This application claims the priority benefit of TW application serial no. 105102583,filed on Jan. 27, 2016. The entirety of the above-mentioned patent application is hereby incorporated by reference herein and made a part of this specification.
Field of the Invention
The disclosure relates to a method for manufacturing a current collector layer and, more specifically, to a method for manufacturing a thin current collector layer.
Description of the Related Art
Generally, the operation mechanism of a battery is relied on redox reactions that generated between positive, negative electrodes and electrolytes, the formed circulatory system generates a current and functions as a battery. When the battery discharges, ions moves from the negative electrode to the positive electrode through the electrolytes. At the same time, electrons move to the positive electrode from an external circuit to generate current. The positive and negative electrodes are coated on a current collector layer. The current collector layer is served as a conductor for the electrons during the charging and discharging processes of the battery.
According to an aspect of the disclosure, a method for manufacturing a current collector layer is provided. The method comprises: forming a release layer on a surface of a film; forming an adhesive layer on the release layer; forming a metal layer on the adhesive layer; and removing the film and the release layer.
These and other features, aspects and advantages of the disclosure will become better understood with regard to the following embodiments and accompanying drawings.
The invention is described accompanying with the figures. The invention may be implemented in different forms, and embodiments described hereinafter are not used for limiting the invention. For clarity, thickness of layers/areas shown in the figures is enlarged.
Please refer to
Then, in step S100, a release layer 104 is formed on a surface 102 of the film 100. In an embodiment, the release layer 104 is formed by coating a release agent on the surface 102 of the film 100 and then drying the release agent. In an embodiment, the drying treatment is performed at a temperature of 25° C.˜70° C. As shown in
The release agent is one or a combination selected from the group consisting a fluorine-containing organic compound, a chlorine-containing polymer and a silicon-containing organic compound, which is not limited herein. In an embodiment, the fluorine-containing organic compound is one or a combination selected from the group consisting polytetrafluoroethene (PTEF), polyvinylidene difluoride (PVDF) and fluorinated ethylene propylene copolymer (FEP). In an embodiment, the chlorine-containing polymer is polyvinyl chloride (PVC). In an embodiment, the silicon-containing organic compound includes polyester and/or silicone resin. However, the material of the release agent is not limited herein. In an embodiment, any material with low surface energy that does not react easily with adjacent materials can be used as the release agent.
Please refer to
In the embodiment, the surface energy of the surface 103 of the release layer 104a is increased and the surface 103 is roughened and uneven via the surface treatment onto the release layer 104 in step S102. Therefore, an adhesion force between the release layer 104a and an adhesive layer 106 (which is subsequently formed as shown in
Please refer to
In the embodiment, the adhesive layer 106 is formed via the dry deposition method. The adhesion force between the adhesive layer 106 and the release layer 104a is increased via the roughened surface 103. Thus, the thickness of the adhesive layer 106 is less than 0.1 μm to avoid a lower conductivity of the finished current collector layer.
Then, please refer to
In an embodiment, the metal layer 108 is formed via a wet deposition method. The wet deposition method includes electroplating and/or chemical plating. When the metal layer 108 is formed by the wet deposition method, an activated layer is formed on the surface 105 of the adhesive layer 106 before the metal layer 108 is formed. The activated layer includes at least one metallic element used as a metal catalyst to accelerate the deposition of the metal layer 108. In an embodiment, the activated layer is formed by using electrolytes including one or a combination selected from the group consisting palladium chloride, ruthenium chloride and thallium chloride to activate and sensitize the surface 105 of the adhesive layer 106, and then the palladium (Pd), the ruthenium (Ru) or the thallium (Tl) is attached to the surface of the adhesive layer 106 to improve the conductivity and activity of the adhesive layer 106.
Problems of calendering effects of materials and limitations from the thickness of a rolling device are solved via the dry deposition method or the wet deposition method. Therefore, the thickness of the metal layer 108 is made less than 3 μm. In an embodiment, the thickness of the metal layer 108 is between 0.5 μm to 2.5 μm.
Please refer to
In the embodiment, the metal layer 108 is used as current collector layers of positive and negative electrodes in a battery unit. The positive and negative electrodes are stacked alternatively to form the battery. Therefore, in the embodiment, when the single metal layer 108 (as the current collector layer of either the positive electrode or the negative electrode) becomes thinner, the whole thickness of the stacked battery is reduced, and thus the available space of the battery is increased. In such a way, the efficiency of the battery is improved.
In an embodiment, the material of the metal layer 108 is various for different types of the battery. In an embodiment, in a lithium ion battery, the current collector layer of the positive electrode is aluminum, and the current collector layer of the negative electrode is copper. The battery can be any type only if a potential difference (PD) exits between plate materials of the positive electrode and the plate materials of the negative electrode. In an embodiment, in a nickel-hydrogen battery, nickel is used as the material of the current collector layer of the positive electrode.
Please refer to
In sum, in embodiments, the metal layer is formed on the release layer via the dry deposition method or the wet deposition method, and thus the thickness of the metal layer is made less than 3 μm. Therefore, when the metal layer is used as the current collector layer of the battery, the whole thickness of the battery is reduced and the efficiency of the battery is improved. Furthermore, before the metal layer is formed, the adhesive layer is formed on the release layer to increase the metal adhesion force to avoid the detachment of the metal layer.
Additionally, in an embodiment, the metal layers are formed on the opposite sides of the film, respectively. After the film and two release layers are removed, two separate composite layers each consisting of the metal layer and the adhesive layer are obtained. Therefore, the method for forming the metal layer reduces the cost.
Although the disclosure has been disclosed with reference to certain embodiments thereof, the disclosure is not for limiting the scope. Persons having ordinary skill in the art may make various modifications and changes without departing from the scope of the disclosure. Therefore, the scope of the appended claims should not be limited to the description of the embodiments described above.
Number | Date | Country | Kind |
---|---|---|---|
105102583 | Jan 2016 | TW | national |