The invention relates to a method for producing a device for dispensing fluid product under pressure, to an apparatus for implementing such a method and to a device for dispensing fluid product under pressure.
In particular, the invention applies to a device for dispensing pressurized fluid product, comprising:
In a known dispensing device of this type, the attachment sleeve is attached to the container by crimping. To ensure the gas seal of the internal volume, an elastomer seal is interposed between the attachment sleeve and the external container at the crimping.
However, the method for producing such a dispensing device is difficult to implement.
Actually, the method for producing comprises in particular a step of crimping which requires preliminary steps of shaping and of positioning of the attachment sleeve and of the second end of the external container to withstand the forces applied during the crimping and to provide a satisfactory attachment. In addition, a step of accurately installing the seal is necessary to achieve the airtightness. Actually, in the event of incorrect positioning, there is, at the step of crimping, a risk of damaging the seal making the dispensing device unusable.
The object of the invention is to solve the problems mentioned above.
Accordingly, the invention proposes a method for producing a device for dispensing a fluid product under pressure, the device for dispensing a fluid product under pressure being of the aforementioned type and comprising the external container and the attachment sleeve made of thermoplastic polymer, said method comprising the following steps:
Therefore, the attachment sleeve and the external container may be shaped by applying simple steps, particularly of injection molding or of blow molding. Furthermore, the attachment of the attachment sleeve to the external container and the gastightness of the internal volume are achieved simply and in a single operation, the thermoplastic polymer that has fused during welding performing the attachment and sealing functions.
Besides, the welding between the attachment sleeve and the external container, both made of thermoplastic polymer, improves tightness and attachment in a dispensing device pressurized prior to the sealing in a tight and hermetic manner of the internal volume. The welding, and thus the tightness and the attachment, can be more adapted to withstand the gaz pressure within the internal volume. Security of the dispensing device is thus enhanced.
The method also permits to produce a dispensing device without filling opening accessible after the device has been assembled. The method permits, in particular, to produce a dispensing device wherein the mounting opening is the single opening of the external container, and the attachment sleeve comprises a single central orifice for the valve. Producing the dispensing device is thus simplified and security of the dispensing device is enhanced, the risks of gas leaking and of access to the internal volume by a user being prevented.
In embodiments, the production method may comprise one or more of the following arrangements:
The invention also proposes an apparatus for implementing the production method as defined above, comprising:
In embodiments, the apparatus may comprise one or more of the following arrangements:
According to another aspect, the subject of the invention is a device for dispensing pressurized fluid product, comprising:
As stated above, the attachment sleeve and the external container, both made of thermoplastic polymer, welded to one another permit to improve tightness, attachment and security in a dispensing device pressurized prior to the sealing in a tight and hermetic manner of the internal volume. And the dispensing device without filling opening offers a simplified producing and an enhanced security.
In addition, the attachment sleeve and the external container are made of materials that are recyclable and of similar kind, which improves the recycling of the dispensing device.
In embodiments, the dispensing device may comprise one or more of the following arrangements:
Other objects and advantages of the invention will appear on reading the following description, made with reference to the appended drawings in which:
In the figures, the same reference numbers indicate identical or similar elements.
In the embodiment shown, the dispensing device 1 comprises:
In
Provision is made for at least the extension 8, and in the present embodiment the whole internal reservoir 3, to be able to be made of thermoplastic polymer, that is to say a plastic which can, in a repeated manner, soften under the action of heat and harden while cooling. As an example, the thermoplastic polymers that can be used are polyethylene terephthalate (PET) or polyethylene naphthalate (PEN). The thermoplastic polymer may, advantageously, be transparent.
The internal reservoir 3 is made so as to be able to deform between an extended state, represented in
As shown in
As can be seen in
In
In
As shown in
The gas may in particular be air, nitrogen, argon, carbon dioxide or another gas. The gas is inserted into the internal volume in any appropriate form, particularly gaseous or dissolved in an appropriate liquid or solid medium, the release of the dissolved gas in the liquid or solid medium making it possible to maintain a constant pressure in the internal volume made between the external container 5 and the internal reservoir 3.
Provision is made for the external container 5 to form a barrier to the gas and to offer a chemical resistance to the gas and a mechanical resistance to a pressure higher than 20 bar.
In particular, the external container 5 is made of thermoplastic polymer, such as PET or PEN, advantageously transparent, used alone or in the form of a mixture, in order to be able to soften under the action of heat and harden when cooling, in order to form a barrier to the gas and to offer the chemical resistance and mechanical resistance to pressure. For example, provision can be made for the external container 5 to be in the form of a rolled element comprising a layer of PET or of PEN, and or else a layer of Nylon, particularly Nylon MXD6, or else a layer of ethylene vinyl alcohol (EVOH) resin or else a layer of silicon oxide. Such an embodiment in the form of a rolled element may also be applied to the internal reservoir 3 in order to form a gas and liquid barrier and offer chemical and mechanical resistances suitable for the use of the dispensing device.
In addition, the shape of the external container 5 may be adapted to resist such a pressure. For example, in
To attach the internal reservoir 3 to the external container 5, the attachment sleeve 22 shown in
The attachment sleeve 22 is made of thermoplastic polymer, particularly PET or PEN, advantageously transparent. The attachment sleeve 22 comprises a tubular side wall 28 along an axis C, surrounding an annular wall 29 placed coaxially to the axis C and connected to the side wall 28 by an annular base 30 that is radial relative to the axis C. The side wall 28 has a radial dimension that is substantially similar to that of the neck 17 of the external container 5.
As a non limiting example, provision can be made for the radial wall 28 to allow the attachment sleeve 22 to be adapted to an external container 5 of standard dimension. Therefore, the neck 17 and the side wall 28 may have a standard radial dimension, namely a diameter of the order of 25.4 mm. The side wall 28 and the neck 17 may however have any dimensions appropriate to the use of the dispensing device and to the attachment of the attachment sleeve 22 to the external container 5 as explained below.
The attachment sleeve 22 also comprises an annular collar 31 which extends radially outward relative to the axis C from a free end of the side wall 28. A radial plate 32 provided with a central orifice 33 extends from the free end of the internal wall 29. In the represented embodiment, the central orifice 33 is the sole opening of the attachment sleeve 22. Thus, as for the external container 5, the attachment sleeve 22 is deprived of filling hole for the gaz under pressure. The filling of the gas under pressure is explained later.
As shown in
In addition, as shown in
In the embodiment shown in
Furthermore, the side wall 28 is sleeve-fitted into the neck 17 so that the attachment sleeve 22 closes off the mounting opening 16. The annular collar 31 is in contact with the rim 18 along a radial contact zone defined by the contact surface of the annular collar 31 and a contact surface formed on the rim 18. The annular base 30 extends radially inside the external container 5. To ensure the sealed attachment of the attachment sleeve 22 to the external container 5, the side wall 28 and the neck 17 are welded to one another along an axial welding zone 41, located within the neck 17 in the represented embodiment.
In the welding zones 40, 41, the thermoplastic polymer softened by heating at the interface between the attachment sleeve 22 and the internal reservoir 3, on the one hand, and the external container 5, on the other hand, fuses and then hardens in order to form continuous annular joins about the axis B of the external container 5. The annular joins then provide both the attachment of the attachment sleeve 22 to the internal reservoir 3 and external container 5 and the gastightness.
Once the attachment sleeve 22 has been secured to the external container 5, the internal volume is sealed in a tight and hermetic manner by the welding zones and the walls of the external container 5 and of the attachment sleeve deprived of opening communicating ith the internal volume. The pressurized gas in the internal volume cannot leak to the outside and no other external fluid, especially air, can flow within the internal volume.
In a device as described above, the liquid 2 is dispensed or sprayed under the action of a mechanical stress that is exerted on the internal reservoir 3 by the gas. Such a dispensing device may then operate in all positions.
To spray liquid 2, a user actuates the pushbutton 15 by exerting a pressure to move the stem 11 toward the actuation position and release the inlet orifice 12 of the seal 13 and place it in communication with the inside of the body 10 and of the internal reservoir 3. Under the action of the pressurized gas, the side wall 6 of the internal reservoir 3 deforms to the retracted state and pressurized liquid 2 can be dispensed to the outside, particularly sprayed by means of the appropriate pushbutton 15.
When the user releases the pressure, the hollow stem 11 rises under the effect of the spring 14 to reposition the inlet orifice 12 opposite the seal 13.
A method for producing a dispensing device as described above is now described.
In a prior step, the internal reservoir 3, the external container 5 and the attachment sleeve 22 that have been described above are produced in thermoplastic polymer.
In particular, the attachment sleeve 22 can be produced by injection molding and the internal reservoir 3 and the external container 5 may be produced by a blow molding method, particularly by biaxial stretch blow molding, called the “stretch blow” method.
In the “stretch blow” method, a preform is produced by injection in a first mold. The preform comprises a side wall which extends from a closed end to an open end. The side wall may have a substantially conical, shape flaring toward the open end, with, for example, an angle at the peak that lies between 1° and 5°. The preform is then transferred by indexation into a second mold in which it is axially stretched by means of a stylet inserted through the open end. The stretching is combined with a blow.
As indicated above, provision can be made to produce on the internal reservoir 3 longitudinal folds or ribs, particularly via a method described in document WO-2006/087462.
In a subsequent step of the production method, the body 10 of the valve 4, in which the spring 14 and the stem 11 are placed, is sleeve-fitted into the dispensing opening 7 of the internal reservoir 3.
Then the seal 13 and the extension 8 of the internal reservoir 3 are placed in the internal wall 29 of the attachment sleeve 22, the hollow stem 11 traversing the central orifice 33 of the plate 32, the base 30 and the ring 9 being positioned coaxially.
The production method then comprises a step of attachment during which the protruding retaining ring 37 is placed in contact with a welding surface opposite the ring 9 and the ring 9 is welded to the base 30 by fusing the retaining ring 37 and the welding surface of the ring 9.
In a particular exemplary embodiment, the welding is carried out by generating friction between the base 30 and the ring 9. The base 30 may, for example, be pressed on the ring 9 by applying ultrasound vibrations on the attachment sleeve 22, the internal reservoir 3 being attached to a frame having a bearing surface on which a surface of the ring 9 opposite to the welding surface rests. The ultrasound vibrations generate friction which causes local heating leading to the fusion of the thermoplastic and to the welding of the attachment sleeve 22 to the internal reservoir 3. The annular retaining ring 37 makes it possible to form a linear contact making welding easier.
The description has been made with an annular retaining ring 37 formed on the base 30 of the attachment sleeve 22. In other embodiments, it is however possible to provide one or more protruding retaining rings formed on the ring 9 of the internal reservoir 3 and/or on the base 30.
In the method, after the attaching step described above:
In the production method, the filling of the internal volume with gaz under pressure is performed prior to the attachment of the attachment sleeve 22 to the external container 5 and to the closing-off of the mounting opening 16. The dispensing device is then pressurized prior to the attachment of the attachment sleeve 22 to the external container 5 and to the tight and hermetic sealing of the internal volume.
The production method then comprises a step consisting in lifting the attachment sleeve 22 in order to place the attachment sleeve 22 opposite to and at a distance from the second end of the external container 5 and thereby clear a passage in the mounting opening 16 to allow the internal volume to be filled with the gas. The lifting of the attachment sleeve 22 may, for example, be achieved by a vacuum suction of the attachment sleeve 22, which will be described below in relation with an apparatus allowing the application of the method for producing the dispensing device.
The gas is inserted under pressure or dissolved in an appropriate medium into the internal volume through the passageway of the mounting opening 16.
The filling pressure may for example lie between 1.5 bar and 3.5 bar, that is to say at a value lower than the final pressure, for example lying between 4 bar and 10 bar, because the latter will be achieved when the internal reservoir 3 filled with liquid 2 will be in the extended state. Specifically, the pressure in the external container 5 will increase during the filling of the internal reservoir 3, by diminution of the internal volume in which it is confined.
The method then comprises a step of closing off the mounting opening 16 with the attachment sleeve 22 and of welding the attachment sleeve 22 and the external container 5.
During the closing-off and welding step, the neck 17 is held, a bearing surface is placed under the annular rim 18 and the side wall 28 is sleeve-fitted again into the neck 17. An axial load is then applied to the attachment sleeve 22, while generating a friction between the end zones of the thickening 20, 35 of the attachment sleeve 22 and of the external container 5. This produces an assembly as shown in
As indicated above, the friction may be generated by ultrasound vibrations applied to the attachment sleeve 22. The end zones of the thickening 20, 35 soften under the effect of the heat given off by the friction and fuse to form the annular join of the axial welding zone 41, as shown in
The frustoconical terminal surface flaring outward makes it possible to simplify the insertion of the side wall 28 into the neck 17 and to help with the heating of the end zones. And as can be seen in
The description has been made with a recess 34 arranged on the contact surface of the annular collar 31. It is however possible to provide that one or more recesses are made on the contact surface of the rim 18 and/or the contact surface of the collar 31.
The internal reservoir 3 may then be filled with liquid 2 through the valve 4 whose stem 11 is placed in the actuation position. It is then possible to install the pushbutton 15 on the stem 11 so that the pushbutton 15 protrudes relative to the mounting opening 16.
In relation with
In
The apparatus also comprises a bottom carriage 52 suitable for holding the external container 5 so that the axis B is vertical.
In particular, the bottom carriage comprises a vertically placed mounting plate 53 to which a filling chamber 54 that is sealed closed is attached. The filling chamber 54 is connected to a device, not shown, for filling with gas, for example in gaseous and pressurized form.
As can be seen in particular in
The filling chamber 54 is delimited by a bottom plate 55 which extends horizontally from the mounting plate 53 and a bell 56 which comprises a bottom wall and a side wall. The side wall extends from the bottom wall up to a free end attached to the bottom plate 55, a seal 64 being interposed between the side wall and the plate 55. The bottom wall has a guide opening which extends away from the side wall within a tubular bush 59. The guide opening is closed off in a sealed manner, particularly by means of a seal 68, by a welding arm 70 as explained below.
The bottom plate 55 has a retention opening delimited by an edge 57 formed to receive a portion that is axially offset toward the bottom 5a of the external surface of the external container 5. A seal 58 is placed in a groove arranged in the edge in order to seal the filling chamber 54.
A device for attaching the external container 5 is mounted slidingly in a sealed manner through the side wall of the bell 56. In
As shown in
To allow the appropriate positioning of the container in the filling chamber 54, the bottom carriage is mounted slidingly in the vertical direction Z. The apparatus comprises a guide rod 69 on which the mounting plate 53 is mounted by means of runners 71.
A drive system comprises a rod 73 that can be moved in translation and comprises a top end connected to a drive member 72 and a bottom end connected to the bottom carriage 52. For example, the drive member 72 may be a cylinder, particularly a pneumatic cylinder. As a variant, it is possible to provide for the rod 73 to be a threaded rod whose top end is placed in a nut rotated by a motor. In this manner, a rotation of the nut causes a translation of the rod and a translation of the bottom carriage. The movement of the bottom carriage is limited to a travel determined in particular by a stop member 75 mounted on the foot 50.
The apparatus also comprises a welding device mounted on a top carriage 76 offset in the direction Z relative to the bottom carriage 52. The top carriage 76 is mounted slidingly on the guide rod 69 so as to follow the movements of the bottom carriage 52.
To apply the production method described above, provision is made for the welding device to be able to apply an axial load on the attachment sleeve 22 and generate a friction, particularly by applying ultrasound vibrations, between the attachment sleeve 22 and the external container 5.
The welding device comprises an ultrasound vibration generator 77 and the welding arm 70 which extends vertically along the axis of the external container 5. The welding arm 70 comprises a first end connected to the generator 77 and a second end. The second end extends in the filling chamber 54 through the guide opening and comes into contact with the attachment sleeve 22.
The generator 77 can generate ultrasound vibrations transmitted via the welding arm 70 to the attachment sleeve 22, generating a friction and a heating between the attachment sleeve 22 and the external container 5.
To apply the axial load and allow the lifting of the attachment sleeve 22, provision is made for the attachment sleeve 22 to be able to be attached to the second end of the welding arm 70 and for the top carriage 76 to be able to be moved in the direction Z relative to the bottom carriage 52.
In particular, as shown in
In this manner, the sliding of the welding arm 70 achieved jointly with the movement of the top carriage 76 makes it possible, when the suction device is activated, to lift the attachment sleeve 22 relative to the external container 5. The attachment device holding the external container in position, the suction device, the duct and the seat therefore form a system for releasing the mounting opening 16 in order to allow the insertion of gas into the internal volume.
The movement of the top carriage relative to the bottom carriage may be achieved by means of a drive system similar to the drive system of the bottom carriage described above. Therefore, a rod 85 comprising a top end connected to a drive member 86, for example a pneumatic cylinder, and a bottom end connected to the top carriage 76, may be movable in translation. As a variant, the rod 85 may be threaded and the drive member 86 may comprise a nut rotated by a motor.
Such an apparatus may also be used for carrying out the welding of the attachment sleeve 22 to the internal reservoir 3.
Number | Date | Country | Kind |
---|---|---|---|
0705855 | Aug 2007 | FR | national |
0706850 | Sep 2007 | FR | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP08/60645 | 8/13/2008 | WO | 00 | 1/25/2011 |
Number | Date | Country | |
---|---|---|---|
60955748 | Aug 2007 | US | |
60975954 | Sep 2007 | US |