Hereinafter, preferred exemplary embodiments of the present invention will be described with reference to the drawings.
The first exemplary embodiment of the present invention relates to a method for manufacturing a magnetic recording medium, wherein a starting body of an object to be processed 10 shown in
As shown in
The substrate 12 is made of glass and has a disk-like shape (not shown) with a center hole. Other materials such as Al and Al2O3 may also be used for the substrate 12 provided that they are a non-magnetic material with sufficient rigidity. The soft magnetic layer 16 has a thickness of 50 to 300 nm and is composed of a Fe alloy or a Co alloy. The seed layer 18 has a thickness of 2 to 40 nm and is made of a non-magnetic CoCr-based alloy, Ti, Ru, a layered structure of Ru and Ta, MgO, or the like.
The recording layer 20 has a thickness of 5 to 30 nm and is composed of a CoCr-based alloy such as a CoCrPt alloy, a FePt-based alloy, a layered structure thereof, or a material composed of ferromagnetic particles such as CoPt mixed in an oxide material such as SiO2 in a matrix configuration.
The main mask layer 22 has a thickness of 3 to 50 nm and is composed of C (carbon). The main mask layer 22 can also be made of a hard carbon film, which is sometimes referred to as diamond-like carbon (hereinafter, referred to as “DLC”).
The intermediate mask layer 24 has a thickness of 2 to 10 nm and is composed of Si, Au, SiO2, Ta, TaSi, TiN, Ti, W, Al, Al2O3, Cu, or the like.
The sub-mask layer 26 has a thickness of 2 to 30 nm and is composed of Ni, Cu, Cr, Al, Al2O3, Ta, or the like. It should be appreciated that the sub-mask layer 26 and the intermediate mask layer 24 are made of different materials.
The resin layer 28 has a thickness of 30 to 300 nm and is composed of an acrylic resin or the like.
The magnetic recording medium 30 is a perpendicular recording type discrete track medium having a disk-like shape provided with a center hole. The recording layer 32 has a concavo-convex pattern as shown in
The filler 36 is formed of SiO2 or the like. The protective layer 38 has a thickness of 1 to 5 nm and is formed of the above-mentioned DLC. The lubrication layer 40 has a thickness of 1 to 2 nm and is formed of PFPE (perfluoro polyether).
A method for manufacturing the magnetic recording medium 30 will now be described with reference to the flow chart shown in
First, a starting body of an object to be processed 10 is prepared (S102). The starting body of the object to be processed 10 is obtained by forming the soft magnetic layer 16, the seed layer 18, the recording layer 20 of the continuous film, the main mask layer 22, the intermediate mask layer 24, and the sub-mask layer 26 over the substrate 12 in this order by a sputtering method, and then forming the resin layer 28 thereon by a spin coating method. When forming the DLC as the main mask layer 22, a CVD method is used. In the step for forming the resin layer 28, a liquid resin as a raw material is supplied in the vicinity of the center hole of the substrate 12, and the substrate 12 is rotated so that the liquid resin spreads across the entire surface of the substrate 12. The spread resin is then subjected to a baking process or the like to remove any solvent and is then set to a predetermined hardness.
The resin layer 28 of the starting body of the object to be processed 10 is then processed into a concavo-convex pattern corresponding to the partitioning pattern of the recording elements 32A (S104). Specifically, a concavo-convex pattern corresponding to the partitioning pattern of the recording elements 32A is transferred onto the resin layer 28 as illustrated in
Next, portions of the sub-mask layer 26 at the bottom of each of the concave portions are removed based on the resin layer 28 of the concavo-convex pattern by IBE using a noble gas such as Ar, Kr, Xe, and the like, so that the sub-mask layer 26 is processed into a concavo-convex pattern corresponding to the concavo-convex pattern as shown in
Next, the portions of the resin layer 28 remaining over the sub-mask layer 26 are removed by RIE using the oxygen-containing gas, as shown in
Next, portions of the intermediate mask layer 24 and the main mask layer 22 at the bottom of each of the concave portions are removed as shown in
Preferred combinations of a material for the intermediate mask layer 24, a material for the sub-mask layer 26, the oxygen-containing gas used in the resin layer removing step (S108), and the halogen-containing gas used in the intermediate mask layer processing step (the main mask layer processing step) (S110) are shown in Table 1.
As shown in Table 1, when the intermediate mask layer 24 is made of Si or Au, gases containing either F or Cl or both F and Cl can be used as the halogen-containing gas for the intermediate mask layer processing step (being the main mask layer processing step) (S110).
When the intermediate mask layer 24 is made of SiO2, Ta, TaSi, TiN, Ti, or W, gases containing F can be used as the halogen-containing gas for the intermediate mask layer processing step (being the main mask layer processing step) (S110).
Alternatively, when the intermediate mask layer 24 is made of Al, Al2O3, or Cu, gases containing Cl can be used as the halogen-containing gas for the intermediate mask layer processing step (being the main mask layer processing step) (S110).
Next, portions of the recording layer 20 of the continuous film at the bottom of each of the concave portions are removed by IBE using a noble gas such as Ar or the like based on the main mask layer 22 (S112). Accordingly, the recording layer 20 of the continuous film is partitioned into a plurality of recording elements 32A, thereby forming the recording layer 32 of the concavo-convex pattern, as shown in
Next, the main mask layer 22 remaining over the recording element 32A is completely removed by RIE using a hydrogen-containing gas as shown in
Next, the filler 36 is deposited over the recording layer 32 having the concavo-convex pattern by sputtering or bias sputtering so that the concave portions 34 between the recording elements 32A are filled with the filler 36 (S116).
Next, portions of the filler 36 that exist on upper side (opposite side to the substrate 12) than upper surfaces of the recording elements 32A are removed by IBE using a noble gas such as Ar or the like so that the surfaces of the recording elements 32A and the filler 36 are flattened as shown in
Next, the protective layer 38 is formed over the recording elements 32A and the fillers 36 by a CVD method (S120). The object to be processed 10 is then taken out of the vacuum chamber and dismounted from the holder.
Following that, the lubrication layer 40 is applied over the protective layer 38 by a dipping method (S122). Accordingly, the magnetic recording medium 30, as shown in previous
As described above, the sub-mask layer 26 having corrosion resistance against dry etching using an oxygen-containing gas is provided over the main mask layer 22 composed mainly of carbon, and the intermediate mask layer 24 is further provided between the main mask layer 22 and the sub-mask layer 26. The intermediate mask layer 24 has corrosion resistance against the dry etching using the oxygen-containing gas, and its etching rate is higher for the dry etching using a halogen-containing gas than for the dry etching using the oxygen-containing gas. The resin layer removing step (S108) is conducted between the sub-mask layer processing step (S106) and the intermediate mask layer processing step (being the main mask layer processing step) (S110). The oxygen-containing gas is used in the resin layer removing step (S108) and the halogen-containing gas is used in the intermediate mask layer processing step (being the main mask layer processing step) (S110). Accordingly, the resin layer 28 can be completely removed in the resin layer removing step (S108) while simultaneously protecting the main mask layer 22. As a result, the main mask layer 22 can be processed into a desired pattern with high precision in the intermediate mask layer processing step (being the main mask layer processing step) (S110), thereby contributing to the improvement of processing precision of the recording elements 32A.
Moreover, since an oxygen-containing gas that is highly reactive with the resin layer is used in the resin layer removing step (S108), the resin layer can be removed with greater efficiency.
Furthermore, the main mask layer 22 is mainly composed of carbon, and its etching rate against dry etching using a noble gas is lower than that of the recording layer 20 (32) made of a magnetic material. Therefore, the thickness of the main mask layer 22 can be reduced accordingly, also contributing to the improvement of processing precision of the recording elements 32A.
Moreover, since the recording layer is processed into a concavo-convex pattern by dry etching using a noble gas, the magnetic properties of the recording layer can be prevented from deteriorating.
Furthermore, the main mask layer 22 is mainly composed of carbon, and a portion of the main mask layer 22 remaining over the recording element 32A is removed by dry etching that uses neither an oxygen-containing gas nor a halogen-containing gas but uses a hydrogen-containing gas in the main mask layer removing step (S114). This can also prevent the deterioration of the magnetic properties of the recording layer.
Moreover, since steps from the resin layer processing step (S104) to the protective layer deposition step (S120) are all dry processes, the deterioration of magnetic properties of the recording layer can also be prevented.
Furthermore, the intermediate mask layer processing step (S110) also serves as the main mask layer processing step such that both the intermediate mask layer 24 and the main mask layer 22 are processed into a concavo-convex pattern. Accordingly, production efficiency is improved.
Moreover, the steps from the resin layer processing step (S104) to the protective layer deposition step (S120) are all dry processes. Therefore, compared to a manufacturing method where wet processes and dry processes coexist, handling of the object to be processed 10 by conveyance and the like can be made easier. Production efficiency is improved also in this respect.
In the first exemplary embodiment of the present invention, the sub-mask layer 26 having corrosion resistance against dry etching using an oxygen-containing gas is provided over the main mask layer 22 composed mainly of carbon, and the intermediate mask layer 24 is further provided between the main mask layer 22 and the sub-mask layer 26. The intermediate mask layer 24 has corrosion resistance against the dry etching using the oxygen-containing gas, and its etching rate is higher for dry etching using a halogen-containing gas than for the dry etching using the oxygen-containing gas. The resin layer removing step (S108) is conducted between the sub-mask layer processing step (S106) and the intermediate mask layer processing step (being the main mask layer processing step) (S110), and the oxygen-containing gas is used in the resin layer removing step (S108). The halogen-containing gas is used in the intermediate mask layer processing step (being the main mask layer processing step) (S110). However, as shown in a second exemplary embodiment of the present invention illustrated in
As in the above-described first exemplary embodiment, in the second exemplary embodiment, too, the resin layer 28 can be completely removed in the resin layer processing step (S108) while simultaneously protecting the main mask layer 22. Accordingly, the main mask layer 22 can be processed into a desired pattern with high precision in the intermediate mask layer processing step (being the main mask layer processing step) (S110), thereby contributing to the improvement of processing precision of the recording elements 32A.
Moreover, since a halogen-containing gas that is highly reactive with the resin layer is used in the resin layer removing step (S108), the resin layer can be removed with greater efficiency.
Preferred combinations of a material for the intermediate mask layer 24, a material for the sub-mask layer 26, a first halogen-containing gas used in the resin layer removing step (S108), and a second halogen-containing gas used in the intermediate mask layer processing step (the main mask layer processing step) (S110) are shown in Table 2.
In the above-described first and second exemplary embodiments, the intermediate mask layer processing step (S110) also serves as the main mask layer processing step in which both the main mask layer 22 and the intermediate mask layer 24 are processed. However, the main mask layer processing step and the intermediate mask layer processing step may be separately provided. The main mask layer processing step and the intermediate mask layer processing step may use a common processing gas or different processing gases. In this instance, it should be appreciated that the main mask layer may be processed into a concavo-convex pattern based on the sub-mask layer in the main mask layer processing step. However, in the case where the sub-mask layer disappears, for example, before or during the main mask layer processing step, the main mask layer may be processed into the concavo-convex pattern based on the intermediate mask layer.
Moreover, although, in the above-described first and second exemplary embodiments, the recording layer 20 is fully partitioned during the recording layer processing step (S112), the recording layer 20 may be processed halfway in the direction of thickness such that the recording layer of the concavo-convex pattern is continuous at the bottom of the concave portions.
Moreover, although, in the above-described first and second exemplary embodiment, the soft magnetic layer 16 and the seed layer 18 are provided under the recording layer 20 (32), layer structure under the recording layer 20 (32) may be changed as needed according to the type of the magnetic recording medium. For example, an antiferromagnetic layer or an underlayer may be provided under the soft magnetic layer 16. Either the soft magnetic layer 16 or the seed layer 18 may be omitted. Furthermore, the recording layer 20 (32) may be directly formed on the substrate 12.
In the above-described first and second exemplary embodiment, the magnetic recording medium 30 is a perpendicular recording type discrete track medium in which the recording elements 32A are provided in the form of tracks within a data region. However, the present invention can also be applied to the manufacture of a patterned medium in which recording elements are provided in the form of tracks partitioned in the circumferential direction or a magnetic disk in which recording elements are provided in a spiral form. Furthermore, the present invention can also be applied to the manufacture of a magneto-optical disc such as MO, a recording disk with thermal assistance that uses both magnetism and heat, and magnetic recording media other than those having a disk shape such as magnetic tapes.
The magnetic recording medium 30 was manufactured as described in the first exemplary embodiment. Specifically, the starting body of the object to be processed 10 was prepared (S102).
The substrate 12 had a thickness of 0.6 mm and an outer diameter of 48 mm. The diameter of the center hole was 12 mm. The substrate 12 was made of glass.
The soft magnetic layer 16 had a thickness of 100 nm and was made of a CoZrNb alloy.
The seed layer 18 had a thickness of 30 nm and was made of Ru.
The recording layer 20 (32) had a thickness of 20 nm and was made of a CoCrPt alloy.
The main mask layer 22 had a thickness of 12 nm and was made of C (carbon).
The intermediate mask layer 24 had a thickness of 3 nm and was made of Si.
The sub-mask layer 26 had a thickness of 2 nm and was made of Ni.
The resin layer 28 had a thickness of 70 nm and was made of an acrylic resin. The resin layer 28 was formed by a spin coating method, where the resin was applied onto the substrate 12 that was rotated at a rate of 7,000 rpm for 60 seconds. The thickness of the resin layer 28 was approximately 70 nm for regions other than the periphery of the center hole as mentioned above, but it was approximately 700 nm around the periphery of the center hole.
Next, a concavo-convex pattern corresponding to the concavo-convex pattern of the recording layer 32 was transferred onto the resin layer 28 by bringing the transfer surface of the stamper into contact with the resin layer 28 by an imprinting method. Then, portions of the resin layer 28 at the bottom of each of the concave portions were removed by RIE using an O2 gas, thereby processing the resin layer 28 into the concavo-convex pattern (S104) The width of the convex portion of the line-and-space pattern in the radial direction in the data region was 65 nm. The width of the concave portion in the radial direction was also 65 nm.
Next, the sub-mask layer 26 was processed into a concavo-convex pattern corresponding to the concavo-convex pattern based on the resin layer 28 by IBE using an Ar gas (S106).
Next, portions of the resin layer 28 remaining over the sub-mask layer 26 were removed by RIE using an O2 gas (S108). The etching condition was as follows.
Pressure in the vacuum chamber: 2 Pa
Flow rate of O2 gas: 50 sccm
Power of the plasma source: 2,000 W
Processing time: 90 seconds
It should be noted that any bias voltage was not applied to the object to be processed 10. The resin layer 28 was completely removed, including portions in the periphery of the center hole. Conversely, the sub-mask layer 26 and the intermediate mask layer 24 hardly changed in shape.
Next, the intermediate mask layer 24 and the main mask layer 22 were processed into the concavo-convex pattern based on the sub-mask layer 26 by RIE using a CF4 gas (a halogen-containing gas) in the same vacuum chamber (S110). The etching condition was as follows.
Pressure in the vacuum chamber: 1 Pa
Flow rate of CF4 gas: 50 sccm
Power of the plasma source: 1,000 W
Bias power (applied to the object to be processed 10): 50 W
Processing time: 15 seconds
Next, the recording layer 20 of the continuous film was etched based on the intermediate mask layer 24 and the main mask layer 22 by IBE using an Ar gas (a noble gas), thereby forming the recording layer 32 of the concavo-convex pattern (S112). In this step, the sub-mask layer 26 and the intermediate mask layer 24 were completely removed, and only the main mask layer 22 remained over the recording elements 32A.
Next, portions of the main mask layer 22 remaining over the recording elements 32A were removed by RIE using a NH3 gas (a hydrogen-containing gas) (S114). The etching condition was as follows.
Pressure in the vacuum chamber: 1 Pa
Flow rate of NH3 gas: 50 sccm
Power of the plasma source: 1,000 W
Processing time of the former stage: 15 seconds
Bias power during the former stage (applied to the object to be processed 10): 15 W
Processing time of the latter stage: 30 seconds
Bias power during the latter stage: 0 W
As mentioned above, by conducting the main mask layer removing step in a plurality of stages and controlling the bias power during the last step to be smaller than the bias power of the previous step (zero bias power was applied in the present working example), deterioration of the magnetic characteristics of the recording layer can be prevented.
In contrast to the above Working Example, the intermediate mask layer 24 was not provided between the main mask layer 22 and the sub-mask layer 26. Moreover, the resin layer removing step (S108) was omitted. Other conditions were the same as those in the above Working Example when manufacturing the magnetic recording medium 30.
In contrast to the above Working Example, the intermediate mask layer 24 was not provided between the main mask layer 22 and the sub-mask layer 26. Moreover, in the resin layer removing step (S108), bias power of approximately 50 W was applied to the object to be processed 10 in order to enhance the anisotropy of the etching so that the etching of the main mask layer 22 in the width direction was inhibited. Furthermore, the main mask layer 22 was processed into the concavo-convex pattern based on the sub-mask layer 26 in the resin layer removing step (S108). Therefore, the intermediate mask layer processing step (the main mask layer processing step) (S110) was not conducted. Other conditions were the same as those in the above Working Example when manufacturing the magnetic recording medium 30.
Number | Date | Country | Kind |
---|---|---|---|
2006-267528 | Sep 2006 | JP | national |