The present invention relates to a method for modeling a magnetic tunnel junction with spin-polarized current writing.
Magnetic Tunnel Junctions (MTJs) are the basic components of the memories referred to as magnetic memories or MRAM, acronym for “Magnetic Random Access Memory”. Currently, MTJs with spin-polarized current writing, also known as CIMS, acronym for “Current Induced Magnetic Switching”, allow improved performances to be obtained with regard to integration density and power consumption.
The memory effect of these components notably uses the spin of the electrons as an additional degree of freedom with respect to conventional electronics on silicon which only use the charge of the electrons. The spin is the magnetic moment of an electron, and it can take two states: parallel to or opposing the ambient magnetic field.
The spin has a significant influence on the transport properties in ferromagnetic (FM) materials. This effect is notably responsible for giant magnetoresistance phenomena used in spin-valves and for the tunneling magnetoresistance (TMR) used in magnetic tunnel junctions (MTJs). MTJs are nanostructures formed from two ferromagnetic layers separated by a layer of oxide. In this configuration, the resistance of the stack depends on the relative magnetization of the two FerroMagnetic layers. This is the tunneling magnetoresistance (TMR) effect. Usually, the magnetization of one of the layers, known as Hard Layer, is fixed and serves as a reference. The stability of this layer may be ensured by its shape or by exchange energy with an Anti-FerroMagnetic layer. The magnetization of the other layer is controllable. The value of the resistance, which depends on the angle between the magnetization of the free layer and of the reference layer, then codes the information contained in the junction.
Reading the information then consists in measuring the resistance of the junction. Writing in a junction consists in modifying the magnetic orientation of the soft layer in order to change the value of resistance of the stack. This action can be carried out in various ways, corresponding to various generations of MTJ, such as the following generations: FIMS for “Field Induced Magnetic Switching”, TAS for “Thermally-Assisted Switching” or CIMS for “Current-Induced Magnetic Switching”.
All these components, and particularly those of the third generation CIMS, are complex to design owing to the complex behaviors to be studied which depend on multiple physical, electrical or environmental factors. One means of study and industrial design, which is reliable and reproducible, is simulation. Several methods allow the physical behavior of these new components to be simulated. In order to simulate the behavior of such components within electronic circuits containing other components, equivalent electrical models must be used which will be able to be used in standard electrical simulators of the SPICE type.
For this purpose, the invention provides an equivalent electrical circuit allowing a component, notably of the CIMS MTJ type, whose parameters are known, to be easily simulated by means of an electrical simulator as would be carried out for any other conventional electronic component. The MTJs thus described can be inserted into circuits containing other components in order to be able to simulate complex architectures containing the magnetic components and, as the case may be, conventional microelectronics components. The model is furthermore controllable. Thus, the physical laws can easily be changed or made more precise as a function of the development of the physical models of MTJs, without modifying the equivalent circuit diagram. In addition, the parameters of the model can be described outside of the software code, allowing a user or a designer to input his own MTJ parameters according to his own characterizations.
The subject of the invention is therefore a method for modeling a magnetic tunnel junction with spin-polarized current writing, said junction comprising a stack of at least two magnetic layers separated by an insulating layer, a first magnetic layer and a second magnetic layer, the magnetization M of the first layer being described by a uniform magnetic moment (mx, my, mz), the dynamic behavior of the junction being modeled by a equivalent electrical circuit comprising at least two coupled parts:
The first layer is for example a soft magnetic layer, with controllable magnetization, and the second layer is for example a hard magnetic layer, with fixed magnetization.
In one particular embodiment, the first part comprises, in parallel, a capacitor of constant value and a variable resistance depending on the three voltages Vx, Vy, Vss representing the magnetic moment of the first layer, for example the soft layer.
Each circuit of the second part comprises for example, in parallel, two current sources, a capacitor and a variable resistance, a first source of current being a function of the voltages in the other two dimensions, a second source of current being a function of the three voltages Vx, Vy, Vss and of the voltage Vss across the terminals of the stack.
Thus, the first circuit through which a current Ix flows comprises for example, in parallel:
The voltages Vx, Vy, Vz are respectively the voltages representative of the dimensions mx, my, mz, and Vss, the voltage across the terminals of the stack, the currents IxxST, IyyST, IzzST depending on the voltage Vss.
Advantageously, the electrical circuit may be coupled with an equivalent circuit modeling the heat transfers within the device, each layer being modeled by a thermal resistance and a heat capacity.
Each layer of the stack being represented by an additional node, the capacitances and the resistances are for example connected in series, the capacitances being connected in parallel to a current source representing the heat flow.
Other features and advantages of the invention will become apparent with the aid of the description that follows, presented with regard to the appended drawings which show:
In FM materials, there exists a magneto-crystalline anisotropy due to the interactions between the magnetic moment and the crystal lattice. This results in a direction referred to as easy magnetization direction in which the magnetization naturally aligns in the absence of external forces. To this crystalline anisotropy is added a shape anisotropy in this case dependant on the shape of the junction. For example, if a junction of oval shape is used, the shape anisotropy tends to align the magnetization along the longest axis of the junction. If the magneto-crystalline easy magnetization axis is oriented in this same direction, the effects are added and a high stability of the junction is thus obtained.
Reading the information then consists in measuring the resistance of the junction. This reading operation can be effected by biasing the junction at a given voltage and by measuring the resulting current, for example by an amplifier circuit which regenerates the current in the form of a logic level corresponding to the stored binary information.
Writing in a junction consists in modifying the magnetic orientation of the soft layer 1 so as to change the resistance value of the stack 1, 2, 3. This action may be carried out in various ways, corresponding to various generations of MTJ:
In order to be able to be simulated in an electrical simulator, a component is notably described in the form of a matrix known as a Jacobian matrix. For certain simulators, a component containing n nodes is described by its Jacobian matrix. A vector I=[I1, I2 . . . In] and a vector V=[V1, V2 . . . Vn] respectively describe the values of the currents entering and of the voltages present on each node k of the component. Each current Ik has a static contribution ik and a dynamic contribution
qk being the electric charge present on the node. The Jacobian matrix of the component is the sum of its conductance matrix G and of its capacitance matrix. An element of the conductance matrix Gi,j is defined by the following equation:
ii, Vj being respectively the static current at a point i and the voltage at a point j.
An element of the capacitance matrix Ci,j is defined by the following equation:
qi, Vj being respectively the static charge at a point i and the voltage at a point j.
The modeling of the component leads to an equivalent electrical circuit being defined for it then its Jacobian matrix being described which will then be used by a simulator in order to carry out the simulations in a continuous, transient or alternating mode, for example. The definition of an equivalent circuit is therefore an initial step that is necessary for the simulation.
The invention provides an equivalent electrical model, notably for MTJs of the CIMS type. This modeling is based on the physical models of MTJs. For these models, it is assumed that the magnetization of a ferromagnetic layer may be described by a single uniform magnetic moment.
In a crystal lattice, there exists a favored direction for the magnetization, referred to as easy axis and denoted {right arrow over (e)}y in the following. This direction represents a stable position that the magnetization takes in the absence of external forces. This phenomenon is due to the interaction between the magnetic moment and the crystal lattice which results in a magneto-crystalline anisotropy energy and an equivalent magneto-crystalline anisotropy field given in the following relationships:
where Ek is the magneto-crystalline anisotropy energy, Ku is the uniaxial anisotropy constant, θmsl is the angle between the magnetization and the easy axis {right arrow over (e)}y, {right arrow over (H)}k is the magneto-crystalline anisotropy field, μ0 is the magnetic permeability of free-space, Ms is the value of the saturation magnetization and my is the coordinate along the easy axis of the normalized magnetization {right arrow over (m)} such that {right arrow over (M)}=Ms{right arrow over (m)}.
In a ferromagnetic material, the finite size of a sample and the accumulations of charges are responsible for the appearance of a demagnetizing field {right arrow over (H)}d. The expression for this field and for the corresponding energy Ed are given in the following relationship:
The Zeeman energy represents the energy of a magnetization {right arrow over (M)} in an applied magnetic field {right arrow over (H)}a. This energy Ez is given by the following relationship:
E
z=−μ0{right arrow over (H)}a·{right arrow over (M)}−μ0HaMs cos(θ) (3)
where θ is the angle between the vectors {right arrow over (H)}a and {right arrow over (M)}.
The tunneling magnetoresistance TMR is the relative variation in resistance between the states of parallel P and antiparallel AP magnetization, defined by the following relationship (4). The relative variation in resistance R(θ) as a function of the angle θ between the magnetizations of the hard and soft layers of the stack is given by the following relationship (5). The variation in conductance G(θ) is then given by the relationship (6). It should be noted that there exist several possible models for describing the variation in conductance of the stack as a function of the magnetic state. However, this does not change anything for the structure of an equivalent circuit according to the invention which will be described in the following. The following equations (4), (5), (6) are therefore given by way of example:
Gp being the value of the parallel conductance.
This value can be modeled according to various models. The Simmons model gives a constant value for the parallel conductance, valid for a low bias voltage. Its value is given by the following equation:
where
e being the electrical charge on a electron, me its mass, h Planck's constant and Φ the height of the potential barrier at the interface.
The Brinkmann, Dynes and Rowell model gives the variation of the parallel conductance as a function of the bias voltage Vss, defined according to the following relationship:
G
P(Vss)=GP
where
dΦ being the asymmetry of the potential barrier and tox being the thickness of the oxide layer 3.
The TMR also depends on the bias voltage according to the following equation:
where TMR0 is the value of the TMR for low bias voltages and Vh is defined by
The final expression for the conductance G as a function of the angle θ and of the bias voltage Vss is given by the following equation:
The dynamic behavior of a magnetization {right arrow over (M)} subjected to an effective magnetic field {right arrow over (H)}eff, sum of the applied field, the magneto-crystalline anisotropy field and the shape anisotropy field, is described by the Landau-Liftschitz-Gilbert (LLG) equation hereinbelow:
where
is a gyroscopic factor, g being the Lande factor close to 2 for an electron, and α is the damping term. This equation (11) presents the Gilbert form of the LLG equation.
Another formulation, called the Landau-Liftschitz form is equivalent; it is given by the equation hereinbelow:
ΓST=γμ0aJ(θ)Iss{right arrow over (m)}X({right arrow over (m)}X{right arrow over (p)}) (13)
with
{right arrow over (p)} is a unitary vector whose direction is that of the magnetization of the hard layer used to polarize the current. Iss is the current flowing through the stack from the hard layer 2 toward the soft layer 1, tsl is the thickness of the soft layer and P is the spin polarization of each of the magnetic layers 1, 2. The expression for g as a function of the angle θ can change according to the models without changing the equivalent circuit. The spin torque term 23 acts as a torque which, depending on the direction of the current, may add to or oppose the damping term 22. If this torque opposes the damping, as illustrated in
The tunneling conductance also varies as a function of temperature. The variation of the conductance for a low bias voltage as a function of the temperature T is given by the following relationship:
where
k being Boltzmann's constant and G00 the conductance at low temperature and low bias voltage, the other parameters having been previously defined.
To this conductance depending on the spin, called elastic conductance, must be added the inelastic conductance independent of the spin, such that: G(V,T)=Gelastic(V,T)+Ginelastic(V,T) with Ginelastic(V,T)=τNTβ(N)N is the number of states that an electron occupies during its passage across the tunnel barrier,
and τN is a parameter proportional to the density and to the radius of the localized states involved in the barrier.
As far as the polarization P is concerned, this varies as a function of the temperature T according to the following relationship:
where P0 is the polarization at low temperature and B a parameter essentially depending on the material and on the thickness of the electrodes. Starting from the previous equations, it is possible to calculate the expressions for the various parameters, notably the conductances in the P state and in the AP state, the TMR, the saturation magnetization Ms, as a function of temperature.
The propagation of heat in an isotropic and homogeneous material, along an axis x and as a function of time, is described by a conventional equation:
c being the heat capacity of the material, ρ its density and λth the specific thermal conductivity. The equation (16) is valid for a given material. It is notably valid for each layer 1, 2, 3 of the stack but with thermal parameters specific to each layer.
The invention provides an electrical model equivalent to the physical models previously described. In this model, the physical quantities are all described by image voltages and currents. Thus, for example, the three coordinates of the magnetic moment, mx, my, mz are represented by voltages Vx, Vy, Vz. The equivalent electrical model contains two external nodes representing the ends of the stack 1, 2, 3 and three internal nodes representing the coordinates of the magnetic moment. The circuits are composed of capacitors, resistors or generators, of voltage or of current, whose values could be voltage-controlled. This effect of voltage on the value of some components of the circuit corresponds to the dependencies of the parameters as a function of the quantities involved in the description of the MTJ of the CIMS type. Where several models are possible for describing a dependency, only the expression for one of the controlled components is modified, but the equivalent circuit diagram remains the same.
An equivalent electrical circuit according to the invention is a generic approach for describing a circuit. Such an equivalent circuit allows a component whose parameters are known to easily be simulated using an electrical simulator exactly as would be done for any other electronic component. The elements of the voltage-controlled circuit represent the effect of certain quantities on the parameters of the circuit. The expression of these components as a function of the voltage can easily be modified according to the physical model chosen for the description of the component. The invention therefore allows a very controllable approach since the physical laws are described by the expression of the values of the components and can easily be changed or rendered more precise according to the development of the physical models of MTJs, without modifying the equivalent circuit diagram.
where ∈0, ∈R are the free-space dielectric permittivity and the relative permittivity of the oxide layer 2, tox being, as previously, the thickness of this layer 2. It should be noted that in the circuit diagram in
The dynamic behavior of the magnetization of the soft layer is described by the LLG equation with the spin torque term according to the relationship (17) hereinbelow:
In this relationship, the spin torque term ΓsT from the relationship (13) is to be added to the Gilbert form of the LLG equation described by the relationship (11). Other approaches are possible, such as for example adding this spin torque term to the Landau-Liftschitz form of the relationship (12). It is also possible to add a further term referred to as “field-like term”. In this case again, the equivalent circuit is not changed but only the value of its components.
If the equation (17) is projected onto the three space axes, three scalar differential equations are obtained of the same type as the equation (18) hereinbelow, for example:
This equation (18) represents the projection of the LLG equation onto the axis {right arrow over (e)}x, carrying the component mx of the magnetic moment, perpendicular to the easy axis {right arrow over (e)}y previously discussed for the relationship (1). θmsl is the angle between the magnetization and the easy axis {right arrow over (e)}y and θmhl is the angle between the magnetization and the axis {right arrow over (e)}x.
The following equivalent electrical equation (19) is then obtained:
where:
Vx, Vy et Vz are of the voltages representing, respectively, mx, my and mz. Vss is the voltage across the terminals S0, S1 of the stack 1, 2, 3. The capacitance Cx is for example constant and equal to 1 farad. Gxx a voltage-controlled conductance, Ixx and IxxST are voltage-controlled current sources, IxxST notably depending on the voltage across the terminals of the stack Vss, thus representing the influence of the current flowing through the stack (and hence of the voltage across its terminals) on the coordinates of the magnetic moment. Equations similar to the equation (19) are obtained for the other axes {right arrow over (e)}y and {right arrow over (e)}z. Cx, Gxx, Ixx, IxxST are then respectively replaced by Cy, Gyy, Iyy, IyyST and Cz, Gzz, Izz, IzzST, the indices of the other parameters in the equations being obtained by circular permutation over x, y, z, and lastly Cy=1 and Cz=1.
The equivalent circuit in
The Jacobian matrix of this equivalent circuit is given by the following table:
−Gss
−Gss
−Gsx
−Gsy
−Gxs
−Gys
−Gzs
This matrix is obtained by deriving the currents entering each node of the circuit with respect to the voltages present on each node. Gss represents the conductance of the stack, Gxx, Gxy, Gxz, Gyx, Gyy, Gyz, Gzx and Gzz represent the behavior in three dimensions of the magnetization of the soft layer, Gs,x, and Gsy the influence of the coordinates of the magnetic moment on the resistance of the stack and Gxs, Gys and Gzs the spin torque effect, in other words the effect of the current flowing across the junction on the magnetic state.
More precisely, the model in
A first part 41 similar to the circuit in
This part 41 models the effect of tunneling magnetoresistance depending on the magnetization.
A second part 42, called magnetic moment, represents the behavior of the magnetic moment. This part contains three circuits 43, 44, 45 representing the three coordinates of the magnetic moment, represented by the three voltages Vx, Vy, Vz. These three voltages depend on the other voltages, as regards the dynamic behavior of the moment in three dimensions, and on the voltage across the terminals of the stack S0, S1, hence on the current Iss flowing through it, thus modeling the effect of spin torque, in other words the torque exerted by this polarized current on the magnetization of the soft layer.
Each circuit 43, 44, 45 comprises, in parallel, two current sources, a capacitor and a variable resistance. Thus, the first circuit 43, model along the axis {right arrow over (e)}x, through which a current Ix flows, comprises, in parallel:
Similarly, the second circuit 44, model along the axe {right arrow over (e)}y, through which a current Iy flows, comprises, in parallel:
Lastly, the third circuit 45, model along the axis {right arrow over (e)}z, through which a current Iz flows, comprises, in parallel:
The currents IxxST, IyyST, IzzST depend on the voltage Vss of the electrical part representing the spin torque effect previously described.
Advantageously, this model is generic and the expression of the voltage-controlled components can be adapted to represent various models. This model is furthermore compatible with electrical simulators. Only the way of describing the circuit changes from one simulator to another, or from one description language to another.
If a line is considered such that L=G=0, an equation similar to that of the heat equation where the capacitance C corresponds to the heat conductivity c, the resistance R corresponds to the quantity
the voltage U, V corresponds to the temperature T, and the current i corresponds to the heat flux p. The equivalent circuit diagram is illustrated in
It is equally possible to use a single RC circuit with a single additional node and to evaluate the values of the resistance R and of the capacitance C by characterization of the stack.
It is also possible to act on the two magnetic layers 1, 2 of the stack. In the spin torque approach, one layer is considered as trapped and serves as a polarizer for the reference current. The other layer contains the useful signal. Interchanging the roles of the two layers may be envisioned, thus creating two configurations of the junction. The effect of the spin-polarized current on the magnetic state would then be opposite between these two configurations. From a software point of view, this change could easily be carried out by changing the sign of the spin torque term ΓST, IxxST, IyyST, IzzST in the equivalent circuit according to the desired configuration, still without changing the structure of the circuit. In this case, the value of the polarization {right arrow over (p)} would no longer be a global constant, but could change during the operation while remaining however fixed as long as the system remains in a given configuration.
Number | Date | Country | Kind |
---|---|---|---|
07 09049 | Dec 2007 | FR | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2008/067677 | 12/16/2008 | WO | 00 | 11/20/2010 |