The present invention relates to servo defect compensating operation of an optical disc drive, and more particularly, to a method of servo defect compensation for a scratch disc and a related optical disc drive system with a digital signal processor (DSP).
In a conventional optical disc drive comprising an optical pick-up unit for reading an optical medium having defects such as a scratch, there is no defect compensation scheme when the optical pick-up unit passes through the defect. The focusing and tracking servo is in a close loop control while reading data from the optical medium, and after the optical pick-up unit passes through the defect, the focusing and tracking servo will probably point at somewhere far from the desired focus/tracking point due to factors such as spindle rotating speed, clamp direction, size of the defect, defect detect level, and digital equalizer design. The focusing and tracking servo traces back using a larger transient response, but the RF quality of data read from the optical medium is typically deteriorated. This issue becomes more serious in high resolution discs such as Blu-ray
It is therefore one of the objectives of the present invention to provide a method for performing a servo defect compensating operation by compensating a servo-related signal in an optical disc drive and a related optical disc drive system with a DSP, so as to solve the above problem.
In accordance with an embodiment of the present invention, a method for performing a servo defect compensating operation by compensating a servo-related signal in an optical disc drive is disclosed. The method comprises reading an optical medium by an optical pick-up unit; detecting whether a defect exists by monitoring a side beam signal; when the defect on the optical medium is detected, determining a new compensation value based on a servo error signal; and compensating the servo-related signal with the new compensation value during defect crossing to adjust servo control when the optical pick-up unit passes the defect.
In accordance with an embodiment of the present invention, an optical disc drive system for performing a servo defect compensating operation by compensating a servo-related signal is disclosed. The optical drive system comprises an optical pick-up unit and a digital signal processor (DSP). The optical pick-up unit is for reading an optical medium. The DSP is for detecting whether a defect exists by monitoring a side beam signal, and determining a new compensation value based on a servo error signal when the defect on the optical medium is detected, and compensating the servo-related signal with the new compensation value during defect crossing to adjust servo control when the optical pick-up unit passes the defect.
The method and the optical disc drive system with the DSP disclosed by the present invention can perform the servo defect compensating operation in real time for an optical disc drive comprising an optical pick-up unit for reading an optical medium having at least a defect, so as to let the focus/tracking servo approach the focus/tracking point and thereby improve the RF quality.
These and other objectives of the present invention will no doubt become obvious to those of ordinary skill in the art after reading the following detailed description of the preferred embodiment that is illustrated in the various figures and drawings.
Certain terms are used throughout the following description and the claims to refer to particular system components. As one skilled in the art will appreciate, manufacturers may refer to a component by different names. This document does not intend to distinguish between components that differ in name but not function. In the following discussion and in the claims, the terms “include”, “including”, “comprise”, and “comprising” are used in an open-ended fashion, and thus should be interpreted to mean “including, but not limited to . . . ” The terms “couple” and “coupled” are intended to mean either an indirect or a direct electrical connection. Thus, if a first device couples to a second device, that connection may be through a direct electrical connection, or through an indirect electrical connection via other devices and connections.
In some embodiments, the optical medium 10 as shown in
FE_DEV/TE_DEV=(Peak or Bottom) at T1−FE_BAL/TE_BAL (1)
Next, a new compensation value FEOFT_PROT_new or TEOFT_PROT_new of the embodiment is derived from a current compensation value FEOFT_PROT_now or TEOFT_PROT_now, the deviation result FE_DEV or TE_DEV, and a gain GAIN_FE or GAIN_TE by the following formulae (2) and (3):
FEOFT_PROT_new=FEOFT_PROT_now+FE_DEV/GAIN_FE (2)
TEOFT_PROT_new=TEOFT_PROT_now+TE_DEV/GAIN_TE (3)
The new compensation value FEOFT_PROT_new or TEOFT_PROT_new is then updated to the DSP command to compensate FE or TE after passing the detected defect. The servo defect compensation method of the embodiments detects and predicts a direction or/and an amount of FE or TE offset caused by a disc defect based on the focus error signal FE or tracking error signal TE. When crossing the disc defect, FE or TE is compensated by combining with a predicted FE or TE compensation value to make the servo control approaches the actual focusing point or tracking point after passing the defect area. In comparison to the system without the servo defect compensation method, the servo control needs a greater transient response to track the actual focusing or tracking point after crossing the defect on the disc.
In a second embodiment, a method for performing the servo defect compensating operation is conducted by compensating a focus error DC signal FEDC or tracking error DC signal TEDC in the optical disc drive system 1000.
The second embodiment may utilize formulae (4) and (5) to derive the compensated focus error DC signal and tracking error DC signal similar to formulae (2) and (3) of the first embodiment.
FEDC_new=FEDC_now+FE_DEV/GAIN_FEDC (4)
TEDC_new=TEDC_now+TE_DEV/GAIN_TEDC (5)
In a third embodiment, a method for performing the servo defect compensating operation is conducted by compensating a focus servo output hold signal FOO_HOLD or tracking servo output hold signal TRO_HOLD in the optical disc drive system 1000.
The third embodiment may utilize formulae (6) and (7) to derive the compensated focus servo output hold signal and tracking servo output hold signal similar to formulae (2) and (3) of the first embodiment.
FOOHOLD_new=FOOHOLD_now+FE_DEV/GAIN_FOOHOLD (6)
TROHOLD_new=TROHOLD_now+TE_DEV/GAIN_TROHOLD (7)
Please note that the above embodiments are only for illustrative purposes and are not meant to be limitations of the present invention. In other embodiments, for example, the methods of the first embodiment, the second embodiment, and the third embodiment can be combined for performing the servo defect compensating operation.
Briefly summarized, the method and the optical disc drive system with the DSP disclosed by the present invention can perform the servo defect compensating operation in real time for an optical disc drive system comprising an optical pick-up unit for reading an optical medium having at least a defect, so as to let the focus/tracking servo approach the focus/tracking point and thereby improve the RF quality.
Those skilled in the art will readily observe that numerous modifications and alterations of the device and method may be made while retaining the teachings of the invention.
Number | Name | Date | Kind |
---|---|---|---|
4613961 | Aarts | Sep 1986 | A |
5504726 | Semba | Apr 1996 | A |
6445529 | Mahr | Sep 2002 | B1 |
20050243673 | Yanagawa et al. | Nov 2005 | A1 |
20050270942 | King et al. | Dec 2005 | A1 |
20060013082 | Ogura et al. | Jan 2006 | A1 |
20070230302 | Chen | Oct 2007 | A1 |
20080239536 | Asakura | Oct 2008 | A1 |
20090168616 | Chung et al. | Jul 2009 | A1 |
20110044144 | Tada et al. | Feb 2011 | A1 |
Number | Date | Country | |
---|---|---|---|
20100039913 A1 | Feb 2010 | US |