Articles of footwear generally include two primary elements, an upper and a sole structure. The upper is formed from a variety of material elements (e.g., textiles, foam, leather, and synthetic leather) that are stitched or adhesively bonded together to form a void on the interior of the footwear for comfortably and securely receiving a foot. An ankle opening through the material elements provides access to the void, thereby facilitating entry and removal of the foot from the void. In addition, a lace is utilized to modify the dimensions of the void and secure the foot within the void.
The sole structure is located adjacent to a lower portion of the upper and is generally positioned between the foot and the ground. In many articles of footwear, including athletic footwear, the sole structure conventionally incorporates an insole, a midsole, and an outsole. The insole is a thin compressible member located within the void and adjacent to a lower surface of the void to enhance footwear comfort. The midsole, which may be secured to a lower surface of the upper and extends downward from the upper, forms a middle layer of the sole structure. In addition to attenuating ground reaction forces (i.e., providing cushioning for the foot), the midsole may limit foot motions or impart stability, for example. The outsole, which may be secured to a lower surface of the midsole, forms the ground-contacting portion of the footwear and is usually fashioned from a durable and wear-resistant material that includes texturing to improve traction.
The conventional midsole is primarily formed from a foamed polymer material, such as polyurethane or ethylvinylacetate, that extends throughout a length and width of the footwear. In some articles of footwear, the midsole may include a variety of additional footwear elements that enhance the comfort or performance of the footwear, including plates, moderators, fluid-filled chambers, lasting elements, or motion control members. In some configurations, any of these additional footwear elements may be located between the midsole and either of the upper and outsole, embedded within the midsole, or encapsulated by the foamed polymer material of the midsole, for example. Although many conventional midsoles are primarily formed from a foamed polymer material, fluid-filled chambers or other non-foam structures may form a majority of some midsole configurations.
Fluid-filled chambers may be formed through a variety of processes, including two-sheet bonding, thermoforming, rotational molding, and blowmolding, for example. In general, a blowmolding process involves locating a parison between mold portions defining a cavity with a shape of the chamber. The parison is a generally tubular and hollow structure formed from a molten, softened, or partially cured polymer material. Pressurized air induces the polymer material of the parison to conform with the shape of the cavity within the mold. The polymer material then cools, thereby forming the chamber.
A mold for forming a fluid-filled chamber is disclosed below as including a first mold portion and a second mold portion. The first mold portion includes a first surface and a first cavity formed in the first surface, and the first mold portion includes a frame that extends entirely around the first cavity. The frame is movable from a position that extends outward beyond the first surface to a position that is retracted within the first mold portion. The second mold portion includes a second surface and a second cavity formed in the second surface. The first cavity and the second cavity have a shape of the chamber when the mold portions are joined together.
A method of manufacturing a fluid-filled chamber is also disclosed below. The method includes forming a first bond between opposite sides of a parison to seal a first volume of a fluid within the parison. A second bond spaced inward from the first bond is formed between opposite sides of the parison to seal a second volume of the fluid within the parison. The second volume of the fluid is less than the first volume of the fluid and a portion of the first volume of the fluid. The chamber is shaped from a portion of the parison that is located inward of the second bond. In addition, the chamber is separated from a remainder of the parison at the second bond.
The advantages and features of novelty characterizing aspects of the invention are pointed out with particularity in the appended claims. To gain an improved understanding of the advantages and features of novelty, however, reference may be made to the following descriptive matter and accompanying figures that describe and illustrate various configurations and concepts related to the invention.
The foregoing Summary and the following Detailed Description will be better understood when read in conjunction with the accompanying figures.
The following discussion and accompanying figures disclose methods for manufacturing fluid-filled chambers with a variety of configurations. As an example, which is discussed below, chambers manufactured with the methods may be utilized in articles of footwear. In addition to footwear, the methods may be utilized to manufacture chambers for various types of apparel and athletic equipment, including helmets, gloves, and protective padding for sports such as football and hockey. Similar methods may be utilized to manufacture chambers for cushions and other compressible structures utilized in consumer goods and industrial products. Accordingly, methods incorporating the concepts disclosed herein may be utilized to manufacture chambers for a variety of products and for a variety of purposes.
A chamber 100 is depicted in
A variety of polymer materials may be utilized for chamber 100. In selecting a polymer material for chamber 100, engineering properties of the polymer material (e.g., tensile strength, stretch properties, fatigue characteristics, dynamic modulus, and loss tangent) as well as the ability of the material to limit the diffusion of the fluid contained by chamber 100 may be considered. When formed of thermoplastic urethane, for example, the polymer material of chamber 100 may have a thickness of approximately 1.0 millimeter, but the thickness may range from 0.25 to 4.0 millimeters or more, for example. In addition to thermoplastic urethane, examples of polymer materials that may be suitable for chamber 100 include polyurethane, polyester, polyester polyurethane, polyether polyurethane, and polyurethane including a polyester polyol. Accordingly, a variety of polymer materials may be utilized for chamber 100.
The fluid within chamber 100 may have a pressure that is substantially equal to the pressure of air on the exterior of chamber 100 (i.e., atmospheric pressure). That is, the pressure of the fluid within chamber 100 is at substantially ambient pressure. As utilized herein, “substantially ambient pressure” or variants thereof are intended to encompass pressure differences between zero and thirty-five kilopascals (i.e., approximately five pounds per square inch) from atmospheric pressure. Depending upon the intended use of chamber 100, however, the pressure of the fluid may significantly exceed thirty-five kilopascals. In some configurations, chamber 100 may incorporate a valve that permits the pressure of the fluid to be adjusted. A variety of fluids may be enclosed by the polymer material of chamber 100, including either air or nitrogen, for example.
Although chamber 100 is depicted as having a spherical shape, chambers with similar structures (i.e., a polymer material that encloses a fluid) may have a variety of configurations. Referring to
A mold 110 that may be utilized to manufacture chamber 100 is depicted in
As noted above, springs 126 permit frame 124 to at least partially retract into channel 125. More particularly, springs 126 permit frame 124 to translate into first mold portion 120. When springs 126 are uncompressed or in a neutral state, frame 124 extends outward beyond surface 121, as depicted in
Second mold portion 130 has a structure that is similar to first mold portion 120 and includes a surface 131, a cavity 132, a ridge 133, a frame 134, a channel 135, and a plurality of springs 136. Surface 131 faces toward first mold portion 120 and defines cavity 132, which is formed as an indented area or a depression in surface 131 and has a generally hemispherical shape that corresponds with approximately one-half of chamber 100. When mold portions 120 and 130 are joined, cavities 122 and 132 form a void within mold 100 with the shape and dimensions of chamber 100. Ridge 133 protrudes outward from surface 131 and extends around a perimeter of cavity 132. Frame 134 extends around cavity 132 and has a generally rectangular shape, but may have a variety of other shapes. Whereas ridge 132 is positioned immediately adjacent to an edge of cavity 132 and may form a portion of the edge of cavity 132, frame 134 is spaced from cavity 132. Frame 134 is positioned within channel 135 and is mounted on springs 136, which permit frame 134 to at least partially retract into channel 135. First mold portion 130 also includes a pair of connectors 137 that join with vacuum lines or fluid supply lines during the manufacture of chamber 100. As with connectors 127, each of connectors 127 form end areas of conduits that extend through second mold portion 130.
As noted above, springs 136 permit frame 134 to at least partially retract into channel 135. When springs 136 are uncompressed or in a neutral state, frame 134 extends outward beyond surface 131, as depicted in
Frames 124 and 134 each have a continuous configuration that extends around cavities 122 and 132. That is, frames 124 and 134 have an unbroken or otherwise non-segmented configuration that does not include gaps or spaces. Some prior molds incorporate retractable frames with non-continuous configurations, as disclosed in U.S. Pat. No. 4,829,682 to Gasbarro. These non-continuous frames include spaces or indentations that permit inflation needles or blow pins, for example, to pressurize the interior of a polymer parison. In contrast with the frames disclosed in Gasbarro, however, frames 124 and 134 each have a continuous configuration that does not include spaces or indentations for needles or blow pins.
Mold 110 is utilized to manufacture chamber 100 through a blowmolding process. Initially, mold portions 120 and 130 are arranged such that surfaces 121 and 131 face each other, as depicted in
Once parison 111 is properly positioned, mold portions 120 and 130 begin to translate toward each other. Given that frames 124 and 134 extend outward from and beyond surfaces 121 and 131, frames 124 and 134 initially contact parison 111 and compress opposite sides of parison 111 together, as depicted in
The rectangular-shaped bond 112 in parison 111 that is formed by frames 124 and 134 effectively traps or otherwise seals a fluid (e.g., air or another gas located within the hollow interior of parison 111) within parison 111. As noted above, portions of parison 111 corresponding with the open central areas of frames 124 and 134 remain unbonded. Accordingly, the fluid within the unbonded portions of parison 111 is effectively sealed within parison 111 because the bonds and the polymer material forming parison 111 prevent the fluid from escaping. Moreover, bond 112 extends entirely around the trapped fluid.
Once frames 124 and 134 form bond 112 between the opposite sides of parison 111, mold portions 120 and 130 continue to translate toward each other. More particularly, springs 126 and 136 compress and permit frames 124 and 134 to at least partially recess into mold portions 120 and 130 such that surfaces 121 and 131 contact each other or come close to contacting each other, as depicted in
As the fluid trapped within parison 111 is compressed between surfaces 121 and 131 and air is removed from the area between parison 111 and surfaces 121 and 131, the polymer material of parison 111 conforms to the shape of mold 100. More specifically, the polymer material stretches, bends, or otherwise conforms to extend along surfaces 121 and 131 and form the general shape of chamber 100. Ridges 123 and 133 also compress the polymer material together around cavities 122 and 132 to form parting line 101 immediately adjacent to chamber 100. More particularly, ridges 123 and 133 form another bond (i.e., parting line 101) between opposite sides of parison 111 and around chamber 100.
When frames 124 and 134 formed bond 112 between opposite sides of parison 111, a volume of fluid is trapped or otherwise sealed within parison 111. As mold portions 120 and 130 continue to translate toward each other, a portion of that volume of fluid becomes trapped within chamber 100. That is, frames 124 and 134 form bond 112 to trap a first volume of fluid within parison 111, and a second and lesser volume of the fluid is then sealed within chamber 100 due to the bond formed at parting line 101. The remaining fluid (i.e., the fluid not within chamber 100) may remain trapped between other portions of parison 111. As described in greater detail below, some molds may simultaneously form multiple chambers, and separate portions of the trapped fluids may become sealed within each of the multiple chambers.
Once chamber 100 is formed, mold portions 120 and 130 separate such that chamber 100 and excess portions of parison 111 may be removed, as depicted in
Based upon the above discussion, frames 124 and 134 are incorporated into mold 110 in order to initially form bond 112, which seals fluid within parison 111 prior to the formation of chamber 100. The fluid then provides resistance to compression that is sufficient to induce the polymer material of parison 111 to enter and conform with the shapes of cavities 122 and 132. A portion of the trapped fluid also remains within chamber 100 and is at substantially ambient pressure following the blowmolding process.
The configuration of mold 110 discussed above and depicted in the figures provides an example of a suitable mold configuration. When forming any of chambers 102-109, for example, the configurations of cavities 122 and 132 may be altered to have shapes that cooperatively define the chambers. In some configurations, frames 124 and 134 may have different shapes (e.g., square, triangular, circular, octagonal, irregular), the spacing between frames 124 and 134 and each of cavities 122 and 132 may change, or the surfaces of frames 124 and 134 may be non-planar. In further configurations, frame 134 may be absent from second mold portion 130, such that frame 124 compresses parison 111 against surface 131 to form bond 112. In addition, surfaces 121 and 131 may each define multiple cavities, thereby permitting more than one chamber 100 to be formed from each parison 111. Accordingly, the specific configuration of mold 110 may vary significantly.
Although frame 124 is discussed above and depicted as being mounted on springs 126, other systems may be utilized to permit frame 124 to retract into first mold portion 120. Similarly, other systems may also be utilized to permit frame 134 to retract into second mold portion 130. For example, a hydraulic or pneumatic system may be utilized to control the motion of frame 124. That is, the hydraulic or pneumatic system may be computer-controlled to properly position frame 124 throughout the blowmolding process. When computer controlled, the pressure exerted by frame 124 and the position of frame 124 may be controlled throughout the molding process. As an alternative, servos or other devices may be utilized to control the movements of frame 124. Accordingly, a variety of devices and systems may be utilized in connection with frames 124 and 134.
The general method discussed above may be utilized to form chambers with a variety of shapes and configurations, and the chambers may be utilized in a variety of products or for a variety of purposes. As a specific example of one product that may include a chamber formed through this general method, an article of footwear 210 is depicted in
Sole structure 230 is secured to upper 220 and has a configuration that extends between upper 220 and the ground. The primary elements of sole structure 230 are a midsole 231 and an outsole 232. Midsole 231 may be formed from a polymer foam material, such as polyurethane or ethylvinylacetate, that encapsulates a fluid-filled chamber 240 and another fluid-filled chamber 107 to enhance the ground reaction force attenuation characteristics of sole structure 230. Whereas chamber 240 is discussed in greater detail below, chamber 107 has the general configuration depicted in
Chamber 240 is located within a forefoot region of footwear 210 and extends from a lateral side to a medial side of midsole 231. Referring to
Subchambers 241a-241c form a majority of a volume of chamber 240 and are fluidly-connected by conduits 244a and 244b. More particularly, conduit 244a extends between first subchamber 241a and second subchamber 241b to permit fluid flow between subchambers 241a and 241b. Similarly, conduit 244b extends between second subchamber 241b and third subchamber 241c to permit fluid flow between subchambers 241b and 241c. If first subchamber 241a is compressed, the fluid within first subchamber 241a may pass through conduit 244a and into second subchamber 241b, and a portion of the fluid within second subchamber 241b may pass through conduit 244b and into third subchamber 241c. If third subchamber 241c is compressed, the fluid within third subchamber 241c may pass through conduit 244b and into second subchamber 241b, and a portion of the fluid within second subchamber 241b may pass through conduit 244a and into first subchamber 241a. Similarly, if second subchamber 241b is compressed, the fluid within second subchamber 241b may pass through both of conduits 244a and 244b and into each of subchambers 241a and 241c. Accordingly, subchambers 241a-241c are in fluid communication with each other through conduits 244a and 244b.
Lobes 242a and 242b extend outward from first subchamber 241a and are in fluid communication with first subchamber 241a. If first subchamber 241a is compressed, as discussed above, a portion of the fluid within first subchamber 241a may also pass into lobes 242a and 242b. Similarly, lobes 242c and 242d extend outward from second subchamber 241b and are in fluid communication with second subchamber 241b. In addition to passing through conduits 244a and 244b, fluid may pass into lobes 242a-242d if either of subchambers 241a-241c are compressed. The number and location of lobes 242a-242d may vary significantly. In many configurations of chamber 240, however, each of subchambers 241a and 241b will generally have at least two of the lobes 242a-242d, but may have up to ten lobes each. In some configurations, one or more lobes may also extend outward from third subchamber 241c.
Distal ends 243a-243d form end areas of lobes 42a-242d and are located opposite subchambers 241a and 241b, respectively. When chamber 40 is incorporated into footwear 210, distal ends 243a-243d may protrude through a sidewall of midsole 231. More particularly, lobes 242a and 242b may extend to a lateral side of footwear 210 such that distal ends 243a and 243b protrude through a sidewall of midsole 231, and lobes 242c and 242d may extend to an opposite medial side of footwear 210 such that distal ends 243c and 243d protrude through an opposite portion of the sidewall of midsole 231. In some configurations of footwear 210, however, distal ends 243a-243d may be wholly located within midsole 231, or distal ends 243a-243d may protrude outward and beyond the sidewall of midsole 231.
First surface 245 forms an upper surface of chamber 240 and has a generally planar configuration. Second surface 246 is located opposite first surface 245 and also has a generally planar configuration. In some configurations of chamber 240, first surface 245 or second surface 246 may also have a generally curved or non-planar configuration. In comparison with first surface 245, second surface 246 has a greater surface area. More particularly, second surface 246 is depicted as having approximately twice as much surface area as first surface 245, but may range from being substantially equal to having ten times as much surface area, for example. To account for the differences in surface area, sidewall 247 extends from a periphery of first surface 245 and slopes downward to a periphery of second surface 246. In comparison with sidewall 247, which slopes downward, distal ends 243a-243d have a substantially vertical orientation.
The typical motion of the foot during running includes rolling from the outside or lateral side to the inside or medial side, which is referred to as pronation. Chamber 240 complements the motion of the foot during running through the relative locations of the various components of chamber 240. First subchamber 241a is generally located in a lateral portion of footwear 210, and subchambers 241b and 241c are generally located in a medial portion of footwear 210. In this configuration, at least a portion of first subchamber 241a and lobes 242a and 242b underlie the third, fourth, and fifth metatarsophalangeal joints (i.e., the joints respectively between the third, fourth, and fifth metatarsals and the third, fourth, and fifth proximal phalanges). Similarly, at least a portion of second subchamber 241b and lobes 242c and 242d underlie the first and second metatarsophalangeal joints (i.e., the joints respectively between the first and second metatarsals and the first and second proximal phalanges). In addition, at least a portion of third subchamber 241c underlies the first proximal phalanx and first distal phalanx (i.e., the big toe).
Based upon the positions of the various portions of chamber 240 discussed above, the foot may initially compress first subchamber 241a, which is located in the lateral portion of footwear 210 during running. As first subchamber 241a is compressed, the pressure of the fluid within first subchamber 241 a increases and a portion of the fluid passes through conduit 244a and into second subchamber 241b. This has the effect of decreasing the compressibility of second subchamber 241b and assists with inhibiting rolling of the foot from the lateral side to the medial side. As the foot rolls from the lateral side to the medial side, however, second subchamber 241b is compressed and the fluid within second subchamber 241b passes through conduit 244b and increases the pressure of the fluid within third subchamber 241c. This has the effect of decreasing the compressibility of third subchamber 241c and assists with pushing off, which occurs as the foot rolls forward and as the foot is leaving the ground.
Another factor that affects the compressibility of chamber 240 and roll of the foot relates to the slope of sidewall 247. Referring to
Differences in slope of sidewall 247 are also present in second subchamber 241b and third subchamber 241c. In second subchamber 241b, sidewall 247 has a relatively shallow slope in areas that are adjacent to first subchamber 241a and a greater slope in areas adjacent lobes 242c and 242d. As with first subchamber 241a, areas of second subchamber 241b with a relatively shallow slope are more compressible than areas of second subchamber 241b with a greater slope. This facilitates roll of the foot toward second subchamber 241b, but limits further roll of the foot toward the medial portion of footwear 210. Similarly, third subchamber 241c has a configuration wherein sidewall 247 is relatively steep in areas adjacent to second subchamber 241b, but is more shallow in forward areas of third subchamber 241c, thereby facilitating pushing off.
Mold 110 is depicted as having a configuration that is suitable for forming two of chamber 240 in
The general blowmolding process discussed above for chamber 100 may also be utilized for chamber 240. Accordingly, a parison may be located between mold portions 120 and 130, and frames 124 and 134 may initially bond portions of the parison as mold portions 120 and 130 initially translate toward each other. The initial bond formed by frames 124 and 134 traps or otherwise seals fluid within the parison. As mold portions 120 and 130 continue to translate toward each other, the trapped fluid induces the polymer material of the parison to enter cavities 122 and 132, thereby shaping the polymer material. Ridges 123 then form additional bonds (i.e., parting lines) between opposite sides of the parison to seal a portion of the trapped fluid within each of the two chambers 240. Upon removal from mold 110, the two chambers 240 are separated from a remainder of the parison. Accordingly, a variety of chambers with different configurations may be formed with the general blowmolding process discussed above for chamber 100.
The invention is disclosed above and in the accompanying figures with reference to a variety of configurations. The purpose served by the disclosure, however, is to provide an example of the various features and concepts related to the invention, not to limit the scope of the invention. One skilled in the relevant art will recognize that numerous variations and modifications may be made to the configurations described above without departing from the scope of the present invention, as defined by the appended claims.