Features of the present invention will become apparent to those skilled in the art from the following description with reference to the figures, in which:
For simplicity and illustrative purposes, the present invention is described by referring mainly to an exemplary embodiment thereof. In the following description, numerous specific details are set forth in order to provide a thorough understanding of the present invention. It will be apparent however, to one of ordinary skill in the art, that the present invention may be practiced without limitation to these specific details. In other instances, well known methods and structures have not been described in detail so as not to unnecessarily obscure the present invention.
Disclosed herein are methods and systems for printing onto a print media. More particularly, the methods and systems disclosed herein substantially reduce or eliminate printing defects in a margin section of the print media caused by nozzles that are out. In one example, the printing defects may substantially be reduced through micro-linefeeding of the print media between passes of a printhead during printing onto the margin section. In another example, the printing defects may be reduced further or substantially eliminated through performance of a nozzle substitution operation in conjunction with the micro-linefeeding operation.
With reference first to
Shown in
The print media 104 is depicted as entering into the media feed apparatus 102 through operation of a turn roller 108. More particularly, the print media 104 is pinched between the turn roller 108 and a turn roller pinch roller 110. Rotation of the turn roller 108, in a counter-clockwise direction, generally causes the print media 104 to be fed into the media feed apparatus 102 as indicated by the arrow 112. In addition, the print media 104 is fed between an upper paper guide 114 and a lower paper guide 116 of the media feed apparatus 102.
A portion of the print media 104 is also illustrated as being pinched between a main roller 118 and a main roller pinch roller 120. In addition, the print media 104 may be fed over a platen 122 and one or more printheads 124 (only a single printhead 124 is shown in
As is generally known with inkjet printers, the printhead 124 may include one or more reservoirs containing ink of various colors, such as, cyan, magenta, yellow, black, etc., and nozzles 126 through which the ink is ejected and deposited onto the print media 104. In addition, the printhead 124 may be positioned on a movable carriage (not shown) configured to scan across the print media 104, thereby enabling ink to be deposited across the width of the print media 104. More particularly, the printhead 124 may be traversed into and out of the plane of
In one example, a portion of a successive pass of the printhead 124 may overlap a portion of a previous pass to thereby enable performance of an error hiding operation. The error hiding operation may be performed to substantially reduce printing defects, such as, missing or misfired ink droplets, resulting from one or more nozzles 126 that are out. The nozzles 126 may be considered to be “out” when they are misfiring or are otherwise operating improperly.
In any regard, the error hiding operation may include a passive error hiding operation or an active error hiding operation. The passive error hiding operation includes diffusion of the printing defects caused by the nozzles 126 that are out by linefeed advancing. In other words, in the passive error hiding operation, because the print media 104 is advanced between successive passes of the printhead 124, the nozzles 126 that are out do not continually attempt to print along the same horizontal line (into the plane of
The active error hiding operation includes substituting the nozzles 126 that are out with one or more nozzles 126 that are known to be operating properly. More particularly, for instance, the nozzles 126 may be tested prior to being implemented to deposit ink onto the print media 104, to determine which, if any, of the nozzles 126 are out. The nozzles 126 may be tested through any reasonably suitable testing procedure, such as, for instance, printing a test pattern and detecting the test pattern with the sensor 132.
During printing operations, a printing mask may be employed to prevent certain nozzles 126, such as, the nozzles 126 determined to be out, from firing. Instead, one or more of the nozzles 126 known to be operating properly may be fired during one or more printhead 124 passes to drop ink on the locations which were originally designated for the nozzles 126 that have been determined to be out.
After the print media 104 has been advanced past the printhead 124, for instance, as shown in
Various sections of the print media 104 with respect to the printhead 124 are also depicted in
Also shown in
As discussed in greater detail herein below, the print media 104 may be advanced in micro-linefeed distances and the printhead 124 may be scanned across the print media 104 for a number of passes when the print media 104 enters the soft stop position 140. The micro-linefeeding of the print media 104 and the scanning of the print media 104 may be performed for a number of passes or until the print media 104 reaches the hard stop position 142. In one regard, for instance, the printhead 124 may deposit ink onto the margin section while substantially reducing printing defects resulting from any nozzles 126 that are out.
Generally speaking, the control system 200 may be implemented to at least control one or more operations of the media feed apparatus 102 and the printhead 124, to enable borderless printing while substantially reducing or eliminating the printing defects caused by nozzles 126 that are out. More particularly, for instance, the control system 200 may control the components of the media feed apparatus 102 such that print media 104 is advanced past the printhead 124 at a normal linefeed distance between printing passes until the margin section 138 becomes positioned to receive ink from the printhead 124 as shown in
At that instance, the control system 200 may control the components of the media feed apparatus 102 such that print media 104 is advanced past the printhead 124 at a micro-linefeed distance between printing passes for a predetermined number of passes or until the print media 104 reaches the hard stop position 142. Although not shown, the control system 200 may also control the carriage (not shown) on which the printhead 124 is supported.
As shown in
The controller 202 is configured to send operating signals to motor drivers 204-208 to drive motors 210-214 respectively connected to the turn roller 108, the main roller 118, and the output roller 126. The drive motors 210-214 may also be respectively connected to one or more of the turn roller pinch roller 110, the main roller pinch roller 120, and the output starwheel 128, without departing from a scope of the control system 200. Generally speaking, the motor drivers 204-208 drive the motors 210-214 that turn the respective rollers 108, 118, 126. The controller 202 may also send operating signals to solenoid drivers 220-224 to drive solenoids 230-234 that selectively move the turn roller pinch roller 110, the main roller pinch roller 120, and the output starwheel 128 into or out of contact with respective ones of the turn roller 108, the main roller 118, and the output roller 126.
The controller 202 may therefore control rotation of the turn roller 108, the main roller 118, and the output roller 126, such that they feed the print media 104 at different linefeed distances between printing passes depending upon the position of the print media 104 relative to the printhead 124. More particularly, for instance, the controller 202 is configured to control the turn roller 108 and the main roller 118 to feed the print media 104 a normal distance between printing passes when the print media 104 is positioned to receive ink from the printhead 124. The controller 202 is also configured to control the output roller 128 to feed the print media 104 a micro-linefeed distance between printing passes when the margin section 128 of the print media 104 is positioned to receive ink from the printhead 124. The controller 202 may employ a sensor 240, positioned, for instance between the main roller 118 and the soft stop position 140, to detect the position of the print media 104. The sensor 240 may comprise an out of page sensor that may be triggered when the end 136 of the print media 104 passes through the sensor 240.
The controller 202 is further operable to control the printhead 124 to controllably place ink onto the print media 104. In one respect, the controller 202 may control the timing at which the nozzles 126 are fired to thereby deposit the ink in a substantially accurate manner. In another respect, the controller 202 may implement printing masks which may include schemes to control the nozzle 126 firing sequences. The printing masks may include, for instance, masks for actively hiding errors caused by nozzles 126 that are out.
In performing the above-described operations, the controller 202 may access a memory 204 that contains program code for the controller 202. The memory 204 may include non-volatile memory, such as one or more forms of ROM, one or more disk drives, RAM, other memory, or combinations of the foregoing. In some examples, the memory 204 stores program code or instructions, and the controller 202 fetches the instructions and outputs control instructions based on the execution of the fetched instructions to components of the image forming apparatus 100.
Some of the controller 202 operations are described in greater detail herein below with respect to the following flow diagrams.
With reference first to
The description of the method 300 is made with reference to
Generally speaking, the method 300 may be implemented to substantially prevent or reduce defects in images printed onto the margin section 138 of a print media 104. Some of the defects caused by nozzles 126 that are out are depicted in
As shown therein, the print media 104 is depicted as being fed past the printhead 124 for a normal distance prior to the margin section 138 of the print media 104 being positioned to receive ink from the printhead 124. The normal distance is depicted in
During each of the printing passes 402a-402n, some or all of the nozzles 126 may be used for printing. Those nozzles 126 that are used for printing are denoted by the shaded areas on the printhead 124. As shown, substantially all of the nozzles 126 may be employed for printing onto the print media 104 prior to reaching the hard stop position 142 (
The nozzles 126 that are out are depicted as lines 404 on the printhead 124. In addition, the printing defects caused by the nozzles 126 that are out 404 on the print media 104 are also shown in
However, when the margin section 138 reaches the soft stop position 140 (
In order to substantially overcome this problem, an example of the invention as depicted in
At step 304, the controller 202 may determine whether any of the nozzles 304 are out based upon the check performed at step 302. If the controller 202 determines that none of the nozzles 126 are out, or if the number of nozzles 126 that are out is below a predetermined threshold, the controller 202 may control the image forming apparatus 100 to operate normally as indicated at step 306. The predetermined threshold may be based upon, for instance, the level of quality desired in the printed image. Thus, for instance, the predetermined threshold may be relatively higher when a lesser quality image is desired. Alternatively, therefore, a relatively lower predetermined threshold may be employed when a relatively higher quality image is desired.
Thus, for instance, the controller 202 may control the components of the image forming apparatus 100 to print in the margin section 138 as described above with respect to
If, however, the controller 202 determines that one or more of the nozzles 126 are out, or that the number of nozzles 126 that are out exceeds the predetermined threshold, the controller 202 may detect the position of the print media 104 as indicated at step 308. The controller 202 may detect the position of the print media 104 through any reasonably suitable known means, such as, encoders, LEDs, etc. In addition, the controller 202 may detect that the print media 104 has reached the soft stop position 140 during step 308. In other words, the controller 202 may determine that the margin section 138 of the print media 104 is positioned to receive ink from the printhead 124, as indicated at step 310.
At step 312, the controller 104 may control one or both of the output roller 128 and the main roller 118 to micro-linefeed the print media 104 between subsequent printing passes. Micro-linefeed advancing of the print media 104 may be defined as advancing the print media 104 for a distance that is substantially smaller than a normal advance of the print media 104. By way of example only, for a printhead 124 having 1000 rows of nozzles 126, a micro-linefeed advance distance may comprise a distance equal to around 5-10 rows of nozzles 126.
In addition, or alternatively, the micro-linefeed advance distance may be selected to substantially strike a balance between a better diffusion of nozzles 126 when one or more of the nozzles 126 are out and better linefeed accuracy. More particularly, for instance, a larger micro-linefeed advancement distance may be used to get better diffusion of nozzles 126 and a smaller micro-linefeed advancement distance may be used to get a better linefeed accuracy.
One manner in which the print media 104 may be micro-linefeed advanced is depicted in the diagram 500 of
Steps 302-308 are considered to be optional because the controller 202 may be configured to perform steps 310 and 312 for each borderless printing operation even in situations where none of the nozzles 126 or a relatively small number of nozzles 126 are out.
According to another example, in addition to the method 300, the controller 202 may be programmed to perform a nozzle substitution operation for at least one printing pass 402n-3 to 402n, as shown in
In any respect, if the controller 202 is programmed to perform the method 350, the controller 202 may track a plurality of dynamic parameters with respect to the print media 104 and the printhead 124, as indicated at step 352. The dynamic parameters may include, for instance, a soft stop shortage and a soft stop pass number. The soft stop shortage may be defined as a difference between a desired linefeed advance and the actual linefeed advance upon entering the soft stop position 140. The soft stop pass number may be defined as the pass number of the printhead 124 when the print media 104 enters the sot stop position 140.
At step 354, the controller 202 may be configured to identify a plurality of static parameters. The plurality of static parameters may include, for instance, the height of a printing mask, the micro-linefeed distance, and a mapping between the top of the printhead 124 and a mask row based upon the soft stop shortage 140, the soft stop pass number, the height of the mask, and the micro-linefeed distance.
At step 356, the controller 202 may determine which mask rows and pass numbers in the margin section 138 are affected by the nozzles that are out 404 based upon the mapping performed at step 354. In addition, at step 358, the controller 202 may replace a printing mask for those rows of nozzles 126 that are affected by the nozzles that are out 404 during the affected pass numbers 402n-3 to 402n.
At step 358, more particularly, the controller 202 may replace the printing mask by searching from the soft stop pass number for at least one nozzle 126 to replace at least one nozzle that is out 404. In addition, the controller 202 may identify those regions in the print media 104 that have already received ink prior to reaching the soft stop position as not needing replacement nozzles 126, even though those nozzles 126 may be out.
As such, through implementation of the methods 300 and 350, the diffused printing defects 406 (
There may, however, arise situations where a suitable replacement nozzle 126 is not available for the printing regions of one or more of the nozzles that are out 404. These situations may arise, for instance, because the print data may be shifted downwards as shown between the last pass-3402n-3 and the last pass-2402n-2 (
In any regard, at step 372, the controller 202 may identify any printing regions that have no available substitute nozzles 126 for one or more of the nozzles 126 that are out 404. In response to the identification of at least one printing region at step 372, the controller 202 may control the image forming apparatus 100 to statically maintain the position of the print data, which includes data identifying the timing at which the nozzles 126 are fired, as indicated at step 374. The controller 202 may also maintain full print data that corresponds to the printhead 124 height, as indicated at step 376. At step 378, the controller 202 may set mask grids that have already been printed to undefined, which may control the printhead to cease firing ink regardless of the pass number, so that the print data stitches up correctly. In other words, the controller 202 may set the mask grids so that the transition area between previous passes before entering the margin section 138 receive ink. The controller 202 is further configured to set the micro-linefeed distance to as short a distance as reasonably possible to thereby substantially hide the unavailable nozzle 126 regions where all of the data has already been printed, as indicated at step 380.
Some or all of the operations set forth in the methods 300, 350, and 370 may be contained as a utility, program, or subprogram, in any desired computer accessible medium. In addition, some or all of the steps in the methods 300, 350, and 370 may be embodied by a computer program, which can exist in a variety of forms both active and inactive. For example, it can exist as software program(s) comprised of program instructions in source code, object code, executable code or other formats. Any of the above can be embodied on a computer readable medium, which include storage devices and signals, in compressed or uncompressed form.
Exemplary computer readable storage devices include conventional computer system RAM, ROM, EPROM, EEPROM, and magnetic or optical disks or tapes. Exemplary computer readable signals, whether modulated using a carrier or not, are signals that a computer system hosting or running the computer program can be configured to access, including signals downloaded through the Internet or other networks. Concrete examples of the foregoing include distribution of the programs on a CD ROM or via Internet download. In a sense, the Internet itself, as an abstract entity, is a computer readable medium. The same is true of computer networks in general. It is therefore to be understood that any electronic device capable of executing the above-described functions may perform those functions enumerated above.
The computer system 600 includes one or more controllers, such as a processors 02. The processor 602 may be used to execute some or all of the steps described in the methods 300, 350, and 370. Commands and data from the processor 602 are communicated over a communication bus 604. The computer system 600 also includes a main memory 606, such as a random access memory (RAM), where the program code for, for instance, the controller 202, may be executed during runtime, and a secondary memory 608. The secondary memory 608 includes, for example, one or more hard disk drives 610 and/or a removable storage drive 612, representing a floppy diskette drive, a magnetic tape drive, a compact disk drive, etc., where a copy of the program code for the control system 200 may be stored.
The removable storage drive 610 reads from and/or writes to a removable storage unit 614 in a well-known manner. User input and output devices may include a keyboard 616, a mouse 618, and a display 620. A display adaptor 622 may interface with the communication bus 604 and the display 620 and may receive display data from the processor 602 and convert the display data into display commands for the display 620. In addition, the processor 602 may communicate over a network, for instance, the Internet, LAN, etc., through a network adaptor 624.
It will be apparent to one of ordinary skill in the art that other known electronic components may be added or substituted in the computer system 600. In addition, the computer system 600 may include a system board or blade used in a rack in a data center, a conventional “white box” server or computing device, etc. Also, one or more of the components in
What has been described and illustrated herein is a preferred embodiment of the invention along with some of its variations. The terms, descriptions and figures used herein are set forth by way of illustration only and are not meant as limitations. Those skilled in the art will recognize that many variations are possible within the spirit and scope of the invention, which is intended to be defined by the following claims—and their equivalents—in which all terms are meant in their broadest reasonable sense unless otherwise indicated.