V-brake is a popular braking system for bicycle wheels and is advantageous in light weight and low cost. The V-brake can clamp the braking surfaces of the wheels to decelerate the bicycle. However, the V-brake can overheat the braking surfaces, leading to the deformation of the wheels and/or the flat tire.
Therefore, the present invention has arisen to resolve or at least mitigate the above mentioned disadvantages.
The main object of the present invention is to provide a method for manufacturing bicycle wheel with heat-resist braking surfaces.
To achieve the above and other objects, the method for manufacturing bicycle wheel made of composite material and having two opposite braking surfaces of the present invention including: the braking surfaces being sand blasted to remove a releasing agent layer coated on the wheel; the wheel being placed in a spraying machine at about 100 degree Celsius and then the braking surfaces being spray-coated with a material selected from the group consisting of polytetrafluoro ethylene, fluoride ethylene-propylene copolymer, polyfluoroalkyl, ethylene-tetrafluoro ethylene copolymer and the mixture thereof until a thickness of the material is bigger than 0.4 cm; the wheel being gradually heated to make the material set and form fluoride polymer layers.
The present invention will become more obvious from the following description when taken in connection with the accompanying drawings, which show, for purpose of illustrations only, the preferred embodiment(s) in accordance with the present invention.
Please refer to
Please refer to
It is to be noted that if the wheel is heated to 180 degree Celsius rapidly, the fluoride polymer layers 20 will bubble, which leads to insufficient structural strength and aesthetic defects, as well as the fact that the layers 20 may tend to delaminate from the braking surfaces 10.
As shown in
After the fluoride polymer layers 20 are formed, the wheel 1 has an outer surface consisting of a fluoride polymer containing area and a fluoride polymer non-containing area. The fluoride polymer non-containing area further undergoes a surface treatment procedure, such as patching-up, polishing and varnishing. Note that if the surface treatment is made before the coating of the fluoride polymer layers, the patching material and the vanish may be deteriorated and melt, causing other aesthetic disadvantages.
The fluoride polymer layers 20 can increase the heat-resistance of the braking surfaces. Further, the fluoride polymer layers mixed with titanium metal powder can further elevate the heat-resisting performance and the mechanical strength of the layers.
A result of braking test is shown in the following Table 1, in which each wheel is driven to rotate and then clamped to stop 3000 times. Thereafter the surface temperature on the braking surface is measured in the unit of degree Celsius:
As shown in Table 1, the surface temperature of the wheel manufactured by the method of the present invention is lower than that of the wheel without fluoride polymer layers, no matter the fans are turned on or not. Accordingly, the wheel manufactured by the method of the present invention can mitigate the problem resulted from over-heated braking surfaces, thus the safety performance of the bicycle using the wheel manufactured by the method of the present invention can be elevated.
The present invention is a CIP of application Ser. No. 12/749,343, filed Mar. 29, 2010, the entire contents of which are hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
2944917 | Cahne | Jul 1960 | A |
3094376 | Thomas | Jun 1963 | A |
3372053 | McCarthy | Mar 1968 | A |
5056630 | Fujii et al. | Oct 1991 | A |
20070102992 | Jager | May 2007 | A1 |
Number | Date | Country | |
---|---|---|---|
20130309407 A1 | Nov 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12749343 | Mar 2010 | US |
Child | 13953739 | US |