The present invention is related to a package method and related apparatus, particularly to a method for packaging LED chip modules and moving fixture thereof.
Nowadays, methods for packaging LED chips are substantially similar to those for packaging general chips.
Referring to
While the above-mentioned process is suitable for mass production of LED chip modules, the process is burdened by very serious drawbacks. One significant limitation is that as improvements are made allowing LED chips 100 to become smaller, a mismatch is created between the pre-produced packaging base 12 and the chip 100. The volume of the pre-produced packaging base 12 is incapable of being reduced because of the machining existing in the packaging base.
In view of the above, a novel technology for packaging LED is provided in Taiwan Patent Application No. 096141685 to address the above-mentioned problem. In this manner, the volume of the packaged LED chip module may be reduced effectively, and brightness is improved at the same time.
However, other problems remain with mass production of LEDs. One problem occurs when LED chips are embedded, one at a time, into a recently deposited or coated layer of “photoresist.” The photoresist layer may dry and cure before all of the LED chips are embedded into the layer.
The present invention provides a method for packaging LED chip modules that better facilitates their mass production.
The present invention provides a moving fixture, used in the method for packaging LED chip modules, suitable for moving multiple chips synchronously.
The present invention provides a method for packaging LED chip modules, suitable for mass-producing multiple LED chip modules. Each of the LED chip modules comprises at least one LED chip. This method for packaging comprises: disposing a first sacrificial layer on a substrate; synchronously disposing multiple LED chips on the first sacrificial layer before the first sacrificial layer has been cured; forming a support layer from a first material, a second sacrificial layer, and a second material on the cured first sacrificial layer, wherein a module pattern is defined in the second sacrificial layer, and the support layer comprises the first material and the second material; and removing the first sacrificial layer and the module pattern, so as to obtain the LED chip modules, wherein each of the LED chip modules comprises the corresponding support layer.
In one embodiment of the present invention, the thickness of the first sacrificial layer is not larger than the height of the LED chip in the step of disposing a first sacrificial layer.
In one embodiment of the present invention, the method for packaging further comprises a step of arranging chips and a step of moving chips prior to the step of synchronously disposing chips. In the step of arranging and placing chips, each of the LED chips is placed into a corresponding accommodating location in a carrying disc of a moving fixture. In the step of moving chips, the multiple LED chips placed in the carrying disc are moved synchronously and correspondingly.
In one embodiment of the present invention, in the step of arranging chips, each of the multiple LED chips is removed chip-by-chip from a wafer attached on a blue tape and comprising the LED chips, using vacuum suction, and then placed in each of the accommodation locations, arranged in a matrix form, in the carrying disc.
In one embodiment of the present invention, the moving fixture comprises multiple suction tips, further comprising the step of synchronously sucking said LED chips through vacuum suction using said suction tips, and then placing them, synchronously, in said carrying disc.
In one embodiment of the present invention, the method for packaging further comprises a step of sticking chips subsequent to the step of synchronously disposing chips. In the step of sticking chips, the first sacrificial layer is cured so as to stick the LED chips to the substrate.
In one embodiment of the present invention, the step of forming a support layer comprises steps as follows: forming a reflector film from the first material on the cured first sacrificial layer, defining the module pattern on the reflector film by the second sacrificial layer to form multiple independent and exposed regions, forming a base on each of the independent and exposed regions from the second material, in which a region of the reflector film corresponding to each of the bases is a reflector, the reflectors and the bases together form the support layer.
In one embodiment of the present invention, the step of forming a support layer comprises steps as follows: defining the module pattern by the second sacrificial layer on the cured first sacrificial layer to form multiple independent and exposed regions, forming a reflector and a base on each of the independent and exposed regions from the first material and the second material in turn, in which the reflectors and the bases together form the support layer.
In one embodiment of the present invention, each of the LED chip modules comprises an optical cup constituted by a predetermined zone of a corresponding support layer, and a predetermined number of LED chips located in the optical cup.
In one embodiment of the present invention, each of the first sacrificial layer and the second sacrificial layer is a photoresistant layer.
The present invention provides a moving fixture, suitable for moving multiple LED chips synchronously. The moving fixture comprises an upper molding board, a lower molding board, and a carrying disc. The upper molding board is provided with a vacuum chamber. The lower molding board is provided with multiple through-holes. The through-holes pass through a body of the lower molding board and communicate with the vacuum chamber. The carrying disc is provided with multiple accommodating locations, into which the LED chips are placed. In this connection, the LED chips placed in the carrying disc are adapted to be sucked synchronously by the moving fixture using vacuum suction.
In one embodiment of the present invention, the moving fixture further comprises a vacuum seal ring. The vacuum seal ring is clamped between the upper molding board and the lower molding board, in which the vacuum chamber of the upper molding board is located within the enclosing range of the vacuum seal ring.
In one embodiment of the present invention, the vacuum chamber and a vacuum piping are connected with each other.
In one embodiment of the present invention, the carrying disc comprises at least one first locator.
In one embodiment of the present invention, the lower molding board comprises at least one second locator. The second locator is cooperated with the first locator, in such a way that the first and second locators are positioned perpendicularly to each other.
In one embodiment of the present invention, the moving fixture further comprises multiple suction tips. The suction tips are corresponding and communicating with respective ones of the through-holes extending outwardly from an external surface of the board body of the lower molding board. Here, the LED chips placed in the carrying disc are sucked synchronously by the suction tips using vacuum suction.
In one embodiment of the present invention, the suction tips and accommodating locations of the carrying disc are arranged correspondingly with each other in a matrix form.
Based on the above, in the embodiments of the present invention, a special fixture is used to position chips all at once, so as to eliminate the problem of incapability of actual mass-production resulted from only positioning chips chip-by-chip being allowed presently.
For better understanding of above-mentioned features and advantages, the present invention will be described by specific embodiments in conjunction with accompanying drawings in detail as follows.
In the exemplified embodiments of the present invention, a method for packaging mass-produced LED chip modules, used for mass-producing the LED chip modules including optical cups in practice, is provided. In this connection, the method for packaging mass-produced LED chip modules comprises steps of disposing sacrificial layer, arranging chips, sucking chips by a fixture, synchronously disposing chips, sticking chips, forming a support layer, and removing sacrificial layer for obtaining finished product, so as to mass-produce the LED chip modules.
In the step of disposing sacrificial layer, a layer of first photoresist (i.e., a first sacrificial layer), having a thickness not larger than the height of the LED chip, is disposed onto a temporary substrate.
In the step of arranging chips, each of the LED chips is removed from a blue tape chip-by-chip by means of vacuum suction, when a wafer is attached to the blue tape and cut into multiple LED chips. It is followed by placing each of the removed LED chips, in turn, into each accommodating location of a carrying disc having accommodating locations in a matrix form.
In the step of sucking chips by a fixture, a fixture having numerous suction tips is used to suck the numerous LED chips located in the carrying disc via the suction tips one-to-one at the same time in a way of vacuum suction.
In the step of synchronously disposing chips, the fixture is moved to press the sucked numerous LED chips all at once into the first photoresist at the same time, before the first photoresist is not cured yet, in such a way that the first photoresist may be formed as a continuously smooth concave pattern towards the temporary substrate, from the contact area with each of the LED chips, due to surface tension.
In the step of sticking chips, the first photoresist formed with numerous concave arc patterns is cured, so as to stick the LED chips.
In the step of forming a support layer, a support layer is formed on the cured first photoresist, and a module pattern, over the predetermined number of the LED chips, is defined in cooperation with the second photoresist (i.e., a second sacrificial layer), so as to obtain the numerous LED chip modules, connected to the temporary substrate by means of the first photoresist, respectively, in which each of the LED chip modules is provided with an optical cup constituted by a predetermined zone of the support layer, and a predetermined number of the LED chips located in the optical cup.
In the step of removing sacrificial layer for obtaining finished products, the first photoresist and the module pattern are removed, in such a way that the temporary substrate and the LED chip modules are separated, for obtaining the numerous LED chip modules.
In the exemplified embodiments of the present invention, the effect consists in: mass-producing the LED chip modules including the optical cups in seven steps in cooperation with the fixture in practice.
In the following description, similar elements indicated by the same number. The description of each embodiment is used for illustrating the specific embodiment capable of being embodied by the present invention with reference to accompanying drawings. The terms for direction, such as “upper”, “lower”, “front”, “rear”, “left”, “right”, and etc., for example, mentioned in the present invention is only the direction with reference to the accompanying drawings. Therefore, these terms for direction are used for describing, not for restricting the present invention.
In this embodiment, referring to
Exemplified embodiments of the method for packaging mass-produced LED chip modules illustrated below will be more clear when they are read in conjunction with the above-mentioned description of the LED chip module 4.
At this time, the steps of arranging chips 32 and sucking chips by a fixture 33 are carried out synchronously.
In this embodiment, the upper molding board 652 is provided with a passing vacuum chamber 655 connectable to the vacuum piping (not shown) in the production line and located within the enclosing range of the vacuum seal ring 654. The lower molding board 653 is further provided with numerous through-holes 656 passing through the board body and communicated with the vacuum chamber 655. Moreover, the suction tips 651 are in communication with respective and corresponding through-holes 656, and projecting and extending downwardly from the lower external surface of the board body.
In addition, the lower molding board 653 of the fixture 65 is provided with a plurality of second locators 657 matched and positioned perpendicularly to the first locators 642. Thereby, the fixture 65 is allowed to suck each of the LED chips 100 in the carrying disc 64 precisely by means of each of the corresponding suction tips 651, when its second locators 657 are positioned perpendicularly to the first locators 642 of the carrying disc 64.
Afterwards, a step of sticking chips 35 is carried out, and the first photoresist 61 formed with numerous concave arc patterns is thus cured. In the step of sticking chips 35, the first photoresist 61 is cured by means of baking, for example.
In the step of forming a support layer 36, in more detail, the cured first photoresist 62 is firstly plated thereon with a material having high reflectivity to form a reflector film 661. On the reflector film 661, subsequently, there is disposed with the liquid second photoresist 67. Afterwards, the second photoresist 67 is defined as the module pattern 68 by means of lithography process. At this time, the surface of a reflector film 661 is formed with numerous independent and exposed regions by means of the module pattern 68. Subsequently, the surface of the reflector film 661 is further thickened to form numerous bases 412 by means of a material of high thermal conductivity (for instance, copper). In this case, a region of the reflector film 661 corresponded by each of the bases is just a reflector 411. In this embodiment, the support layer 66 is constituted by the reflector 411 and the base 412, for example, so as to obtain the multiple LED chip modules 4, connected with the first photoresist 62 and temporary substrate 61, respectively.
In the step of forming a support layer 36 of this embodiment, the cured first photoresist 62 is firstly disposed with the liquid second photoresist 67, and this second photoresist 67 is then defined as the module pattern 68 by means of lithography process, to form multiple independent and exposed regions. In each of these independent and exposed regions, afterwards, the reflector 411 and the base 412 are formed from the material of high reflectivity and the material of high thermal conductivity in turn, in which the reflector 411 and the base 412 form the support layer 66 together.
Subsequently, referring to
It should be stated that, when the first photoresist 62 and the module pattern 68 are removed during the step of removing sacrificial layer for obtaining finished products 37, the local structure of the reflector film 661 covered by the module pattern 68 is etched to be removed directly due to extreme thinness of the reflector, so as to obtain the numerous independent LED chip modules 4.
It should be stated, additionally, one LED chip 100 in one optical cup 41 is described in all of the exemplified embodiments of the present invention. However, it is known to those having ordinary skill in the art that a plurality of LED chips 100 in one optical cup 41 is achieved, only the change in pattern is required for defining the second photoresist 67 as the module pattern 68. This is only a simple design of pattern change, and thus should not be detailed herein.
To sum up, in the embodiments of the present invention, a special fixture is used to position chips all at once, for the elimination of the current problem of incapability of actual mass-production resulted from only positioning all chips chip-by-chip. Additionally, in the embodiments of the present invention, the volume of the packaged LED chip module may be reduced effectively, and brightness is improved at the same time.
Although the present invention has been disclosed by embodiments as above, the present invention is not thus restricted. A few of variations and modifications are possible for those having ordinary skill in the art without departing from the spirit and scope of the invention. Thus, the scope of the present invention should depend upon what the appended claims define.
Number | Date | Country | Kind |
---|---|---|---|
099130225 | Sep 2010 | TW | national |