to limit the inventive concepts claimed herein.
Referring now to
At least one slider 113 is positioned near the magnetic disk 112, each slider 113 supporting one or more magnetic head assemblies 121. As the magnetic disk rotates, slider 113 moves radially in and out over the disk surface 122 so that the magnetic head assembly 121 may access different tracks of the magnetic disk where desired data are written. Each slider 113 is attached to an actuator arm 119 by way of a suspension 115. The suspension 115 provides a slight spring force which biases slider 113 against the disk surface 122. Each actuator arm 119 is attached to an actuator means 127. The actuator means 127 as shown in
During operation of the disk storage system, the rotation of the magnetic disk 112 generates an air bearing between the slider 113 and the disk surface 122 which exerts an upward force or lift on the slider. The air bearing thus counter-balances the slight spring force of suspension 115 and supports slider 113 off and slightly above the disk surface by a small, substantially constant spacing during normal operation.
The various components of the disk storage system are controlled in operation by control signals generated by control unit 129, such as access control signals and internal clock signals. Typically, the control unit 129 comprises logic control circuits, storage means and a microprocessor. The control unit 129 generates control signals to control various system operations such as drive motor control signals on line 123 and head position and seek control signals on line 128. The control signals on line 128 provide the desired current profiles to optimally move and position slider 113 to the desired data track on disk 112. Write and read signals are communicated to and from write and read heads 121 by way of recording channel 125.
With reference to
With reference now to
The sensor stack 302 includes a magnetic pinned layer structure 308 and a magnetic free layer structure 310. The sensor 300 can be a giant magnetoresistive sensor (GMR) in which case a non-magnetic, electrically conductive spacer layer 312 would be sandwiched between the pinned layer structure 308 and the free layer structure 310. In that case the spacer layer 312 could be constructed of a material such as Cu or CuO. On the other hand, the sensor 300 could be a tunnel magnetoresistive sensor (TMR), in which case the layer 312 would be a non-magnetic, electrically insulating barrier layer, constructed of a material such as MgO, TiO or Al2O3.
The pinned layer structure 308 can be constructed as an antiparallel coupled pinned layer structure (AP pinned structure), which can include first and second magnetic layers 314, 316, constructed of a material such as CoFe, with a thin, non-magnetic, antiparallel coupling layer 318 such as Ru sandwiched between the first and second magnetic layers 314, 316. The first magnetic layer 314 of the pinned layer structure 308 is formed over and exchange coupled with a layer of antiferromagnetic material (AFM layer) 320. The exchange coupling with the AFM layer 320 pins the magnetization of the first magnetic layer 314 in a direction perpendicular to the air bearing surface (ABS) as indicated by arrow-tail 322. Antiparallel coupling between the first and second magnetic layers 314, 316 pins the magnetic moment in a direction opposite to that of the first magnetic layer 314 as indicated by arrow-head 324.
With reference still to
With continued reference to
With reference now to
A plurality of sensor layers 403 including a novel capping structure 417 deposited over the substrate 402. The sensor layers can include: a seed layer 404; a layer of antiferromagnetic material; a first magnetic pinned layer (AP1) layer 408; a non-magnetic AP coupling layer 410; a second magnetic pinned layer (AP2); a non-magnetic, electrically conductive spacer layer, or non-magnetic electrically insulating barrier layer 414; and a magnetic free layer structure 416. The sensor layers 403 also include a novel bi-layer capping layer structure 417 that includes a first layer of Ru 418 and a layer of Ta 420. The Ru layer 418 can have a thickness of 5-15 nm as deposited or preferably about 10 nm as deposited. The Ta layer 420 can have a thickness of 1-5 nm as deposited or preferably about 3 nm as deposited.
In order to set the magnetizations of the pinned layers 408, 412, an annealing step must be performed. This annealing step involves heating the sensor to a temperature above the blocking temperature of the AFM layer 406, exposing the sensor to a strong magnetic field and then cooling the sensor. For example, if the AFM layer comprises IrMn, the sensor is heated to a temperature of about 240 C to 280 C. While the sensor is heated to this temperature, a magnetic field of about 50000 Oe is applied in a direction perpendicular to the ABS (i.e. into or out of the page in
This annealing step is necessary for proper sensor operation, however, the free magnetic layer 416 must be protected during this high temperature anneal. To this end, the Ru layer 418, and Ta layer 420 protect the free layer 416 during the high temperature anneal. The Ta layer 420 is necessary during this high temperature anneal to achieve desired free layer properties such as low magnetostriction.
However, as mentioned above, it is necessary to reduce the stack height of the sensor as much as possible in order to reduce bit length and also to increase the linear resolution of the sensor. Once the annealing has been completed and the sensor has cooled, the Ta layer 420 is no longer needed. The Ru layer 418 is, however, needed in order to prevent the sensor from oxidizing, and being otherwise destroyed.
Therefore, in order to significantly reduce the stack height of the sensor, a material removal process such as an ion milling is performed to remove the Ta layer 420 using end point detection to stop the ion milling at the Ru layer 418. An end point detection method such as Secondary Ion Mass Spectroscopy (SIMS) can be used to detect when the Ru layer 418 has been reached. A portion of the Ru layer 418 can be removed during this ion milling, so long as some Ru layer 418 remains. For example, if the Ru layer 418 was originally deposited to a thickness of about 10 nm, about 2-7 nm of the Ru layer 418 can be removed leaving a Ru layer 418 having a thickness of about 3-8 nm.
With continued reference to
With reference now to
With reference now to
The above described process significantly reduces the stack height of the sensor, by eliminating the Ta capping layer 420 (
While various embodiments have been described above, it should be understood that they have been presented by way of example only and not limitation. Other embodiments falling within the scope of the invention may also become apparent to those skilled in the art. Thus, the breadth and scope of the invention should not be limited by any of the above-described exemplary embodiments, but should be defined only in accordance with the following claims and their equivalents.