The subject matter herein generally relates to metal injection molding (MIM) field, especially to a metal injection molding method for manufacturing metal products having irregular shapes.
Metal powder injection molding is an industrial technology to prepare metal products. However, some products have special structures, such as an inverted buckle structure, such product is not conducive to demolding in the injection molding process. Large products may have special structures also difficult to mold. The above-mentioned disadvantages need to be overcome.
Implementations of the present technology will now be described, by way of example only, with reference to the attached figures.
It will be appreciated that for simplicity and clarity of illustration, where appropriate, reference numerals have been repeated among the different figures to indicate corresponding or analogous elements. In addition, numerous specific details are set forth in order to provide a thorough understanding of the embodiments described herein. However, it will be understood by those of ordinary skill in the art that the embodiments described herein can be practiced without these specific details. In other instances, methods, procedures, and components have not been described in detail so as not to obscure the related relevant feature being described. Also, the description is not to be considered as limiting the scope of the embodiments described herein. The drawings are not necessarily to scale, and the proportions of certain parts may be exaggerated to illustrate details and features of the present disclosure better. The disclosure is illustrated by way of example and not by way of limitation in the figures of the accompanying drawings, in which like references indicate similar elements. It should be noted that references to “an” or “one” embodiment in this disclosure are not necessarily to the same embodiment, and such references mean “at least one.”
Several definitions that apply throughout this disclosure will now be presented.
The term “substantially” is defined to be essentially conforming to the particular dimension, shape, or other feature that the term modifies, such that the component need not be exact. For example, “substantially cylindrical” means that the object resembles a cylinder, but can have one or more deviations from a true cylinder. The term “comprising,” when utilized, means “including, but not necessarily limited to”; it specifically indicates open-ended inclusion or membership in the so-described combination, group, series, and the like. The references “a plurality of” and “a number of” mean “at least two.”
At block 301, as shown in
The binding agent may be a wax based binder or a plastic binder.
At block 302, the feed-mix is heated to be in a plastic state, and the feed-mix is injected in different mold cavities of injection molds to form a plurality of blanks. Structure of the blanks may be same with each other or may be different. Each blank undergoes a degreasing process and a sintering process successively to from a workpiece. The plurality of blanks may be formed by powder of same composition or formed by powder of different components. That is, if the plurality of blanks comprises two blanks, and the two blanks named as a first blank and a second blank. The first blank may be has a same component and a same component contents to the second blank. The first blank may be has a same component and a different component contents to the second blank. The first blank may be has a different component to the second blank.
At block 303, the blanks are degreased to remove the binding agent, and the plurality of degreased blanks are sintered to form workpieces, respectively. Each workpiece is one part of the final metal product having irregular shapes. In the embodiment, the plurality of workpieces are having same component and same component contents. In other embodiment, the plurality of workpieces may have same component with same component composition contents, or have same component with different component contents, or have different components.
At block 304, a substrate is provided. The substrate is also one part of the final metal product having irregular shapes and configured to support the plurality of the workpieces. The workpieces are disposed on the substrate according to a required appearance of the metal product having irregular shapes to form a preform. Component of the substrate is different from a component of the workpiece. A material of the substrate is metal formed by a forging method or ceramic. A process method to form the substrate is different from a process method to form the workpiece. The substrate 20 has a better compactness than the workpieces. The substrate is may be formed by a forging method.
At block 305, the preform is bonded to ensure that each workpiece joints firmly with the substrate, and the final metal product having irregular shapes is obtained. By a heating process, powder particles in the workpiece and powder in the substrate contact each other, and thereby, the workpieces and the substrate are strongly bonded.
The bonding method is select from high temperature heat welding, laser welding, or resistance welding. If using high temperature heat welding method, it is necessary to apply flux on jointing surfaces between the workpieces and the substrate and jointing surfaces between adjacent workpieces.
Each of the workpiece 10 includes a jointing surface 12 and a jointing surface 14. The substrate 20 includes a jointing surface 22. When the workpieces 10 are placed on the substrate 20, the workpieces 10 are arranged side by side, and the jointing surface 12 bonds with the jointing surface 22 of the substrate 20. The second jointing surface 14 of one workpiece 10 bonds with the jointing surface 14 of an adjacent workpiece 10.
In
As shown in
The supporting pillar 44 is symmetrical about the pedestal 42, the supporting pillar 44 can be cylindrical or prismatic in shape. The first jointing surface 120 includes an outside surface 340 of the side wall 34 and a bottom surface 342 perpendicularly connected with the outside surface 340. The outer side surface 340 may be an arc or a plane. The third jointing surface 220 includes a side surface 440 of the supporting pillar 44 and a top surface 442 surrounding the supporting pillar 44. The upper surface 442 is perpendicular to the side surface 440. The side surface 440 can be cylindrical or flat.
The embodiments shown and described above are only examples. Therefore, many commonly-known features and details are neither shown nor described. Even though numerous characteristics and advantages of the present technology have been set forth in the foregoing description, together with details of the structure and function of the present disclosure, the disclosure is illustrative only, and changes may be made in the detail, including in matters of shape, size, and arrangement of the parts within the principles of the present disclosure, up to and including the full extent established by the broad general meaning of the terms used in the claims. It will, therefore, be appreciated that the embodiments described above may be modified within the scope of the claims.
Number | Date | Country | Kind |
---|---|---|---|
201711449999.8 | Dec 2017 | CN | national |