THIS APPLICATION IS A U.S. NATIONAL PHASE APPLICATION OF PCT INTERNATIONAL APPLICATION PCT/JP03/00195.
The present invention relates to a method of manufacturing a multiple chip resistor having an array of resistor elements provided on a single substrate.
A conventional method of manufacturing a multiple chip resistor is disclosed in Japanese Utility Model Laid-Open No. 3-30409 as shown in
In the conventional method of manufacturing the multiple chip resistor, the substrate 120 as a green sheet is provided with the longitudinal slit lines 122, the traverse slit lines 123, and the substantially oval apertures 128 and is then baked. This method may cause a variation in the composition of the substrate 120 and a change in its baking temperature, thus resulting in dimensional errors of the longitudinal slit lines 122, the traverse slit lines 123, and the oval apertures 128. In order to avoid the above errors by the conventional method, the chips on the substrate are classified by their dimensions into levels in a longitudinal direction and a traverse direction, and then, various screen printing masks corresponding to the levels for the electrode terminals 127, the resistor film 124, and the glass coating are prepared. The screen printing masks have to be replaced from one to another with reference to the levels of the dimensional classification of the chips on the substrate, thus making the resistor hard to manufacture.
A multiple chip resistor is manufactured in the following method. First electrode layers are formed on a first surface of a substrate. Resistor elements electrically connected to the first electrode layers, respectively, are formed on the first surface of the substrate. Slits are formed in the substrate for separating the first electrode layers. Edge electrodes connected to the first electrode layers at the edges of the slits, respectively, are formed on respective edges at the slits of the substrate. The substrate is divided at the slits into strip substrates. Portions of the edge electrodes are removed for electrically isolating the resistor elements from each other.
A method of manufacturing the resistor of Embodiment 1 of the invention will be described in more detail.
As shown in
Then, as shown in
As shown in
As shown in
As shown in
As shown in
As shown in
As shown in
As shown in
As shown in
As shown in
As shown in
Accordingly, as shown in
Then, the strip substrate 11b, as shown in
The second dividing sections 22 are provided by a laser scribing technique. After the scores are provided by irradiation of laser, the strip substrate 11b is divided into the chip substrates 11c by general dividing equipment. More particularly, the strip substrate 11b is divided not every time when the dividing section 22 is formed but in two steps. Alternatively, the second dividing sections 22 may be provided by a dicing technique. The dicing divides the strip substrate 11b into the chip substrates 11c every time when the second dividing sections 22 are provided.
Then, as shown in
In the method of Embodiment 1, the second plating layer 24 is made of tin. The layer, however, is not limited to the tin, and may be made of tin alloy material. This material enables the resistor to be soldered stably by reflow-soldering.
In the method, the resistor elements 13 are protected with two layers, i.e., the first protective layer 14 of glass-based material covering the resistor element 13 and the second protective layer 17 of resin-based material covering the first protective layer 14 and the trimming trench 15. The first protective layer 14 prevents the element from cracks generated during the laser trimming process, thus reducing a current noise. The second protective layer 17 of the resin-based material encloses the resistor element 13 to provide a large moisture resistance.
In the method, the upper electrodes 12 and the adhesive layers 16 are flush at outer edge with each other along the inner wall at each slit 18 provided in the sheet substrate 11. This arrangement allows the edge electrode 19 to be developed continuously and consistently on one edge of the sheet substrate 11, one edge of the upper electrode 12, and one edge of the adhesive layer 16 on the slit 18 by a thin film technique.
In the method, the adhesive layer 16 of electrically conductive resin material overlaps partially the upper electrode 12. The adhesive layer 16 allows the edge electrode 19 of a thin film formed on the slit 18 to have a large area contacting the upper electrode 12, thus improving an electrical conduction between the edge electrode 19 and the upper electrode 12.
In the method, the edge electrode 19 is a nickel-chrome thin film deposited by sputtering. The edge electrode 19 is not limited to the nickel-chrome thin film but may includes plural layers of chrome material, copper material, and nickel material. The materials allow the edge electrode 19 to have an affinity with a plating layer, thus providing the plating layer with a large bonding strength.
In the multiple chip resistor manufactured by the method, an interval between the slits 18, i.e., the first dividing sections formed by the dicing is accurate, and an interval between the second dividing sections 22 provided by the laser scribing is accurate (within ±0.005 mm). The edge electrode 19, the first plating layer 23, and the second plating layer 24 have accurate thicknesses. Accordingly, the multiple chip resistor has a length of 0.6 mm and a width of 1.2 mm accurately. The accuracy allows no dimensional classification of each chip substrate due to a patterning accuracy of the upper electrode layers 12 and the resistor element 13 to be needed while dimensional deviation of chip substrates classified as one level is not needed to consider. As the result, an effective area of the resistor elements 13 can be greater than that of a conventional multiple chip resistor. More specifically, the resistor element 13 according to Embodiment 1 has a length of 0.25 mm and a width of 0.24 mm, thus having an area larger than 1.6 times of an area of a resistor element of a conventional resistor having a length of 0.20 mm and a width of 0.19 mm.
In the method, the slits 18 serving as the first dividing sections provided by the dicing allows the sheet substrate 11 not to need the dimensional classification of the chips. As no dimensional classification of the chips are needed unlike the conventional method, the steps of the manufacturing can be facilitated hence permitting the sheet substrate 11 to be divided easily with common dicing equipment used widely in semiconductor industries.
In the method, the sheet substrate 11 has the slits 18 provided therein for isolating the upper electrode layers 12 from each other and utilized for dividing the sheet substrate 11 into the chip substrates 11c each of which includes a predetermined number of the resistor elements 13. As no dimensional classification of the chips is needed unlike the conventional method, that is, as a process of changing masks corresponding to various levels of dimensional classification is not necessary, the chip resistor is manufactured by simple processes.
In the method, the edge electrodes 19 are provided by a thin film technique, such as sputtering, on the lower surface of the sheet substrate 11. Then, the unnecessary portions having a width of about 0.3 mm substantially at the center of the lower surface of the sheet substrate 11 except portions of the back electrode adjoining the slits 18 are evaporated and removed by laser beam having a spot diameter of about 0.3 mm irradiated to the unnecessary portions. As the result, the back electrodes 20 adjoining the slits 18 are formed on the lower surface of the sheet substrate 11, hence functioning as portions of the edge electrodes 19. This arrangement allows the back electrodes 20 functioning as the portions of the edge electrodes 19 to be formed dimensionally accurately, thus allowing the interval between the back electrodes 20 to be accurate throughout the lower surface of the sheet substrate 11. This prevents the multiple chip resistor from being mounted defectively when the resistor is surface-mounted.
In the method, the second protective layers 17 are made of resin material. The edge electrodes 19 and the back electrodes 20 are provided by a thin film deposition technique from the back side of the sheet substrate 11 on edge portions adjoining the slits 18 of the lower surface of the sheet substrate 11, both edges of the sheet substrate 11, one edge of the upper electrode layers 12, and one edge of the adhesive layers 16 at the slits 18 which extend through the sheet substrate 11 for isolating the upper electrode layers 12 from each other. The sheet substrate 11 is then divided into the strip substrates 11b by cutting the substrate through the edges of the slits 18. Then, the unnecessary portions of the edge electrodes 19 and the back electrodes 20 are removed from the strip substrates 11b by laser irradiating from both the side corresponding to the second protective layer 17 of resin and the side opposite to the side corresponding to the layer 17 for electrically isolating the resistor elements 13 adjacent to each other from each other. During the irradiation of laser, the strip substrates 11b are held while being tilted, that is, while being positioned at an angle to the laser. The position thus protects the second protective layers 17 of resin from the laser while the unnecessary portions of the edge electrodes 19 and the back electrodes 20 are removed from the lower surface of the sheet substrate 11 by the laser. As a result, the edge electrodes 19 adjacent to each other can be securely isolated from each other while the back electrodes 20 adjacent to each other are securely isolated from each other.
According to Embodiment 1, the strip substrates 11b are tilted so that the second protective layers 17 face down and are exposed to the laser at the side opposite to the second protective layers 17. Alternatively, each of the strip substrates 11b may be tilted one by one so that with the second protective layers 17 face down and are exposed to the laser at the side opposite to the second protective layers 17 for removing the unnecessary portions of the edge electrodes 19 and the back electrodes 20 to isolate the resistor elements 13 adjacent to each other from each other. This method protects the second protective layers 17 from being exposed to the laser, as explained in Embodiment 1. Moreover, the edge electrodes 19 adjacent to each other can be securely isolated from each other while the back electrodes 20 adjacent to each other are securely isolated from each other.
According to Embodiment 1, the strip substrates 11b having the edge electrodes 19 and the back electrodes 20 are arranged in a horizontal direction and tilted so that the second protective layers 17 face down. Alternatively, if the second protective layers 17 are not made of resin material, the strip substrates 11b may be held longitudinally upright. The strip substrates 11b are not limited to be aligned along the horizontal direction but may be processed one by one.
According to Embodiment 1, the strip substrates 11b having the edge electrodes 19 and the back electrodes 20 are arranged in a horizontal direction and tilted so that the second protective layers 17 face down. This arrangement has the strip substrates 11b positioned at an angle so as to be non-parallel to the laser, thus facilitating the removal of the unnecessary portions of the edge electrodes 19 and the back electrodes 20 from the side opposite to the second protective layers 17 to isolate the resistor elements 13 from each other. Alternatively, as shown in
According to Embodiment 1, the strip substrates 11b having the edge electrodes 19 and the back electrodes 20 are tilted so that the second protective layers 17 face down, thus being held at an angle against the irradiated laser and non-parallel to the laser. Alternatively, the laser may be irradiated at an angle to the lower surface of the strip substrates 11b. This ensures effects equal to that of Embodiment 1.
The multiple chip resistor manufactured by the method of Embodiment 1 is not limited to include four of the resistor elements as described above but may include plural resistor elements by modifying locations of the second dividing portions 22 provided by laser scribing.
According to Embodiment 1, the electrodes are provided on both edges of the strip substrate 11b, but may be provided at one edge of the substrate with equal effects.
A method of manufacturing a multiple chip resistor according to Exemplary Embodiment 2 of the present invention will be described by referring to relevant figures. The method of Embodiment 2 is differentiated from that of Embodiment 1 by some processes which are explained in detail while the description of other identical processes is omitted. More particularly, the method of Embodiment 2 is identical to that of Embodiment 1 before a process of providing back electrodes 20 shown in
After being provided with the back electrodes 20 shown in
Then, as shown in
The second dividing sections 22a may be provided by a laser scribing technique similarly to that of Embodiment 1.
As shown in
In the method of Embodiment 2, the sheet substrate 11 having the edge electrodes 19 and the back electrodes 20 provided therein and the slits 18 provided therein for isolating the upper electrode layers 12 is tilted so that the second protective layers 17 of resin material face down. Since having the upper surface of the substrate be non-parallel to the irradiated laser, the sheet substrate 11 is exposed to the laser at the side opposite to the side corresponding to the second protective layers 17 for removing the unnecessary portions of the edge electrodes 19 and the back electrodes 20 to isolate the resistor elements adjacent to each other (not shown) from each other. This figure protects the second protective layers 17 from being exposed to the laser while facilitating the removal of the unnecessary portions at the slits 18 of the edge electrodes 19 and the unnecessary portions of the back electrodes 20 adjoining the slits 18 simultaneously by the irradiated laser. Then, the edge electrodes 19 can be securely isolated from each other while the back electrodes 20 extending from the edge electrodes 19 are securely isolated from each other.
According to Embodiment 2, the sheet substrate 11 having the edge electrodes 19 and the back electrodes 20 is tilted so that the second protective layers 17 face down. Alternatively, the sheet substrate 11 may be not tilted but held upright for removing the unnecessary portions of the edge electrodes 19 and the back electrodes 20 by the irradiated laser. This improves the dimensional accuracy of the edge electrodes 19 and the back electrodes 20 extending from the edge electrodes 19 on the chip substrate 11c. The edge electrodes 19 can be securely isolated from each other while the back electrodes 20 extending from the edge electrodes 19 can be securely isolated from each other. This prevents the multiple chip resistor from being mounted defectively when the resistor is surface-mounted.
According to Embodiment 2, the sheet substrate 11 is tilted so that the second protective layers 17 face down, and the substrates 11 are thus non-parallel with the irradiated laser. Alternatively, the laser may be irradiated at an angle in parallel to the lower surface of the sheet substrate 11. This provides effects equal to that of Embodiment 2.
The method of manufacturing multiple chip resistors of Embodiment 2 before a process of providing the back electrodes 20 is identical to that of Embodiment 1 shown in
According to Embodiment 2, the electrodes are provided on both edges of the strip substrate 11b. However, a technique of Embodiment 2 is applicable to electrodes provided at one edge of the substrate with the same effects.
In a method of manufacturing a multiple chip resistor according to the present invention, edge electrodes on each strip substrate have an improved dimensional accuracy, thus being isolated electrically from each other. Consequently, the multiple chip resistor is prevented from being mounted defectively when the resistor is surface-mounted.
Number | Date | Country | Kind |
---|---|---|---|
2002-005598 | Jan 2002 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP03/00195 | 1/14/2003 | WO | 00 | 10/9/2003 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO03/060929 | 7/24/2003 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4792781 | Takahashi et al. | Dec 1988 | A |
5850171 | Lin et al. | Dec 1998 | A |
5907272 | McGuire | May 1999 | A |
6005474 | Takeuchi et al. | Dec 1999 | A |
6144287 | Komeda | Nov 2000 | A |
6238992 | Yamada | May 2001 | B1 |
6242999 | Nakayama et al. | Jun 2001 | B1 |
6535106 | Teramae | Mar 2003 | B2 |
6703683 | Tanimura | Mar 2004 | B2 |
6724295 | Tsukada | Apr 2004 | B2 |
6727111 | Tsukada | Apr 2004 | B2 |
6935016 | Hashimoto et al. | Aug 2005 | B2 |
Number | Date | Country |
---|---|---|
60-166102 | Nov 1985 | JP |
63-172401 | Jul 1988 | JP |
03-30409 | Mar 1991 | JP |
05-267025 | Oct 1993 | JP |
11-312601 | Nov 1999 | JP |
WO 0154143 | Jul 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20040113750 A1 | Jun 2004 | US |