1. Field of the Invention
The present invention relates to a method for manufacturing a liquid ejecting head used with a liquid ejecting system for ejecting liquid from a liquid discharge nozzle as a liquid droplet.
2. Related Background Art
A liquid ejecting head used with a liquid ejecting system (ink jet system) includes a plurality of liquid discharge nozzles for discharging liquid such as ink, liquid supply paths communicated with the respective liquid discharge nozzles, and discharge energy generating elements (for example, electrical/thermal converting elements) associated with the respective liquid discharge nozzles so that, by applying a drive signal corresponding to discharge information to the discharge energy generating element to afford discharge energy to liquid within the liquid discharge nozzle associated with the discharge energy generating element, the liquid is discharged from a minute discharge port of the liquid discharge nozzle as a flying liquid droplet, thereby effecting the recording.
As liquid discharge heads of this kind and nozzle members therefor, various techniques have been proposed, and various manufacturing method therefor have also been proposed. Now, an example of the conventional liquid discharge head and nozzle member therefor will be described with reference to
The nozzle member 101 is manufactured as follows. That is to say, an inorganic film made of SiO2 is formed on the surface of the silicon wafer constituting the nozzle member 101 by a film forming method such as thermal oxidation or CVD, and a resist material of an organic film is formed on the nozzle surface by a spin-coat method. Then, patterning corresponding to shapes of the nozzles 103 and the through opening 102 is effected, and, thereafter, anisotropical wet etching is effected while immersing the nozzle member 101 into etching liquid such as KOH or TMAH. As a result, the etching grows along a <111> face of the silicon, and, when a silicon wafer having a surface of a <100> face is used, since the <111> face is inclined by 54.7 degrees with respect to the surface, the nozzles 103 and the through opening 102 are formed in shapes as shown in
When the liquid ejecting head is formed by joining or adhering the nozzle member 101 formed in this way to the heater board 105, since there remains a wall portion 110 between the nozzles 103 and the through opening 102 in the nozzle member 101, flow paths for liquid cannot be reserved. To reserve such flow paths, as shown in
In the liquid ejecting head shown in
In the above-mentioned conventional technique, by using the silicon wafer having a surface of a <100> face as the nozzle member, although there are provided advantages that the depth can be adjusted by the configuration of the patterning since the etching grows obliquely, and that the nozzles and the through opening can be formed by a single etching, as shown in
Further, since the shape of each nozzle 103 has a triangular cross-section, as shown in
Furthermore, in the liquid ejecting head in which heaters are used as the discharge energy generating elements, to solve a problem that the force of the bubble for discharging the liquid escapes through the through opening 102, as shown in
Further, there have also been proposed methods for forming nozzles by working material other than silicon, and, according to such methods, although there is provided an advantage that the nozzles can be formed as free configurations by using resin and the like, when the number of nozzles is increased to lengthen the recording head, due to the difference in thermal expansion rates between the nozzle member and the heater board, good adhesion between the nozzle member and the heater board cannot be achieved, which leads to limitation of the length of the liquid ejecting head.
The present invention is made in consideration of the above-mentioned conventional drawbacks, and an object of the present invention is to provide a method for manufacturing a liquid ejecting head, whereby a liquid ejecting head suitable for high density arrangement of nozzles and suitable for lengthening the head can be manufactured, by forming a plurality of nozzles each having a rectangular cross-section, by effecting anisotropical etching on a member in which the liquid discharge nozzles are to be formed.
To achieve the above object, according to the present invention, there is provided a method for manufacturing a liquid ejecting head, in which liquid flow paths are defined by combining an element substrate having a plurality of discharge energy generating elements for applying discharge energy to liquid with a nozzle member having a plurality of liquid discharge nozzle grooves, which method comprises a step for preparing at least one material common to the element substrate as a base material of the nozzle member, a step for forming etching mask layers on a first surface of the base material of the nozzle member in which the nozzle grooves are formed and on a second surface opposite to the first surface, respectively, a step for forming a recessed portion in the second surface of the base material by patterning the mask layer on the second surface of the base material and by effecting etching via the mask layer of the second surface, and a step for forming the nozzle grooves in the base material and for communicating the recessed portion with the nozzle grooves by patterning the mask layer on the first surface of the base material and by effecting etching via the mask layer of the first surface and the mask layer of the second surface.
In the liquid ejecting head manufacturing method according to the present invention, it is preferable that a silicon wafer having a surface of a <110> face be used as the material of the nozzle member.
In the liquid ejecting head manufacturing method according to the present invention, it is preferable that an etching amount t of anisotropical etching for forming the recessed portion satisfies the relationship tw>t>tw−tn when it is assumed that the thickness of the nozzle member (silicon wafer) is tw and the depth of the nozzle groove is tn, and, in the manufacturing method in which the nozzle grooves and a liquid chamber are formed simultaneously by anisotropical etching, it is preferable that an etching amount t of anisotropical etching for forming the liquid supply paths satisfies the relationship tw>t>tw−2×tn when it is assumed that the thickness of the nozzle member (silicon wafer) is tw and the depth of the nozzle groove is tn.
According to the liquid ejecting head manufacturing method of the present invention, high density arrangement of nozzles is permitted, and an elongated liquid ejecting head can easily be manufactured.
Further, an elongated high density liquid ejecting head can stably be manufactured without requiring an increase in the alignment accuracy of patterning.
Furthermore, by forming the nozzle member by using the same silicon as the heater board, distortion due to heat does not occur between the nozzle member and the heater board, with the result good adhesion between the nozzle member and the heater board can be maintained and the liquid ejecting head can be made longer.
The present invention will now be explained in connection with embodiments thereof with reference to the accompanying drawings.
In FIG. 1 and
The through opening 2 and the nozzles 3 are formed to have rectangular cross-sections by effecting anisotropical etching by using the silicon wafer having the surface of the <110> face as a material of the nozzle member 1. These rectangular cross-sections are different from the triangular or trapezoidal cross-sections of the conventional nozzles and through opening. By using the nozzle member 1 in which the nozzles 3 have rectangular cross-sections in this way, since the wall thickness between adjacent nozzles 3 can be reduced, a high density arrangement of nozzles 3 can easily be realized, and, since the nozzles 3 and the through opening 2 are interconnected within the nozzle member 1, it is not required that liquid supply paths be reserved by forming walls on the heater board 5. That is to say, unlike the conventional case, when the nozzle member 1 is closely joined to the heater board 5 having no special flow path members made of polyimide and liquid is supplied from a liquid tank (not shown) into the through opening 2, the nozzles 3 are filled with the liquid by a capillary phenomenon and, when the heater 6 on the heater board 5 is energized under the control of a control circuit (not shown), the liquid is bubbled and is discharged from a discharge port at an end of the nozzle 3.
Next, a method for manufacturing the nozzle member 1 will be fully described.
In general, it is known that, when silicon is subjected to wet etching by using etching liquid such as TMAH or KOH, an anisotropical etching phenomenon in which etching grows along a <111> crystal face occurs. If such wet etching is effected on a silicon wafer having a surface of a <100> face, since the <111> face is inclined by 54.7 degrees with respect to the <100> face, the shapes as described in connection with the conventional technique will be obtained. However, in the case of a silicon wafer having a surface of a <110> face, since the <111> face is then perpendicular to the surface, nozzles having vertical walls as shown in
In this case, however, since the longer the etching time is the greater a depth of a groove (ultimately forming a through hole) is, the depth of the groove cannot be controlled by the mark configuration, unlike the conventional case. That is to say, the nozzles and the through opening cannot be formed by a single etching, and, thus, the patterning of the mask and the etching of the silicon must be effected two times. Although the depth of the nozzle is varied in dependence upon the density of the nozzles, since the nozzle depth is generally 10 μm to several hundreds of μm, for example, if the nozzles are formed first, although the nozzles must be protected by coating resist on the nozzles when the through opening is formed, it is difficult to coat the resist on the nozzles uniformly, whereby a problem regarding the protection of the nozzles arises. On the other hand, if the through opening is formed first, the patterning of the nozzle surface will become very difficult.
Now, manufacturing steps for the nozzle member according to a first embodiment will be explained with reference to
In
Then, resist material (not shown) is coated on the SiO2 film 12 at the nozzle forming surface side, and patterning corresponding to the nozzle configuration is effected by dry etching (FIG. 3E). In this case, as mentioned above, since the nozzle forming surface side is kept flat, the coating of the resist material and the patterning corresponding to the nozzle configuration can be performed easily. Then, by immersing the silicon wafer in anisotropical etching liquid again, the nozzle portion is etched and, at the same time, etching for the holes 2a is continued from the opposite side. As a result, when the nozzle 3 is formed, the hole 2a reaches the nozzle forming surface to form the through opening 2 communicated with the nozzle 3 (FIG. 3F). Lastly, by removing the SiO2 films 11, 12 remaining on both surfaces of the silicon wafer 10, a nozzle member having the nozzle 3 and the through opening 2, as shown in
Next, an alteration of the nozzle member manufacturing steps according to the illustrated embodiment will be explained with reference to
Further, in the first embodiment and the alteration thereof according to the present invention, since the same silicon as the heater board is used as the material of the nozzle member, even when the number of nozzles is increased to make the liquid ejecting head longer, the adhesion (close contact) between the nozzle member and the heater board is maintained and distortion due to heat does not occur.
Furthermore, the nozzle member in the first embodiment and the alteration thereof according to the present invention is also effective when a valve is provided in the nozzle to enhance the discharging efficiency. That is to say, as shown in
Next, a second embodiment of a liquid ejecting head manufacturing method according to the present invention will be explained with reference to
In FIG. 6 and
The through opening 22, nozzles 23 and liquid chamber 24 are formed to have rectangular cross-sections by effecting anisotropical etching by using the silicon wafer having the surface of a <110> face as a material of the nozzle member 21. In general, it is known that, when silicon is subjected to wet etching by using etching liquid such as TMAH or KOH, etching grows along a <111> crystal face. Since the <111> face is perpendicular to the <110> face, nozzles having vertical walls, as shown in
Next, manufacturing steps for the nozzle member according to the second embodiment will be explained with reference to
In
Then, a resist material (not shown) is coated on the SiO2 film 32 at the nozzle forming surface side, and patterning corresponding to configurations of the nozzle 23 and the liquid chamber 24 is effected by dry etching (FIG. 8E). In this case, since the nozzle forming surface side is kept flat, the coating of the resist material and the patterning corresponding to the configurations of the nozzle and the liquid chamber can be performed easily. Then, by immersing the silicon wafer in anisotropical etching liquid again, the nozzle and liquid chamber portions are etched and, at the same time, etching for the holes 22a is continued from the opposite side. As a result, when the nozzle 23 is formed, the hole 22a reaches the nozzle forming surface to form a through opening 22 communicated with the nozzle 23 through the liquid chamber 24 (FIG. 8F). In this case, since the liquid chamber portion does not have a wall such as the wall of the nozzle, the etching speed of the liquid chamber becomes greater than that of the nozzle, and, thus, the depth of the liquid chamber becomes slightly greater than the depth of the nozzle. Here, regarding a relative position of the through opening 22 with respect to the liquid chamber 24, since it is important that the liquid chamber 24 is merely communicated with the through opening 22, so long as the through opening 22 is sufficiently smaller than the dimensions of the liquid chamber 24, the alignment accuracy is not required to be severe. By forming the nozzle 23 and the liquid chamber 24 simultaneously, the length of the nozzle can be reserved and the through opening 22 can surely be communicated with the liquid chamber 24. Further, at an area where the through opening 22 is communicated with the liquid chamber 24, since the etching grows from both sides, the thickness of the silicon that is to remain (so as to prevent the hole 22a from becoming a through opening) in the anisotropical etching step shown in
In this way, in the second embodiment, a problem that the nozzles may not be communicated with the through opening due to mis-alignment caused when the patterning is effected on both surfaces of the silicon wafer to form the nozzles 23 and the through opening 22 respectively, and a problem that the lengths of the nozzles are reduced due to excessive overlap, can be eliminated.
After the nozzles 23, liquid chamber 24 and through opening 22 were formed in this way, by removing the SiO2 films 31, 32 remaining on the respective surfaces of the silicon wafer 30, the nozzle member as shown in
By using the nozzle member manufactured in accordance with the second embodiment, since the wall thickness between adjacent nozzles can be reduced, a high density arrangement of nozzles can easily be realized, and, since the nozzles and the through opening are interconnected within the nozzle member, it is not required that liquid supply paths be reserved by forming walls on the heater board. That is to say, as shown in
Next, an alteration of the nozzle member manufacturing steps according to the illustrated embodiment will be explained with reference to
As mentioned above, also in the second embodiment and the alteration thereof according to the present invention, a high density arrangement of nozzles can be realized, and, since the same silicon as the heater board is used as the material of the nozzle member, even when the number of nozzles is increased to make the liquid ejecting head longer, the adhesion (close contact) between the nozzle member and the heater board is maintained and distortion due to heat does not occur. Further, the nozzle member in the second embodiment and the alteration thereof according to the present invention is also effective when a valve is provided in the nozzle to enhance the discharging efficiency. That is to say, as shown in
As mentioned above, according to the present invention, since vertical nozzle walls can be formed by using silicon as the material of the nozzle member of the liquid ejecting head, an elongated liquid ejecting head having a high density arrangement of nozzles can easily be manufactured.
Further, by manufacturing the nozzle member by using the same silicon material as the heater board, distortion due to heat between the nozzle member and the heater board can be prevented, with the result that close contact between the nozzle member and the heater board can be maintained, thereby providing an elongated liquid ejecting head.
Number | Date | Country | Kind |
---|---|---|---|
2000-389712 | Dec 2000 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
4601777 | Hawkins et al. | Jul 1986 | A |
4638328 | Drake et al. | Jan 1987 | A |
5278585 | Karz et al. | Jan 1994 | A |
5870123 | Lorenze et al. | Feb 1999 | A |
5902492 | Suzuki et al. | May 1999 | A |
6254215 | Hiroki et al. | Jul 2001 | B1 |
6375858 | Makigaki et al. | Apr 2002 | B1 |
Number | Date | Country |
---|---|---|
6-31918 | Feb 1994 | JP |
06171089 | Jun 1994 | JP |
Number | Date | Country | |
---|---|---|---|
20020084245 A1 | Jul 2002 | US |