The invention relates to a method of manufacturing a heat exchanger for an air heating apparatus for integration into a housing which guides air. The heat exchanger has a heat exchanger body which has a longitudinal axis.
Currently, fuel-driven supplemental heating units for vehicles (particularly trucks or utility vehicles the like) are generally housed separately from the vehicle's inherent onboard heating and air conditioning unit. Such supplemental heating units are provided in the form of, e.g., air heating apparatuses, which are utilized as heaters to provide supplemental heating, and/or to provide heating under stationary circumstances (when the vehicle is parked).
For some time, attempts have been made to integrate air heating devices into the inherent onboard heating and air conditioning apparatus of a vehicle. This would provide savings in space occupied and in component parts (avoids redundancy). An example of such an apparatus is disclosed in DE 10211591 A1.
The quality of the functioning and the economic efficiency of the air heating apparatus, and the safety and reliability of the combination, depend substantially on the location of the apparatus integrated into the inherent onboard heating and air conditioning system, and on the engineering design and construction characteristics of said air heating apparatus. It is important to fully take into account the set of problems associated with the integration of the air heating apparatus into the system of the inherent onboard heating and air conditioning system, and to provide solutions for these problems, in order to achieve a successful integrated system.
Some of the engineering problems concern means of minimizing the ordinarily high weight of the heat exchanger body. Such heat exchanger bodies are customarily fabricated by pressure casting. The greater the weight of the heat exchanger body, the more robust the housing in which it is mounted on the vehicle must be.
Under the design schemes according to the state of the art, air is caused to flow around the heat exchanger in a direction which is perpendicular to the longitudinal direction (axial direction) of the heat exchanger. Such transverse flow results in high creation of vortices and turbulent flow of the air, and thus high energy losses in the flow (high flow pressure drop). If one seeks to address this by increasing the space available around the heat exchanger, one will need more installation space to accommodate the integrated heating and air conditioning system. Accordingly, it is rational to seek solutions which improve the flow behavior and heat transfer with regard to the heat exchanger.
It is also desirable to utilize already present components of the air heating apparatus in the solution by which said apparatus is integrated into the inherent onboard heating and air conditioning system. Accordingly, the heat exchanger employed should have an adaptable design, so as to be utilizable with a variety of types and models of air heating apparatuses. The means of fabrication of the heat exchanger should be similarly adaptable.
There are two heat transfer processes—that from the heat exchanger to the air sought to be heated, which air flows around the exterior of the heat exchanger, and that from the combustion gases to the heat exchanger. By improving the latter heat transfer, one can have greater freedom of design of the structure of the heat exchanger as a whole.
Another important requirement placed on the air heating apparatus is that it be configured so as to avoid any possible penetration of combustion gases into the air which flows around the air heating apparatus. Another requirement is to provide means whereby the combustion air used for the combustion is drawn in from the space outside the motor vehicle, and in particular not from the interior space of the vehicle. Thus it would be advantageous to provide improvements in the arrangement of the various connecting fittings and nipples employed with known air heating apparatuses.
The underlying problem of the present invention was to devise appropriate solutions to solve the above-described problems at least partially, particularly the problems concerning the weight of the heat exchanger.
This underlying problem is solved by the features of the independent claim.
Advantageous embodiments of the invention are set forth in the dependent claims.
According to the invention, improvements are provided in the general type of fabrication process, in that the heat exchanger body is at least partially fabricated in a pressure-casting process employing two molded masses (“cores”), with the molded masses being withdrawn from the mold in opposite directions
extending along the longitudinal axis. This allows reduction of the mold removal forces for a given mold removal incline, given surface characteristics, and given materials; moreover, it enables production of a heat exchanger with reduced wall thickness and thus reduced weight.
The method displays its advantages in a case in which the heat exchanger core has an interior profile. Because such a profile increases the mold removal forces, the reduction of mold removal forces which the invention contributes is particularly beneficial.
The method may be particularly employed to fabricate a heat exchanger in which the interior profile comprises longitudinal ribs. Such a profile substantially increases the interior heat transfer surface area of the heat exchanger, and consequently enables reduction of the overall installation space occupied.
Advantageously, the heat exchanger body and heat exchanger base may be separately fabricated. If the heat exchanger base and heat exchanger head are fabricated separately from the heat exchanger body, the latter can be entirely fabricated using the inventive method.
For similar reasons, it may be advantageous to fabricate the heat exchanger head separately. In particular, such a heat exchanger head may be already available; if so, the inventive
pressure casting method may be employed. Depending on the geometric form of the burner head or of the burner unit, it may even be possible to completely eliminate a heat exchanger bead.
The features relating to the inventive method of manufacturing a heat exchanger can be combined with numerous features of the heat exchanger, of air heating apparatuses employing the heat exchanger, and of fabrication methods for heat exchangers, to give rise to advantageous characteristics.
The heat exchanger body may have a heat exchanger core and heat transfer surfaces, and the heat exchanger core and the component parts which provide the heat transfer surfaces may be at least partially separately fabricated. These possible separate fabrication processes are advantageous as means of weight reduction and means of providing increased variability with regard to the configuration of component parts and with regard to fabrication methods.
In this connection it is particularly useful if the component parts which provide the heat transfer surfaces are applied to the heat exchanger core by press-forming or by a shrink-forming method. In order to join the heat exchanger head and the heat exchanger base to the heat exchanger core with gas-tight joints, preferably welding, brazing, adhesive bonding, and/or screwing (or screw fastening) are employed. There may be, e.g., heat transfer surfaces of the heat exchanger which generally have a disc-like or flange-like shape, wherewith press-forming or shrink-forming may be advantageous for fixing them to the heat exchanger core. In this way,
one has additional opportunities for variability of the fabrication methods.
It may be provided that it [sic] has a cross sectional geometry which tends to reduce flow resistance.
For example, the cross sectional geometry may be oval or ovaloid.
Alternatively, the cross sectional geometry may resemble that of an airfoil.
Alternatively, it may be advantageous if the cross sectional geometry is generally diamond-shaped.
The heat exchanger body may have a plurality of rods on its exterior surface, which rods provide heat transfer surface. This configuration can contribute a very large surface area for heat transfer to the air which is to be heated.
It may he advantageous for the heat exchanger body to have a heat exchanger core, and for the above-described plurality of rods to be applied to said core at least partially by means of a separate component part (or parts).
The heat exchanger body may have a heat exchanger core wherewith at least part of (some of) the plurality of rods have a unit construction
with the heat exchanger core. The provision of the rods on one or more separate component parts, on the one hand, and direct fixing of the rods to the core (in a unit construction or the like), on the other hand, each has its own advantages; e.g. the use of separate component parts provides design flexibility, whereas direct fixing (e.g. unit construction) allows a simple fabrication method.
The heat exchanger body may have on its external surface (external side) a plurality of undular ribs, which ribs provide heat transfer surfaces.
In this connection, it is possible that the heat exchanger body is provided with a heat exchanger core, and that the plurality of undular ribs are at least to some extent applied to the heat exchanger core via separate component parts or as separate components.
The heat exchanger body may be provided with a heat exchanger core, wherewith the plurality of undular ribs may be at least to some extent integrally formed with said heat exchanger core. It is advantageous if such heat transfer surface elements are not applied to the heat transfer core by screw fastening or the like; in particular, more desirable means of fastening heat transfer surface elements (after said elements have been slid over the core) are welding, brazing, shrink-forming, or press-forming, wherewith said elements are applied individually or in groups, or in subassemblies comprised of such elements.
The heat exchanger body may be comprised of a plurality of heat exchanger body modules. This arrangement provides variability, as to the configuration and size of the heat exchanger.
Regarding modular construction, it may be advantageous if the heat exchanger body modules are at least to some extent identical. This allows for identical tool components, e.g. in the case of pressure molding.
In connection with an air heating apparatus for integration into an air guiding housing, which heating apparatus has a heat exchanger with a heat exchanger body, the air heating apparatus may be provided with flow-guiding elements wherewith, when combustion is carried out in a combustion space which is at least partly disposed in the interior of the heat exchanger, hot gases which are generated are deflected toward the interior side of the heat exchanger body. In this way, the hot gases produced in the combustion can be more efficiently distributed over the interior side of the heat exchanger.
In this connection it is advantageous if the flow guiding elements are in the form of a helical vane, systems of vanes or the like (which may employ undular geometries or the like), baffle plates, and/or perforated tubes. These and numerous other possibilities improve overall heat transfer.
In the case of an air heating apparatus for integration into an air guiding housing, which apparatus has a heat exchanger, it may be advantageous if the apparatus has a flange plate which provides a seal of the exhaust gas withdrawal means, by means of sealing elements between a mounting location for the air heating apparatus and the flange plate, and between the air heating apparatus and the flange plate, which seal at least
prevents penetration of exhaust gases into the interior space of the vehicle. Such a flange plate provides means of minimizing the path of the exhaust gases to the external air, and in so doing makes it less likely that penetration will occur.
In this connection it is further useful that the flange plate provides seal means between the combustion air feed passage and the interior space of the vehicle. This provides assurance that the combustion air will he drawn from outside the vehicle.
It is also advantageous if the flange plate has a pass-through opening for fuel supply. In this way, all fittings and nipples through which gases and liquids are passed are disposed in the region of the flange plate, which is advantageous for integrating the air heating apparatus into the entire system design.
It is an underlying concept of the invention that an air heating apparatus can be integrated into an onboard heating and air conditioning system of a vehicle (particularly a truck or utility vehicle) in an economical and functionally advantageous manner. In implementation of this concept according to the invention, a high degree of variability of the possible heat exchangers produced is provided for, wherewith in particular the weight of the heat exchanger can be optimized.
The invention will now be explained further based on particularly preferred exemplary embodiments, with reference to the accompanying drawings.
In the description of the drawings which follows hereinbelow, like or similar components have been assigned like reference numerals.
heat from the hot gases is transferred to the heat exchanger 10 (which is not shown in
deep drawing, pressure molding, or machining. The individual component parts can then be joined by various joining techniques, e.g. welding, brazing, adhesive bonding, and/or screwing or screw fastening. Because combustion gases are present inside the heat exchanger 10, it is important that gas-tight joints be provided between the heat exchanger head 10, heat exchanger core 20, and heat exchanger base 16. In the context of the present disclosure, the heat exchanger core and the components 24 with heat transfer surfaces 22 are commonly designated with the reference numeral 14.
openings 76 [sic], to facilitate attachment of the other components. The oval cross sectional geometry (32) of the heat exchanger 20 can improve flow characteristics for the air which is to be heated, which air flows around and past the heat exchanger 20. Because the heat exchanger base 16 is fabricated separately from the heat exchanger core 20, the fabrication of the core 20 as made easier.
wherewith the said thicknesses can be kept small because the mold removal inclines are correspondingly short.
air heating apparatus 12 [lit., “10”] to the body of a vehicle or to a housing or other component which in turn is mounted to the vehicle body. In order to provide for venting of the exhaust gases to the surroundings and intake of combustion air from the surroundings, the flange plate 48 is sealingly connected to the air heating apparatus 12 and [sic] to the mounting location (e.g. the vehicle body). The sealing may employ sealing rings, for example.
The features of the invention disclosed in the preceding description, the drawings, and the claims may be essential elements of the invention individually or in any combination.
[(End of reference numeral list supplied for translation.)]
[(Note that reference numeral 74 has a different meaning in
Number | Date | Country | Kind |
---|---|---|---|
10 2004 057 269.0 | Nov 2004 | DE | national |
10 2005 053 518.6 | Nov 2005 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/DE05/02125 | 11/23/2005 | WO | 00 | 5/25/2007 |