1. Field of the Invention
The present invention relates to a method for manufacturing a liquid discharge head for discharging a liquid, and more particularly, to a method for manufacturing an ink jet recording head for performing recording by discharging ink to a recording medium.
2. Description of the Related Art
An ink jet recording head employed in an ink jet recording system is an example of a liquid discharge head used for discharging a liquid. The ink jet recording system discharges ink to a recording medium and performs recording. The ink jet recording head includes an ink flow path, a discharge energy generation unit provided at apart of the ink flow path, and a minute ink discharge port (it is referred to as an orifice) for discharging ink by generated energy.
U.S. Patent Publication No. 2007/0099121 discusses a method for manufacturing such a liquid discharge head. In the method, a pattern layer, which is a mold for a flow path, is formed on a substrate using a photosensitive material. The substrate includes a discharge energy generation unit. A flow path wall member is provided on the pattern layer, and then a space to become the flow path is formed by removing the pattern layer.
For the above described pattern which becomes the mold of the flow path, a positive photosensitive resin is used, and a photolithography method is used for patterning of the positive photosensitive resin. In exposing the positive photosensitive resin, an exposure apparatus that collectively exposes an entire substrate at a magnification of 1:1 is used due to a necessary amount of exposure.
However, the method for manufacturing a liquid discharge head discussed in U.S. Patent Publication No. 2007/0099121 has the following problems.
Since an exposure apparatus collectively exposes a large object (a positive photosensitive resin) provided on a substrate, positioning accuracy between the object and a mask used for exposing is insufficient. Particularly, when the exposure apparatus exposes the object on a large wafer which is about 8 to 12 inches, a warp or flexure of the substrate or the mask affects the positioning. Thus, the alignment accuracy between the mask and the object varies in the same substrate or varies for every substrate to be exposed.
Generally, a main chain decomposition type resin is used as the positive photosensitive resin. However, the main chain decomposition type positive photosensitive resin mostly has low sensitivity to ultraviolet light, so that the exposure apparatus needs to emit a large amount of energy to generate an enough decomposition reaction. Therefore, non-uniform heat expansion is caused between the mask and the substrate by the heat generation during an exposure operation, and resolution and alignment accuracy thus could be decreased. As a result, position deviation between the energy generating unit and the pattern that becomes the flow path occurs, and the pattern of the flow path may not be formed at a desired position of the substrate.
On the other hand, inventors found out in examination that the method described in U.S. Patent Publication No. 2007/0099121 may not form a discharge port having a desired shape when the discharge port is formed at the flow path wall member by using i-line light. The light used for the exposure reaches the substrate, is reflected on the substrate surface, passes through the pattern of the mold of the flow path, and then reaches the resin of the flow path wall configuring member. It was found out that a shape of the discharge port is varied from a desired one affected by such a path of the light.
The present invention is directed to a method for manufacturing a liquid discharge head which can accurately form a pattern of a mold of a flow path on a desired position of a substrate, and can accurately acquire a desired shape of a discharge port.
According to an aspect of the present invention, a method for manufacturing a liquid discharge head that includes a flow path wall member which forms a wall of a flow path communicating with a discharge port for discharging a liquid and a substrate which forms the flow path in contact with the flow path wall member includes providing a first layer, which is made of a photosensitive resin on the substrate, for forming a pattern having a shape of the flow path, providing a second layer which is capable of absorbing light within a photosensitive wavelength range of the photosensitive resin and has a shape corresponding to the shape of the flow path, on the first layer so as to come into contact with the first layer, performing patterning of the first layer which includes exposure of the first layer with the light using the second layer as a mask, and forming the pattern from the first layer, providing a cover layer which is made of a photosensitive resin and serves as the flow path wall member so as to cover the second layer and the pattern, forming the discharge port on the cover layer by performing patterning of the cover layer which includes exposure of the cover layer with the light, and forming the flow path by removing the second layer and the pattern.
According to an exemplary embodiment of the present invention, the method for manufacturing the liquid discharge head can control a position relationship among an energy generating unit, an ink flow path, and a discharge port on a substrate with high accuracy and high reproducibility, and can reproducibly produce a liquid discharge head which has excellent printing characteristic.
Further features and aspects of the present invention will become apparent from the following detailed description of exemplary embodiments with reference to the attached drawings.
The accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate exemplary embodiments, features, and aspects of the invention and, together with the description, serve to explain the principles of the invention.
Various exemplary embodiments, features, and aspects of the invention will be described in detail below with reference to the drawings.
In the following descriptions, configurations which have same functions are denoted by the same reference numerals in the drawings, and description thereof may be omitted.
A liquid discharge head can be applied to an ink jet recording head used in an ink jet recording system. However, an applicable scope of the present invention is not limited to the ink jet recording head. The present invention can be applied to biochip manufacturing and electronic circuit printing.
The liquid discharge head can be installed in a printer, a copying machine, a facsimile including a communication system, a device such as a word processor including a printing unit, and an industrial recording apparatus in which various kinds of processing devices are complexly combined. For example, the liquid discharge head can be used for biochip manufacturing, electronic circuit printing, and discharging chemicals in an atomized state.
For example, the liquid discharge head can be used in recording to various kinds of recording mediums, such as paper, threads, fibers, cloth, leather, metals, plastics, glass, wood, and ceramics. In the description of the present invention, “recording” means not only for providing an image with meaning such as characters or graphics to a recording medium but also for providing an image without meaning such as a pattern to the recording medium.
An exemplary embodiment of a liquid discharge head of the present invention will be described below.
The liquid discharge head according to the exemplary embodiment of the present invention includes a substrate 1 on which energy generating elements 5 are formed at predetermined pitches. The energy generating element 5 generates energy for discharging a liquid. On the substrate 1, a supply port 8 for supplying ink has its opening between two rows of the energy generating elements 5. On the substrate 1, discharge ports 4 and individual ink flow paths 7 are formed. The discharge ports 4 open above each of the energy generating elements 5. The ink flow paths 7 communicate with each of the discharge ports 4 from the supply port 8.
A discharge port member 3 functions as a flow path wall member which forms a wall of the individual flow paths 7 communicating with each of the discharge ports 4 from the supply port 8. The flow path wall member can be separately provided from the discharge port member 3. A position of the discharge port 4 is not limited to a position facing to the energy generating element 5.
The liquid discharge head is disposed such that a surface on which the discharge ports 4 are formed faces a recording surface of a recording medium. Energy generated by the energy generating elements 5 is applied to a liquid filled in the flow path via the supply port 8 to discharge droplets of the liquid from the discharge port 4, so that recording is performed by adhering the discharged droplets on the recording medium. An energy generating element can include an electrothermal transducer (a heater) for generating thermal energy and a piezoelectric element for generating mechanical energy, but is not limited to them. Then, a feature of a configuration of a recording head according to the present invention will be described in detail below with reference to
As illustrated in
As illustrated in
A method for manufacturing the liquid discharge head according to the present invention will be described below with reference to
As illustrated in
A positive photosensitive resin is suitable for a photosensitive resin for forming the first layer 9. As for the positive photosensitive resin, polymethyl isopropenyl ketone (PMIPK) dissolved in cyclohexanone can be used. Further, a positive resist produced by dissolving polymethyl methacrylate (PMMA) in diethyleneglycol dimethylether can be used. The first layer 9 is formed 5.0 μm to 15.0 μm thick by a coating method, such as a spin coating method, a roll coating method, or a slit coating method.
Then, as illustrated in
The material layer is required to absorb a wavelength to which the first layer 9 is sensitive and becomes positive, among exposure wavelength of the first layer 9. Further, the material layer is required to absorb light within a photosensitive wavelength range of a cover layer, which is described below. As such a material layer, an example using an i-line antireflection film 10 will be described below. I-line will be described in detail below, and i-line in this case is light at least centering on a wavelength of 365 nm.
A material used for forming the i-line antireflection film 10 is desired to be capable of sufficiently absorbing i-line, and exercising its absorption characteristic at a film thickness which can be easily dissolved and removed. Further, a part of the i-line antireflection film 10 is used as a mask when the first layer 9 is subjected to patterning in a later process. Therefore, it is desirable that the i-line antireflection film 10 can absorb the light within the photosensitive wavelength range of the first layer 9, and more desirable that the film can absorb the light enough as not to transmit it.
For example, a material produced by cross-linking following (A) and following (B) can be used.
(A) A polymer or a copolymer produced by using an ester of a hydroxy compound and acrylic acid or methacrylic acid, as apart of a monomer. The hydroxy compound is selected from bisphenylsulfones and benzophenones which include a hydroxyl.
(B) A resist acquired by cross-linking using a cross-linking agent selected from a nitrogen-containing compound that includes at least two amino groups which are replaced with a hydroxyalkyl group, an alkoxyalkyl group, or the both of them.
The polymer or copolymer (A) can be shown in a following formula (1), for example.
In the formula (1), R1 indicates a hydrogen atom or a methyl group, and X indicates —SO2— or —CO—. R2 and R3 can be the same or different. When there are a plurality of R2 or R3, each R2 and each R3 can be the same or different. R2 and R3 are selected from followings.
That is, a hydrogen atom, a hydroxyl group, an alkyl group, an alkoxy group, a halogen atom, an amino group, a lower dialkylamino group, a carboxyl group, a tert-butoxy group, a tert-butoxycarbonyloxy group, a lower alkoxyalkoxy group, a tetrahydropyranyloxy group, and a tetrahydrofuranyloxy group. However, hydrogen atom is not selected to both R2 and R3 at the same time. Further, in the formula (1), “n” is a natural number equal to or smaller than 4, and “m” is a natural number equal to or smaller than 5.
As for a commercial product used for the i-line antireflection film 10, SWK-T7 LE manufactured by TOKYO OHKA KOGYO Co., Ltd. can be used.
The i-line antireflection film 10 is formed by a coating method, such as a spin coating method, a roll coating method, or a slit coating method, to have a thickness of 0.3 μm to 1.0 μm.
Then, as illustrated in
By considering a selection ratio of the i-line antireflection film 10 at a time of dry etching in a later process and an usage of the photo-resist 11 as a mask material of the first layer 9, the photo-resist 11 is formed by a coating method, such as a spin coating method, a roll coating method, or a slit coating method, to have a thickness of 0.3 μm to 2.0 μm which is equal to or thicker than a thickness of the i-line antireflection film 10.
As illustrated in
As illustrated in
As illustrated in
Then, as illustrated in
Further, as illustrated in
Furthermore, as illustrated in
Although the surface of the first layer 9 is entirely exposed with deep ultra violet light (Deep-UV light), pattern perpendicularity can be protected from blunting due to a diffraction light at a time of proximity exposure by using the second layer 10a as a mask. Further, since the photosensitive resin is exposed providing a contact mask, an alignment error occurring due to the heat expansion difference between the substrate and the photosensitive resin can be reduced when the resist is subjected to patterning.
As illustrated in
As illustrated in
As illustrated in
I-line is the light which has a center wavelength of 365 nm and a full width at half maximum of about 5 nm. When a normal i-line exposure apparatus is used, the apparatus cuts light of a wavelength except i-line among light exposed from a mercury-vapor lump, and irradiates an object with the i-line.
When the cover layer 3 is irradiated with i-line to form the discharge port 4, the second layer 10a absorbs i-line and can suppress deformation of the discharge port 4. Since the light transmitting the cover layer 3 is directly irradiated on the second layer 10a, and the second layer 10a absorbs the light transmitting the cover layer 3 and reflecting at the surface of the substrate 1, i-line reflecting on the surface of the substrate 1 is prevented from being irradiated on the cover layer 3.
As illustrated in
As illustrated in
An exemplary embodiment of the present invention will be described in detail below.
Referring to
Then, in
In
In
In
In
In
In
In
Composition
Epoxy resin: EHPE-3150 (manufactured by DAICEL CHEMICAL INDUSTRIES, LTD) 53% by weight
Cationic photopolymerization initiator: SP-172 (manufactured by Adeka Corporation) 3% by weight
Methyl isobutyl ketone 44% by weight
In
In
In
While the present invention has been described with reference to exemplary embodiments, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. The scope of the following claims is to be accorded the broadest interpretation so as to encompass all modifications, equivalent structures, and functions.
This application claims priority from Japanese Patent Application No. 2009-060683 filed Mar. 13, 2009, which is hereby incorporated by reference herein in its entirety.
Number | Date | Country | Kind |
---|---|---|---|
2009-060683 | Mar 2009 | JP | national |