Method for Modeling a Magnetic Tunnel Junction with Spin-Polarized Current Writing

Information

  • Patent Application
  • 20110055794
  • Publication Number
    20110055794
  • Date Filed
    December 16, 2008
    16 years ago
  • Date Published
    March 03, 2011
    13 years ago
Abstract
The junction comprising a stack of at least two magnetic layers, a first layer, for example a soft magnetic layer with controllable magnetization, and a second layer, for example a hard magnetic layer with fixed magnetization, the magnetization of the soft layer being described by a uniform magnetic moment, the dynamic behavior of the junction being modeled by an equivalent electrical circuit comprising at least two coupled parts: a first part representing the stack of the layers, through which a current flows corresponding to the polarized current flowing through said layers whose resistance across its terminals depends on three voltages representing the three dimensions of the magnetic moment along three axes, modeling the tunnel effect; a second part representing the behavior of the magnetic moment, comprising three circuits each representing a dimension of the magnetic moment by the three voltages, each of the three voltages depending on the voltages in the other dimensions and on the voltage across the terminals of the stack, modeling the torque effect exerted by the polarized current on the magnetization of the soft layer.
Description

The present invention relates to a method for modeling a magnetic tunnel junction with spin-polarized current writing.


Magnetic Tunnel Junctions (MTJs) are the basic components of the memories referred to as magnetic memories or MRAM, acronym for “Magnetic Random Access Memory”. Currently, MTJs with spin-polarized current writing, also known as CIMS, acronym for “Current Induced Magnetic Switching”, allow improved performances to be obtained with regard to integration density and power consumption.


The memory effect of these components notably uses the spin of the electrons as an additional degree of freedom with respect to conventional electronics on silicon which only use the charge of the electrons. The spin is the magnetic moment of an electron, and it can take two states: parallel to or opposing the ambient magnetic field.


The spin has a significant influence on the transport properties in ferromagnetic (FM) materials. This effect is notably responsible for giant magnetoresistance phenomena used in spin-valves and for the tunneling magnetoresistance (TMR) used in magnetic tunnel junctions (MTJs). MTJs are nanostructures formed from two ferromagnetic layers separated by a layer of oxide. In this configuration, the resistance of the stack depends on the relative magnetization of the two FerroMagnetic layers. This is the tunneling magnetoresistance (TMR) effect. Usually, the magnetization of one of the layers, known as Hard Layer, is fixed and serves as a reference. The stability of this layer may be ensured by its shape or by exchange energy with an Anti-FerroMagnetic layer. The magnetization of the other layer is controllable. The value of the resistance, which depends on the angle between the magnetization of the free layer and of the reference layer, then codes the information contained in the junction.


Reading the information then consists in measuring the resistance of the junction. Writing in a junction consists in modifying the magnetic orientation of the soft layer in order to change the value of resistance of the stack. This action can be carried out in various ways, corresponding to various generations of MTJ, such as the following generations: FIMS for “Field Induced Magnetic Switching”, TAS for “Thermally-Assisted Switching” or CIMS for “Current-Induced Magnetic Switching”.


All these components, and particularly those of the third generation CIMS, are complex to design owing to the complex behaviors to be studied which depend on multiple physical, electrical or environmental factors. One means of study and industrial design, which is reliable and reproducible, is simulation. Several methods allow the physical behavior of these new components to be simulated. In order to simulate the behavior of such components within electronic circuits containing other components, equivalent electrical models must be used which will be able to be used in standard electrical simulators of the SPICE type.


For this purpose, the invention provides an equivalent electrical circuit allowing a component, notably of the CIMS MTJ type, whose parameters are known, to be easily simulated by means of an electrical simulator as would be carried out for any other conventional electronic component. The MTJs thus described can be inserted into circuits containing other components in order to be able to simulate complex architectures containing the magnetic components and, as the case may be, conventional microelectronics components. The model is furthermore controllable. Thus, the physical laws can easily be changed or made more precise as a function of the development of the physical models of MTJs, without modifying the equivalent circuit diagram. In addition, the parameters of the model can be described outside of the software code, allowing a user or a designer to input his own MTJ parameters according to his own characterizations.


The subject of the invention is therefore a method for modeling a magnetic tunnel junction with spin-polarized current writing, said junction comprising a stack of at least two magnetic layers separated by an insulating layer, a first magnetic layer and a second magnetic layer, the magnetization M of the first layer being described by a uniform magnetic moment (mx, my, mz), the dynamic behavior of the junction being modeled by a equivalent electrical circuit comprising at least two coupled parts:

    • a first part representing the stack of the layers, through which a current Iss flows corresponding to the polarized current flowing through said layers, whose resistance across its terminals depends on three voltages Vx, Vy, Vz representing the three dimensions of the magnetic moment along three axes {right arrow over (e)}x, {right arrow over (e)}y, {right arrow over (e)}z, modeling the tunnel effect, in other words the effect of the magnetic state of the junction on its resistance;
    • a second part representing the behavior of the magnetic moment, comprising three circuits each representing a dimension of the magnetic moment by the three voltages Vx, Vy, Vz, each of the three voltages depending on the voltages in the other dimensions and on the voltage Vss across the terminals of the stack, modeling the torque effect exerted by the polarized current Iss on the magnetization of the first layer.


The first layer is for example a soft magnetic layer, with controllable magnetization, and the second layer is for example a hard magnetic layer, with fixed magnetization.


In one particular embodiment, the first part comprises, in parallel, a capacitor of constant value and a variable resistance depending on the three voltages Vx, Vy, Vss representing the magnetic moment of the first layer, for example the soft layer.


Each circuit of the second part comprises for example, in parallel, two current sources, a capacitor and a variable resistance, a first source of current being a function of the voltages in the other two dimensions, a second source of current being a function of the three voltages Vx, Vy, Vss and of the voltage Vss across the terminals of the stack.


Thus, the first circuit through which a current Ix flows comprises for example, in parallel:

    • a current source of value Ixx being a function of the voltages Vy, Vz
    • a current source of value IxxST being a function of the voltages Vx, Vy, Vz, Vss
    • a capacitor
    • a variable resistance expressed by its conductance Gxx being a function of the voltages Vy, Vz;


      the second circuit, through which a current Iy flows:
    • a current source of value Iyy being a function of the voltages Vx, Vz
    • a current source of value IyyST being a function of the voltages Vx, Vy, Vz, Vss
    • a capacitor
    • a variable resistance expressed by a conductance Gyy being a function of the voltages Vx, Vz;


      the third circuit, through which a current Iz flows:
    • a current source of value Izz being a function of the voltages Vx, Vy
    • a current source of value IzzST being a function of the voltages Vx, Vy, Vz, Vss
    • a capacitor
    • a variable resistance expressed by its conductance Gzz being a function of the voltages Vx, Vy;


The voltages Vx, Vy, Vz are respectively the voltages representative of the dimensions mx, my, mz, and Vss, the voltage across the terminals of the stack, the currents IxxST, IyyST, IzzST depending on the voltage Vss.


Advantageously, the electrical circuit may be coupled with an equivalent circuit modeling the heat transfers within the device, each layer being modeled by a thermal resistance and a heat capacity.


Each layer of the stack being represented by an additional node, the capacitances and the resistances are for example connected in series, the capacitances being connected in parallel to a current source representing the heat flow.





Other features and advantages of the invention will become apparent with the aid of the description that follows, presented with regard to the appended drawings which show:



FIG. 1, an illustration of the tunnel effect in a tunnel junction;



FIG. 2, an illustration of the torques acting on a magnetization subjected to a magnetic field;



FIG. 3, an equivalent circuit diagram of the tunnel effect depending on the spin;



FIG. 4, an example of equivalent circuit used by the modeling method according to the invention;



FIG. 5, a circuit diagram of a section of transmission line;



FIG. 6, an equivalent circuit diagram of the heat flow equation;



FIG. 7, an equivalent thermal diagram of the stack of the layers of a junction.






FIG. 1 illustrates the effect of tunneling magnetoresistance in a magnetic tunnel junction MTJ. The latter is a nanostructure composed of two ferromagnetic layers 1, 2 separated by an insulating layer 3, for example a layer of oxide. The magnetization of one of the layers 2 is fixed; this is the hard layer. The magnetization of the other layer 1, soft layer, is controllable. The electrical resistance RP, RAP of the stack of the layers 1, 2, 3 then depends on the magnetic orientation of the two layers. As previously indicated, this is the tunneling magnetoresistance effect. The passage from a parallel magnetization P between the two layers 1, 2 to an antiparallel magnetization AP exhibits hysteresis 4, 5. The value of the resistance, RP=0 in the case of a parallel magnetization and RAP=1 in the case of an antiparallel magnetization, codes and stores the information.


In FM materials, there exists a magneto-crystalline anisotropy due to the interactions between the magnetic moment and the crystal lattice. This results in a direction referred to as easy magnetization direction in which the magnetization naturally aligns in the absence of external forces. To this crystalline anisotropy is added a shape anisotropy in this case dependant on the shape of the junction. For example, if a junction of oval shape is used, the shape anisotropy tends to align the magnetization along the longest axis of the junction. If the magneto-crystalline easy magnetization axis is oriented in this same direction, the effects are added and a high stability of the junction is thus obtained.


Reading the information then consists in measuring the resistance of the junction. This reading operation can be effected by biasing the junction at a given voltage and by measuring the resulting current, for example by an amplifier circuit which regenerates the current in the form of a logic level corresponding to the stored binary information.


Writing in a junction consists in modifying the magnetic orientation of the soft layer 1 so as to change the resistance value of the stack 1, 2, 3. This action may be carried out in various ways, corresponding to various generations of MTJ:

    • in the first generation called FIMS for “Field Induced Magnetic Switching”, the magnetization of the soft layer is modified by application of a magnetic field generated by a current line in the vicinity of the junction. In this approach, the current densities required for writing are generally significant and the field generated for writing in a junction can interact with a neighboring junction which can pose problems of selectivity during the writing operation;
    • in a second generation called TAS for “Thermally-Assisted Switching”, the writing principle is similar except that a current is applied across the junction prior to writing in such a manner as to substantially reduce the field to be applied to the junction for writing. The electrical current density required is therefore much lower and the selectivity problems no longer exist, the junction to be written being the only one heated and hence the only one sensitive to the applied magnetic field;
    • the third generation, called CIMS for “Current Induced Magnetic Switching”, does not use an external write line, but actually a sufficiently high spin-polarized current applied across the junction that exerts a torque on the magnetization of the soft layer which is capable of reversing the latter. The current densities required for writing are then very low and the selectivity problems non-existent. In addition, the absence of write current lines allows an ultimate integration to be achieved which is particularly advantageous for an application in the framework of devices requiring a high integration density as is notably the case for memories.


In order to be able to be simulated in an electrical simulator, a component is notably described in the form of a matrix known as a Jacobian matrix. For certain simulators, a component containing n nodes is described by its Jacobian matrix. A vector I=[I1, I2 . . . In] and a vector V=[V1, V2 . . . Vn] respectively describe the values of the currents entering and of the voltages present on each node k of the component. Each current Ik has a static contribution ik and a dynamic contribution










q
k




t


,




qk being the electric charge present on the node. The Jacobian matrix of the component is the sum of its conductance matrix G and of its capacitance matrix. An element of the conductance matrix Gi,j is defined by the following equation:







G

i
,
j


=




i
i





V
j







ii, Vj being respectively the static current at a point i and the voltage at a point j.


An element of the capacitance matrix Ci,j is defined by the following equation:







C

i
,
j


=




q
i





V
j







qi, Vj being respectively the static charge at a point i and the voltage at a point j.


The modeling of the component leads to an equivalent electrical circuit being defined for it then its Jacobian matrix being described which will then be used by a simulator in order to carry out the simulations in a continuous, transient or alternating mode, for example. The definition of an equivalent circuit is therefore an initial step that is necessary for the simulation.


The invention provides an equivalent electrical model, notably for MTJs of the CIMS type. This modeling is based on the physical models of MTJs. For these models, it is assumed that the magnetization of a ferromagnetic layer may be described by a single uniform magnetic moment.


In a crystal lattice, there exists a favored direction for the magnetization, referred to as easy axis and denoted {right arrow over (e)}y in the following. This direction represents a stable position that the magnetization takes in the absence of external forces. This phenomenon is due to the interaction between the magnetic moment and the crystal lattice which results in a magneto-crystalline anisotropy energy and an equivalent magneto-crystalline anisotropy field given in the following relationships:










E
k

=




K
u




sin
2



(

θ
msl

)






H


k


=



2






K
u




μ
0



M
s





m
y




e


y







(
1
)







where Ek is the magneto-crystalline anisotropy energy, Ku is the uniaxial anisotropy constant, θmsl is the angle between the magnetization and the easy axis {right arrow over (e)}y, {right arrow over (H)}k is the magneto-crystalline anisotropy field, μ0 is the magnetic permeability of free-space, Ms is the value of the saturation magnetization and my is the coordinate along the easy axis of the normalized magnetization {right arrow over (m)} such that {right arrow over (M)}=Ms{right arrow over (m)}.


In a ferromagnetic material, the finite size of a sample and the accumulations of charges are responsible for the appearance of a demagnetizing field {right arrow over (H)}d. The expression for this field and for the corresponding energy Ed are given in the following relationship:











H


d

=



-

[
N
]




M



=



-



M
s



[




n
x



0


0




0



n
y



0




0


0



n
z




]




[




m
x






m
y






m
z




]





E
d


=



-

μ
0


2





H


d

·

M










(
2
)







The Zeeman energy represents the energy of a magnetization {right arrow over (M)} in an applied magnetic field {right arrow over (H)}a. This energy Ez is given by the following relationship:






E
z=−μ0{right arrow over (H)}a·{right arrow over (M)}custom-character−μ0HaMs cos(θ)  (3)


where θ is the angle between the vectors {right arrow over (H)}a and {right arrow over (M)}.


The tunneling magnetoresistance TMR is the relative variation in resistance between the states of parallel P and antiparallel AP magnetization, defined by the following relationship (4). The relative variation in resistance R(θ) as a function of the angle θ between the magnetizations of the hard and soft layers of the stack is given by the following relationship (5). The variation in conductance G(θ) is then given by the relationship (6). It should be noted that there exist several possible models for describing the variation in conductance of the stack as a function of the magnetic state. However, this does not change anything for the structure of an equivalent circuit according to the invention which will be described in the following. The following equations (4), (5), (6) are therefore given by way of example:









TMR
=




R
AP

-

R
P



R
P


=


Δ





R


R
P







(
4
)







R


(
θ
)


=


R
P

+



Δ





R

2



(

1
-

cos


(
θ
)



)







(
5
)







G


(
θ
)


=


G
P


1
+


TMR
2



(

1
-

cos


(
θ
)



)








(
6
)







Gp being the value of the parallel conductance.


This value can be modeled according to various models. The Simmons model gives a constant value for the parallel conductance, valid for a low bias voltage. Its value is given by the following equation:










G
P

=


G

P
0


=


k
0



k
1


A



Φ


2






t
ox





e


-

k
1




t
ox



Φ









(
7
)







where







k
0

=




e
2


2

π





h







and






k
1


=


4

π



(

2






m
e


e

)



h






e being the electrical charge on a electron, me its mass, h Planck's constant and Φ the height of the potential barrier at the interface.


The Brinkmann, Dynes and Rowell model gives the variation of the parallel conductance as a function of the bias voltage Vss, defined according to the following relationship:






G
P(Vss)=GP0(1−2βVss+3δVss2)  (8)


where






β
=




e



(

2






m
e


)




t
ox


d





Φ


24





h






Φ

3
2









and





δ

=



e
2



m
e



t
ox
2



12





h





Φ







dΦ being the asymmetry of the potential barrier and tox being the thickness of the oxide layer 3.


The TMR also depends on the bias voltage according to the following equation:










TMR


(

V
ss

)


=


TMR
0


1
+


V
ss
2


V
h
2








(
9
)







where TMR0 is the value of the TMR for low bias voltages and Vh is defined by







TMR


(

V
h

)


=


TMR
0

2





The final expression for the conductance G as a function of the angle θ and of the bias voltage Vss is given by the following equation:










G


(

θ
,

V
ss


)


=


G

P
0





1
-

2

β






V
ss


+

3

δ






V
ss
2




1
+



1
-

cos


(
θ
)



2




TMR
0


1
+


V
ss
2


V
h
2












(
10
)







The dynamic behavior of a magnetization {right arrow over (M)} subjected to an effective magnetic field {right arrow over (H)}eff, sum of the applied field, the magneto-crystalline anisotropy field and the shape anisotropy field, is described by the Landau-Liftschitz-Gilbert (LLG) equation hereinbelow:













m





t


=


-


γμ
0



(


m


×


H


eff


)



+


α
·

m



×




m





t








(
11
)







where






γ
=


g
·
e


2






m
e







is a gyroscopic factor, g being the Lande factor close to 2 for an electron, and α is the damping term. This equation (11) presents the Gilbert form of the LLG equation.


Another formulation, called the Landau-Liftschitz form is equivalent; it is given by the equation hereinbelow:













m





t


=




-

γμ
0



1
+

α
2





(


m


×


H


eff


)


-

α



γμ
0


1
+

α
2





m


×

(


m


×


H


eff


)







(
12
)








FIG. 2 illustrates the torques acting on a magnetization subjected to a magnetic field described by the preceding equations. The first term of the sum of the second members of the equations (11) and (12) describes the precession 21 representing the tendency of the magnetization M to gyrate around the magnetic field H and the second term of the sum describes the damping 22 representing the losses finally responsible for the alignment of the magnetization in the direction of the applied magnetic field. In order to take into account the torque effect, called STT for Spin Torque Transfer, a spin torque term 23 ΓST should be added as described by the following relationship:





ΓST=γμ0aJ(θ)Iss{right arrow over (m)}X({right arrow over (m)}X{right arrow over (p)})  (13)


with








a
J



(
θ
)


=




h
.

g


(
θ
)




2


e
.

t
sl




μ
0



M
s


S







and






g


(
θ
)



=

1


-
4

+


(


P

1
2


+

P

1
2



)




3
+

cos


(
θ
)



4









{right arrow over (p)} is a unitary vector whose direction is that of the magnetization of the hard layer used to polarize the current. Iss is the current flowing through the stack from the hard layer 2 toward the soft layer 1, tsl is the thickness of the soft layer and P is the spin polarization of each of the magnetic layers 1, 2. The expression for g as a function of the angle θ can change according to the models without changing the equivalent circuit. The spin torque term 23 acts as a torque which, depending on the direction of the current, may add to or oppose the damping term 22. If this torque opposes the damping, as illustrated in FIG. 2, and if its value is greater than that of the damping, it is possible to make the magnetization switch. If the two terms have comparable values, it is possible to cancel the damping and to obtain sustained oscillations. It is the latter phenomenon that is used for example in the framework of the radio-frequency (RF) oscillators based on MTJs.


The tunneling conductance also varies as a function of temperature. The variation of the conductance for a low bias voltage as a function of the temperature T is given by the following relationship:










G


(

T
,

V
=
0


)


=


G
00





γ
0


T


sin


(


γ
0


T

)








(
14
)







where








γ
0

=



π
.
k
.

t
ox


h





2


m
e



e





Φ





,




k being Boltzmann's constant and G00 the conductance at low temperature and low bias voltage, the other parameters having been previously defined.


To this conductance depending on the spin, called elastic conductance, must be added the inelastic conductance independent of the spin, such that: G(V,T)=Gelastic(V,T)+Ginelastic(V,T) with Ginelastic(V,T)=τNTβ(N)N is the number of states that an electron occupies during its passage across the tunnel barrier,








β


(
N
)


=

N
-

2

N
+
1




,




and τN is a parameter proportional to the density and to the radius of the localized states involved in the barrier.


As far as the polarization P is concerned, this varies as a function of the temperature T according to the following relationship:










P


(
T
)


=


P
0

(

1
-

BT

3
2



)





(
15
)







where P0 is the polarization at low temperature and B a parameter essentially depending on the material and on the thickness of the electrodes. Starting from the previous equations, it is possible to calculate the expressions for the various parameters, notably the conductances in the P state and in the AP state, the TMR, the saturation magnetization Ms, as a function of temperature.


The propagation of heat in an isotropic and homogeneous material, along an axis x and as a function of time, is described by a conventional equation:













2


T




2


x


=



c





ρ


λ
th






T



t







(
16
)







c being the heat capacity of the material, ρ its density and λth the specific thermal conductivity. The equation (16) is valid for a given material. It is notably valid for each layer 1, 2, 3 of the stack but with thermal parameters specific to each layer.


The invention provides an electrical model equivalent to the physical models previously described. In this model, the physical quantities are all described by image voltages and currents. Thus, for example, the three coordinates of the magnetic moment, mx, my, mz are represented by voltages Vx, Vy, Vz. The equivalent electrical model contains two external nodes representing the ends of the stack 1, 2, 3 and three internal nodes representing the coordinates of the magnetic moment. The circuits are composed of capacitors, resistors or generators, of voltage or of current, whose values could be voltage-controlled. This effect of voltage on the value of some components of the circuit corresponds to the dependencies of the parameters as a function of the quantities involved in the description of the MTJ of the CIMS type. Where several models are possible for describing a dependency, only the expression for one of the controlled components is modified, but the equivalent circuit diagram remains the same.


An equivalent electrical circuit according to the invention is a generic approach for describing a circuit. Such an equivalent circuit allows a component whose parameters are known to easily be simulated using an electrical simulator exactly as would be done for any other electronic component. The elements of the voltage-controlled circuit represent the effect of certain quantities on the parameters of the circuit. The expression of these components as a function of the voltage can easily be modified according to the physical model chosen for the description of the component. The invention therefore allows a very controllable approach since the physical laws are described by the expression of the values of the components and can easily be changed or rendered more precise according to the development of the physical models of MTJs, without modifying the equivalent circuit diagram.



FIG. 3 illustrates the equivalent circuit diagram of the tunnel effect depending on the spin. The two external nodes S0, S1 represent the ends of the stack. The conductance Gss of the stack can be described by the Julliere model expressed by the relationship (10). To this conductance is added the capacitance Css of the stack,







C
ss

=

S




ɛ
0



ɛ
R



t
ox







where ∈0, ∈R are the free-space dielectric permittivity and the relative permittivity of the oxide layer 2, tox being, as previously, the thickness of this layer 2. It should be noted that in the circuit diagram in FIG. 3 the conductance of the stack is described by a voltage-controlled conductance Gss, notably allowing a conductance to be modeled depending on voltages present in the circuit. This is for example used in the case of a transistor whose small-signal output conductance depends on the bias voltage. The expression for the conductance as a function of the voltage Vss is given by the relationship (10), this represents the effect of the magnetic moment on the resistance of the stack. Vss is the voltage across the terminals of the stack.


The dynamic behavior of the magnetization of the soft layer is described by the LLG equation with the spin torque term according to the relationship (17) hereinbelow:













m





t


=


-


γμ
0



(


m


×


H


eff


)



+


α
.

m



×




m





t



-


γμ
0




a
J



(
θ
)




I
ss



m


×

(


m


×

p



)







(
17
)







In this relationship, the spin torque term ΓsT from the relationship (13) is to be added to the Gilbert form of the LLG equation described by the relationship (11). Other approaches are possible, such as for example adding this spin torque term to the Landau-Liftschitz form of the relationship (12). It is also possible to add a further term referred to as “field-like term”. In this case again, the equivalent circuit is not changed but only the value of its components.


If the equation (17) is projected onto the three space axes, three scalar differential equations are obtained of the same type as the equation (18) hereinbelow, for example:











m
x




t


+


α
m





γ
0


1
+

α
2





[



(


n
x

-

n
y


)



M
s



m
y
2


+


(


n
x

-

n
z


)



M
s



m
z
2


+



2


K
u




μ
0



M
s





m
y
2



]




m
x



=




γ
0


1
+

α
2





m
y




m
z



[



(


n
z

-

n
y


)



M
s


+


2


K
u




μ
0



M
s




]



-



γ
0


1
+

α
2





a
J





I
ss



(


V
ss

,

m
x

,

m
y


)




[



cos


(

θ
mhl

)




(



m
x



m
y


+

α
.

m
z



)


+


sin


(

θ
msl

)




(


m
y
2

+

m
z
2


)



]








This equation (18) represents the projection of the LLG equation onto the axis {right arrow over (e)}x, carrying the component mx of the magnetic moment, perpendicular to the easy axis {right arrow over (e)}y previously discussed for the relationship (1). θmsl is the angle between the magnetization and the easy axis {right arrow over (e)}y and θmhl is the angle between the magnetization and the axis {right arrow over (e)}x.


The following equivalent electrical equation (19) is then obtained:












C
x






V
x




t



+



G
xx



(


V
x

,

V
y


)




V
x



=



I
xx



(


V
x

,

V
y


)


+


I
xx
ST



(


V
x

,

V
y

,

V
ss


)







(
19
)







where:


Cx=1







G
xx



(


V
x

,

V
y


)


=


α
m





γ
0


1
+

α
2





[



(


n
x

-

n
y


)



M
s



V
y
2


+


(


n
x

-

n
z


)



M
s



V
z
2


+



2


K
u




μ
0



M
s





V
y
2



]
















I
xx



(


V
x

,

V
y


)


=


-


γ
0


1
+

α
2






V
y




V
z



[



(


n
z

-

n
y


)



M
s


+


2


K
u




μ
0



M
s




]












I
xx
ST



(


V
x

,

V
y

,

V
z


)


=


-


γ
0


1
+

α
2






a
J





I
ss



(


V
ss

,

V
x

,

V
z


)


[



cos


(

θ
mhl

)




(



V
x



V
y


+

α






V
z



)


+


sin


(

θ
msl

)




(


V
y
2

+

V
z
2


]









Vx, Vy et Vz are of the voltages representing, respectively, mx, my and mz. Vss is the voltage across the terminals S0, S1 of the stack 1, 2, 3. The capacitance Cx is for example constant and equal to 1 farad. Gxx a voltage-controlled conductance, Ixx and IxxST are voltage-controlled current sources, IxxST notably depending on the voltage across the terminals of the stack Vss, thus representing the influence of the current flowing through the stack (and hence of the voltage across its terminals) on the coordinates of the magnetic moment. Equations similar to the equation (19) are obtained for the other axes {right arrow over (e)}y and {right arrow over (e)}z. Cx, Gxx, Ixx, IxxST are then respectively replaced by Cy, Gyy, Iyy, IyyST and Cz, Gzz, Izz, IzzST, the indices of the other parameters in the equations being obtained by circular permutation over x, y, z, and lastly Cy=1 and Cz=1.


The equivalent circuit in FIG. 4 describes the magnetic behavior of the soft layer 1 in accordance with the preceding equations, notably the equation (19) along the axis {right arrow over (e)}, and the similar equations along the other axes {right arrow over (e)}y and {right arrow over (e)}z.


The Jacobian matrix of this equivalent circuit is given by the following table:



















Vs0
Vs1
Vx
Vy
Vz























Is0
Gss

Gss

Gsx
Gsy
0



Is1

Gss

Gss

Gsx


Gsy

0



Ix
Gxs

Gxs

Gxx
Gxy
Gxz



Iy
Gys

Gys

Gyx
Gyy
Gyz



Iz
Gzs

Gzs

Gzx
Gzy
Gzz











This matrix is obtained by deriving the currents entering each node of the circuit with respect to the voltages present on each node. Gss represents the conductance of the stack, Gxx, Gxy, Gxz, Gyx, Gyy, Gyz, Gzx and Gzz represent the behavior in three dimensions of the magnetization of the soft layer, Gs,x, and Gsy the influence of the coordinates of the magnetic moment on the resistance of the stack and Gxs, Gys and Gzs the spin torque effect, in other words the effect of the current flowing across the junction on the magnetic state.



FIG. 4 shows that the model is formed starting from conventional electrical components, such as notably capacitances Cx, Cy, Cz, Css, conductances Gxx, Gyy, Gzz, Gss and current source Ixx, Iyy, Izz IxxST, IyyST, IzzST which may be voltage-controlled in order to model the effect of certain quantities on certain parameters of the model.


More precisely, the model in FIG. 4 is composed of two parts 41, 42 representing the two physical phenomena involved in this type of junction.


A first part 41 similar to the circuit in FIG. 3, called electrical part, represents the magnetic stack. It comprises, in parallel, a capacitor of constant value equal to Css and a resistance depending on three voltages representing the magnetic moment of the soft layer. The resistance is expressed by its conductance Gss being a function of the voltages Vx, Vy, Vss.


This part 41 models the effect of tunneling magnetoresistance depending on the magnetization.


A second part 42, called magnetic moment, represents the behavior of the magnetic moment. This part contains three circuits 43, 44, 45 representing the three coordinates of the magnetic moment, represented by the three voltages Vx, Vy, Vz. These three voltages depend on the other voltages, as regards the dynamic behavior of the moment in three dimensions, and on the voltage across the terminals of the stack S0, S1, hence on the current Iss flowing through it, thus modeling the effect of spin torque, in other words the torque exerted by this polarized current on the magnetization of the soft layer.


Each circuit 43, 44, 45 comprises, in parallel, two current sources, a capacitor and a variable resistance. Thus, the first circuit 43, model along the axis {right arrow over (e)}x, through which a current Ix flows, comprises, in parallel:

    • a current source of value Ixx of the voltages Vy, Vz
    • a current source of value IxxST function of the voltages Vx, Vy, Vz, Vss
    • a capacitor whose value is equal to Cx
    • a variable resistance expressed by its conductance Gxx being a function of the voltages Vy, Vz.


Similarly, the second circuit 44, model along the axe {right arrow over (e)}y, through which a current Iy flows, comprises, in parallel:

    • a current source of value Iyy being a function of the voltages Vx, Vz
    • a current source of value IyyST being a function of the voltages Vx, Vy, Vz, Vss
    • a capacitor whose value is equal to Cy
    • a variable resistance expressed by its conductance Gyy being a function of the voltages Vx, Vz.


Lastly, the third circuit 45, model along the axis {right arrow over (e)}z, through which a current Iz flows, comprises, in parallel:

    • a current source of value Izz being a function of the voltages Vx, Vy
    • a current source of value IzzST being a function of the voltages Vx, Vy, Vz, Vss
    • a capacitor whose value is equal to Cz
    • a variable resistance expressed by its conductance Gzz being a function of the voltages Vx, Vy.


The currents IxxST, IyyST, IzzST depend on the voltage Vss of the electrical part representing the spin torque effect previously described.


Advantageously, this model is generic and the expression of the voltage-controlled components can be adapted to represent various models. This model is furthermore compatible with electrical simulators. Only the way of describing the circuit changes from one simulator to another, or from one description language to another.



FIG. 5 illustrates the equivalent circuit diagram of a section of transmission line of length dx. A variant embodiment of the preceding model may be established by adding a modeling of the thermal effects. In particular, the combination of the TAS and CIMS effects allows the junctions to be improved. In this approach, the switching of the magnetization by spin-polarized current could notably be facilitated by prior heating of the junction. In order to describe the behavior of a junction of the TAS type, the evolution of the temperature of the junction must naturally be taken into account. For this purpose, the heat transfer equation (16) may be used. This equation is close to that for a transmission line. FIG. 5 shows the circuit diagram of a section of transmission line of length dx where L, R, C and G are, respectively, the inductance, the longitudinal resistance, the capacitance and the transverse conductance per unit of length of the line. The propagation equation of the line may be written in the form of the equation (20) hereinbelow, commonly known as the ‘telegraphist's equation”:










dV
=





-
Ldx





i



t



-
Ridx





V



x



=



-
L





i



t



-
Ri









di
=



i
1

+

i
2


=





-
Cdx





V



t



-
Gvdx





i



x



=



-
C





V



t



-
GV














2


V




2


x


=


LC





2


V




2


t



+


(

LG
+
RC

)





V



t



+
RGV






(
20
)







If a line is considered such that L=G=0, an equation similar to that of the heat equation where the capacitance C corresponds to the heat conductivity c, the resistance R corresponds to the quantity







1

λ
th


,




the voltage U, V corresponds to the temperature T, and the current i corresponds to the heat flux p. The equivalent circuit diagram is illustrated in FIG. 6 obeying the following equation:













2


V




2


x


=

RD




V



t







(
21
)








FIG. 7 illustrates an example of equivalent thermal circuit diagram of the stack. Theoretically, the heat capacities CTh1, CTh2, . . . CThn and the thermal resistances RTh1 RTh2, . . . RThn used in the model should be defined locally. However, in order to simplify the modeling, each layer of the stack is for example modeled by a thermal resistance and heat capacity characteristic of the layer. Thus, each layer of the stack may be represented by an additional node Th1, Th2, . . . Thn. In FIG. 7, the circuits CThi, RThi are connected in series, the capacitances CTh1 CTh2, . . . CThi, . . . CThn being connected in parallel to a current source P representing the heat flow.


It is equally possible to use a single RC circuit with a single additional node and to evaluate the values of the resistance R and of the capacitance C by characterization of the stack.


It is also possible to act on the two magnetic layers 1, 2 of the stack. In the spin torque approach, one layer is considered as trapped and serves as a polarizer for the reference current. The other layer contains the useful signal. Interchanging the roles of the two layers may be envisioned, thus creating two configurations of the junction. The effect of the spin-polarized current on the magnetic state would then be opposite between these two configurations. From a software point of view, this change could easily be carried out by changing the sign of the spin torque term ΓST, IxxST, IyyST, IzzST in the equivalent circuit according to the desired configuration, still without changing the structure of the circuit. In this case, the value of the polarization {right arrow over (p)} would no longer be a global constant, but could change during the operation while remaining however fixed as long as the system remains in a given configuration.

Claims
  • 1. A method for modeling a magnetic tunnel junction with spin-polarized current writing, said junction comprising a stack of at least two magnetic layers separated by an insulating layer, a first magnetic layer and a second magnetic layer, the magnetization of the first layer being described by a uniform magnetic moment, the dynamic behavior of the junction being modeled by an equivalent electrical circuit comprising at least two coupled parts, the method comprising: providing a first part representing the stack of the layers, through which a current flows corresponding to the polarized current flowing through said layers, whose resistance across its terminals depends on three voltages representing the three dimensions of the magnetic moment along three axes, modeling the tunnel effect;providing a second part representing the behavior of the magnetic moment, comprising three circuits each representing a dimension of the magnetic moment by the three voltages, each of the three voltages depending on the voltages in the other dimensions and on the voltage across the terminals of the stack, modeling the torque effect exerted by the polarized current on the magnetization of the first layer.
  • 2. The method as claimed in claim 1, wherein the first layer is a soft magnetic layer, with controllable magnetization, and the second layer is a hard magnetic layer, with fixed magnetization.
  • 3. The method as claimed in claim 1, wherein the first part comprises, in parallel, a capacitor of constant value and a variable resistance depending on the three voltages representing the magnetic moment of the first layer.
  • 4. The method as claimed in claim 1, wherein each circuit of the second part comprises, in parallel, two current sources, a capacitor and a variable resistance, a first current source, being a function of the voltages in the other two dimensions, a second current source, being a function of the three voltages and of the voltage across the terminals of the stack.
  • 5. The method as claimed in claim 4, wherein: the first circuit, through which a current Ix flows, comprises, in parallel: a current source of value being a function of the voltages,a current source of value being a function of the voltages,a capacitor,a variable resistance expressed by its conductance being a function of the voltages;the second circuit, through which a current Iy flows, comprises, in parallel: a current source of value being a function of the voltages,a current source of value being a function of the voltages,a capacitor,a variable resistance expressed by a conductance being a function of the voltages;the third circuit, through which a current flows, comprises, in parallel: a current source of value being a function of the voltages,a current source of value being a function of the voltages,a capacitor,a variable resistance expressed by its conductance being a function of the voltages;the voltages being respectively the voltages representative of the dimensions and the voltage across the terminals of the stack, the currents depending on the voltage.
  • 6. The method as claimed in claim 1, wherein the value of the capacitor is constant.
  • 7. The method as claimed in claim 1, wherein the electrical circuit is coupled with an equivalent thermal circuit, each layer being modeled by a thermal resistance and a thermal capacity.
  • 8. The method as claimed in claim 7, wherein each layer of the stack being represented by an additional node, the capacities and the resistances are connected in series, the capacitances being connected in parallel with a current source representing the heat flow.
Priority Claims (1)
Number Date Country Kind
07 09049 Dec 2007 FR national
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/EP2008/067677 12/16/2008 WO 00 11/20/2010