Various processes are known for the production of a component. In conventional machining processes, material is predominantly removed from a work piece or preform to produce a component. Examples include milling, cutting, turning and sawing. Such processes are well established and can produce a component that has good mechanical properties and surface finish. However, conventional machining processes are often expensive, time consuming and wasteful.
Other processes are known that aim at producing near net shaped components. Additive layer manufacturing (ALM) is an example of such a process. In ALM, a component is built up in layers to create a component that can be near net shape and can include complex geometries. However, an ALM component is mechanically weak in comparison to an equivalent component that is formed from a bar, plate, or forging, or by casting or sintering, due to the porosity of the ALM component.
It is therefore common to perform a dedicated mechanical enhancement process, such as heat treatment, on an ALM produced component. Such mechanical enhancement processes can however significantly increase the cost associated with producing the component.
A first aspect of the invention provides a method for producing a component, the method includes providing a preform formed by an additive layer manufacturing (ALM) process, and subjecting the preform to a flow forming process to form the component.
The present inventors have found that flow forming can be used to mechanically enhance an ALM preform sufficiently to remove the need for a dedicated mechanical enhancement process. This was unexpected because an ALM preform is significantly more porous and therefore mechanically weaker than an equivalent component formed from a bar, plate, forging or, by casting or sintering. Thus, the present invention enables a near net shape preform to be efficiently produced by an ALM process and subsequently elongated using a flow forming process without the need for a dedicated mechanical enhancement step for the ALM preform.
The preform can be subjected to the flow forming process without having been subjected to a dedicated mechanical enhancement process.
The providing step can include forming the preform by the ALM process.
The preform can be tubular in shape. The tube can be substantially straight sided, in some cases along a majority or the entirety of its length.
The preform can comprise metal; for example, titanium alloy, steel, stainless steel, aluminium or copper.
The component can comprise an aircraft assembly component, such as an aircraft landing gear assembly component; for example, a slider, stay or linkage.
The preform can be near net shape.
The component can be net shape or near net shape.
Embodiments of the invention will now be described with reference to the accompanying drawings, in which:
Referring to
The method 10 can include a step of forming the preform by the ALM process.
The preform can be tubular in shape. The tube can be substantially straight sided. The cross section, diameter and/or hydraulic diameter of the tube can be determined by the intended use; for example, in the context of an aircraft landing gear slider, the preform tube may have a circular cross section with a diameter between 40 mm and 450 mm. In other embodiments the tube can have a first portion of a first diameter and a second portion of a second diameter that is different to the first diameter.
Although the preform has been described as being tubular in shape, the component can in other embodiments take other forms; for example, a disk or hoop shaped component.
The preform may comprise metal; for example, titanium alloy, steel, stainless steel, aluminium or copper.
Referring additionally to
At step 12, the preform is subjected to a flow forming process to form the component. Put another way, the ALM preform is flow formed in order to produce the component. Any suitable flow forming process can be used, such as forward or reverse flow forming.
In one example, and referring additionally to
The present inventors have found that flow forming can be used to mechanically enhance the ALM preform. This was unexpected because an ALM preform is significantly more porous and therefore mechanically weaker than an equivalent component that is formed from a bar, plate, or forging, or by casting or sintering. Thus, the present invention enables a near net shape preform to be efficiently produced by an ALM process and subsequently elongated using a flow forming process without the need for an expensive mechanical enhancement step for the ALM preform. The method according to embodiments of the invention can therefore result in swarfless production of high tensile strength tubes with significantly reduced lead time in comparison to known methods.
In practice, the ALM preform may undergo some machining prior to being subjected to the flow forming process. Also, the flow formed component can be machined. However, the amount of machining required (if any) will generally be significantly less than would be required if the preform and/or component had been produced by a conventional subtractive manufacturing machining process.
Although the invention has been described above with reference to one or more preferred embodiments, it will be appreciated that various changes or modifications may be made without departing from the scope of the invention as defined in the appended claims. The word “comprising” can mean “including” or “consisting of” and therefore does not exclude the presence of elements or steps other than those listed in any claim or the specification as a whole. The mere fact that certain measures are recited in mutually different dependent claims does not indicate that a combination of these measures cannot be used to advantage.
Number | Date | Country | Kind |
---|---|---|---|
14159171.9 | Mar 2014 | EP | regional |