The invention relates to a method for manufacturing a thin film, in which method a substrate is dipped in a solution that dries up forming a layer on the surface of the substrate. The invention also relates to a thin film.
Thin films of the type referred to above are currently known for example in connection with dielectric mirrors, which are used in different applications to reflect light. Examples of such applications include the measurement of different properties of solutions, such as their pH, or the measurement of the concentration of different metal ions in a solution, these properties being measured by utilizing the reflection of light.
Thin films for the above uses may be advantageously made of a solution synthesized in a sol-gel process, which is described in greater detail for example in Sol-Gel Science, The Physics and Chemistry of Sol-Gel Processing, Academic Press, Inc. 1990.
In this process, thin films are manufactured by dipping a substrate, such as a glass plate or the like, in a solution of sol-gel, which dries up forming a layer onto the substrate. Layer thickness is a vital factor in measurement optics. The thickness of the film is controlled by means of viscosity and dipping rate. The effect of the dipping rate depends on the structure of the solution: when the structure of the solution is polymeric, a slower dipping rate produces a thinner film. If the solution is of a particulate structure, the layer becomes thinner as the dipping rate increases.
The above method of manufacturing thin films and the use of thin films in various applications is also described in Finnish patent application 981424 (U.S. Pat. No. 6,208,423).
A problem with the prior art is that in practise it is very laborious to find precisely the right dipping rate to produce exactly the right film thickness, for example, for a particular measurement. It should be pointed out that films used for measurement often consist of multiple layers and thus the number of different combinations becomes significantly high. Suitable film thickness can naturally be found by testing, but in practice this method is too laborious and slow.
It is an object of the invention to provide a method for manufacturing thin film and a thin film that allow the prior art shortcomings to be eliminated. This is achieved by a method and thin film of the invention. The method of the invention comprises: changing the position of the substrate after the first dipping and before the next dipping such that the next dipping takes place in a direction which is at an angle to the direction of the previous dipping, and changing the rate of dipping of the substrate in the solution as a function of the substrate position. The thin film of the invention, in turn, comprises: a layer thickness which is arranged to change in a particular direction on each layer, the thickness being arranged to change in each layer in a direction which is at an angle to the direction of change of the thickness in the next layer.
One of the major advantages of the invention is that it allows one and the same film to be provided with a plural number of thicknesses by applying a small number of dippings. Compared with the prior art, this reduces essentially the number of operations to be carried out in the manufacture of films, the related costs decreasing accordingly. Another advantage of the invention is that it is simple and thus economical to implement and use.
In the following, the invention will be described in greater detail and with reference to the preferred embodiments illustrated in the accompanying drawings, in which
As disclosed above, thin films are manufactured by dipping a substrate in a solution, whereby a layer is formed on the surface of the substrate. Since the dipping is computer-controlled and the arrangement comprises equipment for precise determining of the substrate position, it is possible to vary the dipping rate as a function of distance. By changing the dipping rate stepwise as a function of position, for example, as shown in
One of the starting points of the invention is that the substrate is dipped, as stated above, in a solution by applying for example a stepwise changing dipping rate, which produces a film having a thickness that increases in the dipping direction. This direction is shown in
As a result of the above dipping phases, a chequered thin film is obtained in which layer thicknesses vary stepwise and each square has a different layer thickness combination, as shown in FIG. 2. In
The basic idea of the invention is that it allows one and the same substrate to be provided with different thickness combinations, which eliminates the need to manufacture a great number of films of different thicknesses. A film thickness appropriate for a specific purpose may be selected from the film of the invention for later use in a real measurement operation, for example. The thickness may be selected, for example, visually or by using suitable calculation methods to determine the thickness.
A film manufactured as described above can be used in connection with the solution disclosed in the Finnish Patent Application 981424 (U.S. Pat. No. 6,208,423), for example.
The invention may be varied in many ways.
On the basis of
The above described examples of the embodiments of the invention are not meant to restrict the invention in any way, but the invention may be freely modified within the claims. Consequently, it is obvious that the thin film of the invention, or its details, do not necessarily need to be implemented exactly as illustrated in the Figures, but other solutions are also possible. For example, the invention is not in any way limited to an angle of substantially 90 degrees between the dipping directions, although in
Number | Date | Country | Kind |
---|---|---|---|
20012304 | Nov 2001 | FI | national |
Number | Name | Date | Kind |
---|---|---|---|
4661428 | Ishida | Apr 1987 | A |
4775820 | Eguchi et al. | Oct 1988 | A |
5405710 | Dodabalapur et al. | Apr 1995 | A |
5854139 | Aratani et al. | Dec 1998 | A |
6208423 | Voipio et al. | Mar 2001 | B1 |
6495456 | Kanoh et al. | Dec 2002 | B1 |
6607981 | Takahashi et al. | Aug 2003 | B1 |
20010046107 | Irie et al. | Nov 2001 | A1 |
20020004180 | Hotta et al. | Jan 2002 | A1 |
Number | Date | Country |
---|---|---|
61-022349 | Jan 1986 | JP |
03-142403 | Jun 1991 | JP |
05-334721 | Dec 1993 | JP |
Number | Date | Country | |
---|---|---|---|
20030099778 A1 | May 2003 | US |