Claims
- 1. A method of delivering an antigen to the mucosally associated lymphoreticular tissues of an animal, comprising the step of:
- (a) orally or rectally administering said antigen to said animal so that an immunogenically effective amount of said antigen reaches and is selectively taken up by said mucosally associated lymphoreticular tissues, wherein said antigen is microencapsulated in a biocompatible excipient to form microcapsules having a size between approximately 1 micrometer and approximately 10 micrometers.
- 2. The method of claim 1, wherein said antigen is selected from the group consisting of an allergen, viral antigen, bacterial antigen, protozoan antigen and fungal antigen.
- 3. The method of claim 2, wherein said antigen is selected from the group consisting of influenzae antigen, Staphylococcus antigen, respiratory syncytial antigen, parainfluenza virus antigen, Hemophilus influenza antigen, Bordetella pertussis antigen, Neisseria gonorrhoeae antigen, Streptococcus pneumoniae antigen, Plasmodium falciparum antigen, helminthic pathogen antigen and antigen to vaccinate against allergies.
- 4. The method of claim 1, wherein said microcapsules have a size between approximately 5 micrometers and approximately 10 micrometers so that said microcapsules can be retained in said mucosally associated lymphoreticular tissues.
- 5. The method of claim 4, wherein said antigen is selected from the group consisting of influenzae antigen, Staphylococcus antigen, respiratory syncytial antigen, parainfluenza virus antigen, Hemophilus influenza antigen, Bordetella pertussis antigen, Neisseria gonorrhoeae antigen, Streptococcus pneumoniae antigen, Plasmodium falciparum antigen, helminthic pathogen antigen and antigen to vaccinate against allergies.
- 6. The method of claim 1, wherein said microcapsules have a size between approximately 1 micrometer and approximately 5 micrometers so that said microcapsules can pass through said mucosally associated lymphoreticular tissues.
- 7. The method of claim 6, wherein said antigen is selected from the group consisting of influenzae antigen, Staphylococcus antigen, respiratory syncytial antigen, parainfluenza virus antigen, Hemophilus influenza antigen, Bordetella pertussis antigen, Neisseria gonorrhoeae antigen, Streptococcus pneumoniae antigen, Plasmodium falciparum antigen, helminthic pathogen antigen and antigen to vaccinate against allergies.
- 8. The method of claim 1, wherein said microcapsules comprise a plurality of first microcapsules having a size ranging between approximately 1 micrometer and approximately 5 micrometers and a plurality of second microcapsules having a size ranging between approximately 5 micrometers and approximately 10 micrometers, and wherein said administering step comprises the delivery of a mixture of said first and second microcapsules to said animal to provide both systemic immunity and mucosal immunity.
- 9. The method of claim 1, wherein said antigen comprises an influenza virus.
- 10. The method of claim 1, wherein said antigen comprises staphylococcal enterotoxin B.
- 11. The method of claim 1, wherein said biocompatible excipient is selected from the group consisting of poly(lactide-co-glycolide), poly(lactide), poly(glycolide), copolyoxalates, polycaprolactone, poly(lactide-co-caprolactone), poly(esteramides) polyorthoesters and poly(.beta.-hydroxybutyric acid), polyanhydrides and mixtures thereof.
- 12. The method of claim 1, wherein the delivery is orally and the mucosally associated lymphoreticular tissues are the Peyer's patch.
- 13. A method for providing systemic immunity in an animal, comprising the step of:
- (a) orally or rectally administering immunogenically effective amounts of an antigen microencapsulated in a biocompatible excipient to form microcapsules, wherein said microcapsules have a size between approximately 1 micrometer and approximately 5 micrometers and wherein said microcapsules are selectively taken up by the mucosally-associated lymphoreticular tissues so as to potentiate a systemic immune response in said animal.
- 14. The method of claim 13, wherein the delivery is orally and the mucosally associated lymphoreticular tissues are the Peyer's patch.
- 15. A method for providing mucosal immunity in an animal, comprising the step of:
- (a) orally or rectally administering immunogenically effective amounts of an antigen microencapsulated in a biocompatible excipient to form microcapsules, wherein said microcapsules have a size between approximately 5 micrometers and approximately 10 micrometers and wherein said microcapsules are selectively taken up by the mucosally-associated lymphoreticular tissues so as to potentiate a mucosal immune response in said animal.
- 16. The method of claim 15, wherein the delivery is orally and the mucosally associated lymphoreticular tissues are the Peyer's patch.
- 17. A method of potentiating the immune response of an animal, comprising the step of orally or rectally administering to said animal a mixture of immunogenically effective amounts of first biocompatible microcapsules having a size between approximately 1 micrometer and approximately 10 micrometers and containing an antigen encapsulated in a first biocompatible excipient and second biocompatible microcapsules containing said antigen encapsulated in a second biocompatible excipient, said first microcapsules providing a primary immunological response and said second microcapsules releasing said agent contained in said second microcapsules in a pulsed manner to potentiate a subsequent immunological response.
- 18. The method of claim 17, wherein said antigen is selected from the group consisting of influenza antigen, Staphylococcus antigen, respiratory syncytial antigen, parainfluenza virus antigen, Hemophilus influenza antigen, Bordetella pertussis antigen, Neisseria gonorrhoeae antigen, Streptococcus pneumoniae antigen, Plasmodium falciparum antigen, helminthic pathogen antigen and antigen to vaccinate against allergies.
- 19. The method of claim 17, wherein said first biocompatible excipient comprises poly(lactide-co-glycolide) having a first monomer ratio and said second biocompatible excipient comprises poly(lactide-co-glycolide) having a second monomer ratio or poly(lactide), said first and said second monomer ratios being chosen so as to provide different biodegradation rates for said first and said second biocompatible microcapsules.
- 20. A method of potentiating an immunological response in an animal that has been primed with an antigen, comprising the step of orally administering to said animal an immunogenically effective amount of biocompatible microcapsules containing said antigen, said microcapsules having a size between approximately 1 .mu.m and approximately 10 .mu.m.
- 21. The method of claim 20, wherein said antigen is selected from the group consisting of influenzae antigen, Staphylococcus antigen, respiratory syncytial antigen, parainfluenza virus antigen, Hemophilus influenza antigen, Bordetella pertussis antigen, Neisseria gonorrhoeae antigen, Streptococcus pneumoniae antigen, Plasmodium falciparum antigen, helminthic pathogen antigen and antigen to vaccinate against allergies.
- 22. The method of claim 20, wherein said biocompatible excipient is selected from the group consisting of poly(lactide-co-glycolide), poly(lactide), poly(glycolide), copolyoxalates, polycaprolactone, poly(lactide-co-caprolactone), poly(esteramides) polyorthoesters and poly(.beta.-hydroxybutyric acid), polyanhydrides and mixtures thereof.
- 23. The method of claim 20, wherein said antigen comprises an influenza virus.
- 24. The method of claim 20, wherein said antigen comprises staphylococcal enterotoxin B.
- 25. A method of preparing a composition for selectively delivering an antigen to the mucosally associated lymphoreticular tissues of an animal, comprising the step of encapsulating effective amounts of said antigen in a biocompatible excipient to form microcapsules having a size between approximately 1 micrometer and approximately 10 micrometers, wherein said microcapsules are comprised of a plurality of first microcapsules having a size between approximately 1 micrometer and approximately 5 micrometers and a plurality of second microcapsules having a size between approximately 5 micrometers and approximately 10 micrometers, said first and second microcapsules being administered to said animal to provide both a systemic immunity and a mucosal immunity.
- 26. A composition for potentiating the immune response of an animal, comprising a mixture of effective amounts of first biocompatible microcapsules having a size between approximately 1 micrometer and approximately 10 micrometers and containing an antigen encapsulated in a first biocompatible excipient and second biocompatible microcapsules having a size between approximately 1 micrometer and approximately 10 micrometers and containing said antigen encapsulated in a second biocompatible excipient, wherein said first biocompatible excipient comprises poly(lactide-co-glycolide) having a first monomer ratio and said second biocompatible excipient comprises poly(lactide-co-glycolide) having a second monomer ratio or poly(lactide), said first and said second monomer ratios being chosen so as to provide different biodegradation rates for said first and said second biocompatible microcapsules.
- 27. A method of preparing a composition for selectively delivering an antigen to the mucosally associated lymphoreticular tissues of an animal, comprising the step of encapsulating effective amounts of said antigen in a biocompatible excipient to form microcapsules having a size between approximately 1 micrometer and approximately 5 micrometers so that said microcapsules can pass through said mucosally associated lymphoreticular tissues, wherein the mucosally associated lymphoreticular tissues are the Peyer's patch.
- 28. A method of preparing a composition for selectively delivering an antigen to the mucosally associated lymphoreticular tissues of an animal, comprising the step of encapsulating effective amounts of said antigen in a biocompatible excipient to form microcapsules having a size between approximately 1 micrometer and approximately 10 micrometers, wherein said biocompatible excipient is selected from the group consisting of a poly(lactide-co-glycolide), poly(lactide), poly(glycolide), copolyoxalate, polycaprolactone, poly(lactide-co-caprolactone), poly(esteramide), polyorthoester, poly(.beta.-hydroxybutyric acid), polyanhydride and a mixture thereof, wherein the mucosally associated lymphoreticular tissues are the Peyer's patch.
- 29. A composition for selectively delivering an antigen to the mucosally associated lymphoreticular tissues of an animal, comprising an effective amount of said antigen encapsulated in a biocompatible excipient to form microcapsules having a size between approximately 1 micrometer and approximately 10 micrometers in diameter, wherein said biocompatible excipient is selected from the group consisting of a poly(lactide-co-glycolide), poly(lactide), poly(glycolide), copolyoxalate, polycaprolactone, poly(lactide-co-caprolactone), poly(esteramide), polyorthoester, poly(.beta.-hydroxybutyric acid), polyanhydride, and a mixture thereof, wherein the mucosally associated lymphoreticular tissues are the Peyer's patch.
REFERENCE TO APPLICATION
This application is a continuation of application Ser. No. 07/629,138, filed Dec. 18, 1990, now abandoned, which is a continuation-in-part of application Ser. No. 07/325,193, filed Mar. 16, 1989, now abandoned, which is a continuation-in-part of application Ser. No. 07/169,973, filed Mar. 18, 1988, now U.S. Pat. No. 5,075,109, which is a continuation-in-part of application Ser. No. 06/923,159, filed Oct. 24, 1986, now abandoned.
US Referenced Citations (60)
Foreign Referenced Citations (2)
Number |
Date |
Country |
0523028 |
Oct 1979 |
AUX |
523028 |
Oct 1979 |
AUX |
Continuations (1)
|
Number |
Date |
Country |
Parent |
629138 |
Dec 1990 |
|
Continuation in Parts (3)
|
Number |
Date |
Country |
Parent |
325193 |
Mar 1989 |
|
Parent |
169973 |
Mar 1988 |
|
Parent |
923159 |
Oct 1996 |
|