Method for performing chemical-mechanical polishing

Information

  • Patent Grant
  • 6261958
  • Patent Number
    6,261,958
  • Date Filed
    Monday, November 29, 1999
    24 years ago
  • Date Issued
    Tuesday, July 17, 2001
    23 years ago
Abstract
An apparatus and method for performing chemical-mechanical polishing is disclosed in which the pad is secured to the platen without the use of adhesives. A polishing pad and a platen are secured together by a releasable attractive force; the force may comprise a vacuum or electromagnetic force, and the pad has a hard or magnetic backside layer for facing the plating and responding to the attractive force. This invention has particular application to chemical-mechanical polishing for use in planarizing dielectrics.
Description




FIELD OF THE INVENTION




The present invention relates to an apparatus and method for performing chemical-mechanical polishing and, more particularly, to an apparatus and method for chemical-mechanical polishing involving a polishing pad and a platen secured together by a releasable attractive force. This invention has particular application to chemical-mechanical polishing for use in planarizing dielectrics.




BACKGROUND OF THE INVENTION




Chemical-mechanical polishing generally involves pressing a substrate against a wetted, polishing platen within a polisher apparatus, with the conditions being controlled as to the temperature, pressure, and chemical environment. In a typical chemical-mechanical polishing (“CMP”) apparatus, a pad is glued onto a circular metal platen in the polisher. The CMP pad is usually about twenty to thirty inches in diameter and 100 mils in thickness, depending on the application. The pads are customarily formed of a relatively soft material, such as polyurethane. The substrate to be planarized is placed on a carrier and then pressed against the pad while both the pad and substrate rotate, as a polishing slurry is applied. The polishing slurry often is comprised of abrasive materials (i.e., silica, alumina, or ceria), suspended in water, with additives to obtain a specific pH and create oxide layers on the materials to be polished that can be abraded easily by the particles. In some applications, such as those involving a silicon substrate or metal polishing, the friction between the substrate and the pad can generate a significant amount of heat.




For example,

FIG. 1

illustrates a pad and platen as used in a typical CMP polisher apparatus. As shown in

FIG. 1

, a CMP apparatus comprises a pad


10


and a platen


12


; a layer of adhesive


14


secures the pad to the platen when they are pressed together following the arrows A. The substrate


16


to be planarized is secured to a carrier


18


. The carrier


18


may include a vacuum (not shown) for holding the substrate to the carrier during the load and unload steps. While polishing, however, the vacuum is normally deactivated, and the substrate


16


is held in place by the high coefficient of friction between the carrier


18


and the substrate


16


. Also, the carrier may be conformed (e.g., with use of a polymer sheet or wax) to receive the substrate


16


, and it may be adapted to receive a plurality of substrates to be planarized simultaneously. In operation, a polishing slurry


20


is placed over the pad


10


, and the carrier


18


presses the substrate


16


against the pad following the arrow B. The carrier


18


and/or the platen


12


may rotate the substrate on the pad, or vibrate or oscillate, as illustrated by the arrows R. As the whetted pad


10


is pressed against and moved across the surface of the substrate


16


, the surface of the substrate is polished by chemical and mechanical means, the aim being to remove metal layers or achieve a smooth and uniform surface.




This CMP process has become the process of choice for planarizing interlevel dielectric layers, particularly as circuit densities have increased. A major issue in planarizing the layers involves achieving a substrate surface that is completely smooth and uniform. Often, irregular or wavy surfaces may be formed on the substrate, occurring at the microlevel and having a negative impact on the productivity and reliability of the integrated-circuit devices. Much effort has been applied to developing improved CMP methods for efficiently obtaining a uniform planarized surface. Efforts have been made, for example, to develop new materials and apparatuses for the parts that arc directly adjacent to or impact upon the substrate surface, that is, the carrier, the slurry, the pad, or the substrate itself See, for example, U.S. Pat. No. 5,643,053, to Shendon issued Jul. 1, 1997, entitled “Chemical Mechanical Apparatus with Improved Polishing Control” (addressing the carrier); U.S. Pat. No. 5,609,719, to Hempel issued Mar. 11, 1997, entitled “Method for Performing Chemical Mechanical Polish (CMP) of a Wafer” (addressing the pad and its ability to retain slurry); U.S. Pat. No. 5,514,245 to Doan et al., issued May 7, 1996, entitled “Method for Chemical Planarization of A Semiconductor Wafer to Provide A Planar Surface Free of Microscratches” (addressing the pad composition); and U.S. Pat. No. 5,449,314 to Meikle et al., entitled “Method of Chimical [sic] Mechanical Polishing for Dielectric Layers” (addressing the composition of the substrate itself).




The instant invention provides an improved apparatus and method in which difficulties with the CMP process are addressed through parts that are not directly adjacent to the substrate surface. Further advantages of this invention should appear more fully upon consideration of the detailed description given below.




SUMMARY OF THE INVENTION




Summarily described, the invention embraces an apparatus for chemicalmechanical polishing wherein the pad and platen are secured together by a releasable attractive force, and the pad has a backside layer adapted to respond to the attractive force. The attractive force may comprise a vacuum force or electromagnetic force, and the force can be activated or deactivated via a switch. In the embodiment comprising the vacuum force, the platen is perforated, having a plurality of holes opening to its major surface, and it is coupled to a vaccum source for securing the pad to the platen; the backside of the pad comprises a thin layer of a hard material, preferably plastic or metal. In the embodiment comprising the electromagnetic force, the backside layer of the pad comprises a thin layer of magnetic material, and one or more electromagnets are incorporated into the platen. The invention further involves a method for performing this CMP process.











BRIEF DESCRIPTION OF THE DRAWINGS




For a better understanding of the invention, an exemplary embodiment is described below, considered together with the accompanying drawings, in which:





FIG. 1

is a cross-sectional side view of a prior art pad and platen for use in a CMP polisher apparatus.





FIG. 2

is a cross-sectional side view of one embodiment of the inventive apparatus involving use of a vacuum force.





FIG. 2A

shows a top view of the polishing platen (bottom plate) used in the embodiment shown in FIG.


2


.





FIG. 2B

shows a plan view of the top plate used in the embodiment shown in FIG.


2


.





FIG. 2C

shows a three-dimensional view of the top plate shown in

FIGS. 2 and 2B

.





FIG. 3

is a cross-sectional side view of one embodiment of the inventive apparatus involving use of an electromagnetic force.




It is to be understood that these drawings are for the purposes of illustrating the concepts of the present invention and are not to scale.











DETAILED DESCRIPTION OF THE INVENTION




Applicants have discovered that the use of adhesives is a cause of difficulties or inefficiencies with the CMP process. With prior art CMP processes, the pad is typically secured to the platen by use of a film of a pressure-sensitive adhesive disposed between them (e.g., layer


14


in FIG.


1


). It has been discovered that the use of adhesives is problematic in many ways. Initially, in light of the pressure and high temperature generated with some processes, it is necessary that the properties of the adhesive be carefully maintained by the pad manufacturers. This interjects inefficiencies and complications in the process.




Also, it is generally necessary that the pad be manually removable for frequent replacement, as the pad wears out after polishing a certain number of wafers (anywhere from 100 to around 700), and it needs to be continuously conditioned (or abraded), to maintain a high and stable polishing rate. Especially in high-volume manufacturing, the removability of the pads becomes a problem because in such cases the pads may need to be replaced on a daily basis. However, to ensure the integrity of the polishing process, it is necessary that the pad be firmly secured on the platen while the process is being carried out. With adhesives, it is difficult to obtain a secure bond between the pad and platen that can withstand the high temperatures, high pressures, and chemically-reactive environment of the polishing process, but that also provides a readily-reversible bond so the pads can be removed or exchanged without excessive effort. Consequently, operators of CMP apparatuses have had to exert force in seeking to manually remove the pads from their platens to overcome the adhesive bond, which can be strenuous and inefficient.




It also has been discovered that, with the use of adhesives, air pockets may become trapped between the pad and platen. These air pockets, it has been found, negatively impact upon the uniformity of the polishing. Especially considering the high pressures involved in the process and the soft material typically used in fabricating the pad, these air pockets can cause defects or perturbations in the wafer or substrate surface, disrupting the uniformity of the polishing process. Another problem involved with adhesives is a lack of consistency in the adhesive properties from pad to pad; that is, in some cases a certain batch of pads may not glue properly to the platens. In such cases, the defective batch of pads may come loose after being used to polish only a small number of wafers, thereby creating inefficiencies. Yet another problem with adhesives is that the residue build up on the platen can only be removed in some cases with highly flammable solvents (e.g., acetone), creating a fire hazard.




It therefore is desirable to provide a CMP apparatus and process that avoids the use of adhesives. The instant invention provides an improved apparatus for firmly securing the pad to the platen of the chemical-mechanical polishing apparatus. Referring to the drawings,

FIG. 1

shows a prior art pad and platen for use in a CMP polisher apparatus, which has been previously described. Since the invention addresses the manner in which the pad is secured to the platen, the type of wafer or substrate


16


or type of carrier


18


used are not critical to this invention and thus are shown in

FIGS. 2 and 3

for illustrative purposes, that is, to show operation of the invention.




Referring to

FIG. 2

, there is shown one embodiment of the inventive apparatus. The pad


30


has an upper layer


32


for contacting the wafer


16


and a backside layer


34


which faces the platen


40


when the pad and platen are secured together following the arrow C. The upper layer


32


may be fabricated with any materials known in the art for fabricating CMP pads. The backside layer


34


is comprised of a hard material having low compressibility, preferably plastic or metal. An advantageous material to be used for fabricating the backside layer


34


, for example, includes the polymeric material sold under the tradename MYLAR®. Preferably, the backside layer


34


is approximately 5-20 mils thick.




Referring still to

FIG. 2

, the platen


40


has a polishing table


39


which is comprised of a top plate


46


and a bottom or lower plate


40


. The top plate


46


is preferably comprised of metal; it is perforated, that is, it has a plurality of small diameter holes traversing its width, i.e.,


41


,


42


,


43


,


44


,


45


, and so forth, that open to the top or major surface of the top plate


46


. The bottom plate


40


has vacuum channels


48


running radially outward from the center of the plate, as also can be seen in FIG.


2


A. Looking at

FIGS. 2A and 2B

, the holes are placed in the top plate


46


so that they will align with vacuum channels


48


, when the two plates are placed adjacent each other.




Referring now to

FIG. 2

, the channels


48


are coupled to a vacuum source


55


. The vacuum source comprises a vacuum line


49


, which runs inside a rotating shaft


50


supporting the platen


40


, as well as a vacuum seal


51


, a vacuum hose


52


, and a vacuum switch


53


. The vacuum line


49


is coupled to the vacuum hose


52


. The vacuum seal


51


is placed over the connection between the vacuum line


49


and vacuum hose


52


. The vacuum switch


53


, is coupled to the vacuum hose


52


for turning the vacuum on and off. The vacuum hose


52


is then coupled to a vacuum


58


.





FIG. 2C

shows a three-dimensional view of the top plate


46


with the vacuum holes. When a polishing table of 32 inches in diameter is used, the top plate can be about 0.25-0.50 inches in thickness. The top plate


46


can be fabricated with a high strength, low thermal expansion metal. It is advantageous to provide holes


41


,


42


,


43


, etc., having a diameter of about 2 millimeters and covering about 2% of the surface area of the platen


46


. For example, for a platen having a diameter of 32 inches, holes ranging in number from 2000 to 3000 have proved advantageous. However, there are many ways in the hole patterns could be arranged. Different layouts, numbers of holes, and hole sizes are contemplated, although the hole pattern used may affect the holding force of the vacuum source and the uniformity of force distributed across the pad.




In operation, the pad


30


is positioned on the perforated platen, with its hard backside layer


34


facing the platen; the pad


30


and platen


40


are placed together, following the arrow C. Once the desired position of the pad relative to the platen is achieved, the vacuum source


55


is turned on or activated, thus exerting an attractive force on the pad; that is, the vacuum source suctions the pad toward the platen and secures the pad thereon. The backside layer


34


of the pad responds to the vacuum force by exerting a contact force on the upper surface of the platen


46


. The hard backside layer


34


also serves to protect the upper layer


32


of the pad from the suctioning power of the vacuum source


55


. An advantageous vacuum level is less than 2×10


−3


psi (1 Torr), which will hold the pad firmly in place during the CMP process when a platen having holes as previously described is used. It is understood, however, that the desired vacuum level may change depending upon the number and diameter of the holes in the platen, and vice versa. Once the CMP process is completed, the vacuum can be turned off using the switch


53


, and the operator can easily remove the pad


30


from the polishing table


39


.




Referring to

FIG. 3

, there is shown an alternate embodiment of the invention. The platen


30


again has an upper layer


32


and a backside layer


36


; here, the backside layer


36


is comprised of a magnetic material. For example, a suitable material for fabricating the backside layer


36


includes a thin steel sheet. The platen


40


has an electromagnet


54


or alternatively a plurality of electromagnets (not shown), incorporated within it. The electromagnet


54


(or each of the plurality of electromagnets) is coupled to a switch


56


for activating or deactivating the electromagnetic force exerted by the electromagnet. In operation, the pad


30


is placed on the platen


40


, with its magnetic backside layer


36


facing the platen; the pad


30


and platen


40


are placed together, following the arrow C. Once the desired position of the pad relative to the platen is achieved, the electromagnet is turned on, thus exerting an attractive force on the magnetic backside layer


36


; the magnetic backside layer


36


is pulled toward the platen, and exerts a corresponding force on the platen, thus securing the pad thereon. Once the CMP process is completed, the electromagnet(s) can be turned off using the switch


56


, and the operator can easily remove the pad


30


from the platen


40


.




It will be understood that the embodiments described herein are merely exemplary and that a person skilled in the art may make variations and modifications without departing from the spirit and scope of the invention. All such variations and modifications are intended to be included within the scope of the appended claims.



Claims
  • 1. A method for performing chemical-mechanical polishing of a substrate surface, comprising:providing a pad having a top and a bottom surface; placing the substrate on the top surface of the pad; disposing the bottom surface of the pad on a platen of a chemical-mechanical polishing apparatus; applying a releasable attractive force to the bottom surface of the pad so that the pad is pulled in the direction of the platen; and coupling the releasable attractive force to a switch for activating and deactivating the force so that the pad can be selectively secured onto and removed from the platen; and performing chemical mechanical polishing of a substrate surface.
  • 2. The method of claim 1 in which the pad is provided with a backside layer at its bottom surface for facing the platen and responding to the attractive force.
  • 3. The method of claim 1 in which the releasable attractive force is a suctioning force of a vacuum.
  • 4. The method of claim 3 in which the platen is provided with a plurality of holes traversing its width so that the suctioning force can traverse the width of the platen through the plurality of holes to pull the pad in the direction of the platen.
  • 5. The method of claim 1 in which the releasable attractive force is an electromagnetic force.
  • 6. The method of claim 5 in which the electromagnetic force is provided with at least one electromagnet disposed within the platen.
  • 7. The method of claim 6 in which the pad is provided with a backside layer of magnetic material at its bottom surface for facing the platen and responding to the at least one electromagnet within the platen.
  • 8. The method of claim 1 in which the steps are performed sequentially.
  • 9. A method of planarizing a substrate surface with a chemical-mechanical polishing apparatus, the method comprising:providing a pad and a platen, the pad having a top and a bottom surface, the bottom surface of the pad having a layer of magnetic material and the platen having at least one electromagnet disposed therein, placing the substrate on the top surface of the pad so that the substrate surface to be planarized is oppositely disposed to the pad; disposing the bottom surface of the pad having the layer of magnetic material on the platen; activating the force exerted by the at least one electromagnet so that the layer of magnetic material is pulled in the direction of the platen; planarizing the substrate surface; and deactivating the force exerted by the at least one electromagnet so that the pad can be removed from the platen.
  • 10. The method of claim 9 in which a plurality of substrates to be planarized are disposed on and removed from the pad while the electromagnetic force is activated.
  • 11. A method of planarizing a substrate surface with a chemical-mechanical polishing apparatus, the method comprising:providing a pad and a platen, the pad having a top and a bottom surface and the platen having a plurality of holes therein traversing its width, placing the substrate on the top surface of the pad so that the substrate surface to be planarized is oppositely disposed to the pad; disposing the bottom surface of the pad on the platen; activating a suctioning force through the plurality of holes of the platen so that the pad is suctioned in the direction of the platen; planarizing the substrate surface; and deactivating the suctioning force so that the pad can be removed from the platen.
  • 12. The method of claim 11 in which a plurality of substrates to be planarized are disposed on and removed from the pad while the suctioning force is activated.
  • 13. The method of claim 11 in which the bottom surface of the pad is provided with a layer of material having low compressibility.
RELATED APPLICATIONS

This application is a divisional application of U.S. patent application Ser. No. 08/947,178, filed Oct. 8, 1997, now U.S. Pat. No. 6,033,293, and claims the priority date thereof.

US Referenced Citations (5)
Number Name Date Kind
5830043 Aaron et al. Nov 1998
5948203 Wang Sep 1999
5989103 Birang et al. Nov 1999
6033293 Crevasse et al. Mar 2000
6059638 Crevasse et al. May 2000