This application claims priority based on an International Application filed under the Patent Cooperation Treaty, PCT/EP2007/006196, filed on Jul. 12, 2007 and German Application Nos. DE 102006037431.2-45, filed on Aug. 9, 2006, and DE 102007002163.3, filed on Jan. 15, 2007.
The invention concerns a process for the production of a multi-layer body having at least one partially shaped functional layer in register relationship with at least one further partially shaped layer, and a multi-layer body which can be obtained in accordance therewith. The invention further concerns in particular a security element for security documents and value-bearing documents having such a multi-layer body.
Optical security elements are frequently used to make it difficult to copy and misuse documents or products and as far as possible to prevent such copying and misuse. Thus optical security elements are frequently employed for safeguarding documents, bank notes, credit cards, cash cards, identity cards and passes, packagings and the like. It is known in that respect to use optically variable elements which cannot be duplicated with conventional copying processes. It is also known to provide security elements with a structured metal layer in the form of a text, logo or other pattern.
The production of a structured metal layer from a metal layer which is applied over an area for example by sputtering requires a plurality of procedures, in particular if fine structures are to be produced, which have a high degree of forgery-proof nature. Thus it is known for example for a metal layer which is applied over the full surface area involved to be partially demetallized by positive/negative etching or by laser ablation, and thus to be structured. As an alternative thereto it is possible for metal layers to be already applied in structured form to a carrier by means of the use of vapor deposition masks.
The greater the number of production steps afforded for production of the security element, the correspondingly greater is the significance in terms of register accuracy of the individual process steps or the degree of accuracy of positioning of the individual tools when forming the security element in relation to features or structures already present on the security element.
GB 2 136 352 A describes a production process for the production of a sealing film provided with a hologram as a security feature. In that case a plastic film is metallized over its full surface area after the embossing of a diffractive relief structure and then demetallized in region-wise fashion in accurate register relationship with the embossed diffractive relief structure. The demetallization operation in accurate register relationship is costly and the degree of resolution which can be attained is limited by the adjustment tolerances and the procedure employed.
EP 0 537 439 B2 describes processes for the production of a security element with filigree patterns. The patterns are formed from diffractive structures covered with a metal layer and are surrounded by transparent regions in which the metal layer is removed. It is provided that the contour of the filigree pattern is introduced in the form of a recess into a metal-coated carrier material, in that case at the same time the bottom of the recesses is provided with the diffractive structures and then the recesses are filled with a protective lacquer. Excess protective lacquer is to be removed by means of a scraper blade. After application of the protective lacquer the metal layer is removed by etching in the unprotected regions.
The object of the present invention is to provide a multi-layer body which is particularly difficult to reproduce and a process for the production of such a multi-layer body, in which a partially shaped functional layer is shaped in perfect or almost perfect register relationship with a further partially shaped layer.
That object is attained for a first process for the production of a multi-layer body having at least one partially shaped functional layer in register relationship with at least one further partially shaped layer, in that a first relief structure is shaped in a first region of a replication layer of the multi-layer body, wherein a first layer is applied to the replication layer in the first region and in at least one second region in which the first relief structure is not shaped in the replication layer, and is structured defined by the first relief structure, in that the first layer is removed in the first region but not in the at least one second region or in the at least one second region but not in the first region, and wherein the at least one partially shaped functional layer is formed directly and/or using the structured first layer as a mask layer subsequently the at least one partially shaped functional layer is formed. The first layer is in that case applied in particular over the full surface area to the replication layer, but it may also involve an only region-wise application, for example in the form of stripes or the like.
Such a process makes it possible to produce particularly forgery-resistant multi-layer bodies.
The object is further attained by a first multi-layer body which can be obtained in accordance with the first process according to the invention, comprising at least one partially shaped functional layer in register relationship with at least one further partially shaped layer, wherein a first relief structure is shaped in a first region of a replication layer of the multi-layer body, wherein the at least one functional layer is applied to the replication layer in the first region or in at least one second region in which the first relief structure is not shaped in the replication layer structured definedly by the first relief structure.
Partially shaped functional layers or further layers which are produced by means of the invention can be achieved in a very high level of resolution. The attainable registration and resolution is better approximately by a factor of 100 than can be achieved by known processes. As the width of structure elements of the first relief structure can be in the region of the wavelength of visible light (between about 380 and 780 nm) but also therebelow, it is possible to form very fine contours, patterns or lines. Accordingly major advantages are also achieved in this respect over the processes used hitherto, and it is possible with the invention to produce security elements which have a significantly higher degree of safeguard against copying and forgery than hitherto.
Lines and/or pixels or picture elements can be produced with a high resolution, for example with a width or a diameter of less than 50 μm, in particular in the range of between 0.5 μm and 10 μm, but in the extreme case even down to about 200 nm. Preferably levels of resolution in the range of between about 0.5 μm and 5 μm, in particular in the region of about 1 μm, are produced. In comparison, line widths of less than 10 μm can be achieved only with a very high degree of complication and expenditure, when using processes which provide for adjustment of tools in terms of register relationship.
The object is attained for a second process for the production of a multi-layer body having at least one partially shaped functional layer in register relationship with at least one further partially shaped layer, in that a first layer in the form of a first photoresist lacquer layer is formed on a carrier layer and partially exposed, in particular by means of a belt mask exposure means or similar, the exposed first layer is developed and structured and then using the structured first layer as a mask layer the at least one partially shaped functional layer and/or the at least one further partially shaped layer is formed. Such a process also permits the production of particularly forgery-resistant multi-layer bodies.
The object is further attained by a second multi-layer body which can be obtained by the second process according to the invention, comprising at least one partially shaped functional layer in register relationship with at least one further partially shaped layer, wherein a first layer in the form of a first photoresist lacquer layer is produced structured in pattern form on a carrier layer and using the structured first layer as a mask layer the at least one partially shaped functional layer and/or the at least one further partially shaped layer is formed.
The term functional layer is used here to denote such a layer which either exhibits a visible color impression at given wavelengths or whose presence can be electrically, magnetically or chemically detected. For example this can involve a layer which contains coloring agents such as colored pigments or dyestuffs and which is colored, in particular multicolored, in normal daylight. It can however also be a layer which contains special coloring agents such as photochromic or thermochromic substances, luminescent substances, substances producing an optically variable effect such as interference pigments, liquid crystals, metameric pigments and so forth, reactive dyestuffs, indicator dyestuffs which react with other substances with a reversible or irreversible change in color, variable light-emission pigments which upon excitation by means of radiation of differing wavelength exhibit different color emissions, magnetic substances, electrically conductive substances, substances which present a color change in an electrical or magnetic field, what is referred to as E-ink® and the like.
The term replication layer is used generally to denote a layer which can be produced over a surface with a relief structure. It includes for example organic layers such as plastic or lacquer layers or inorganic layers such as inorganic plastic materials (for example silicone), glass layers, semiconductor layers, metal layers etc. but also combinations thereof.
A relief structure is embossed at the surface into a replication layer in the form of a plastic or lacquer layer, in particular formed from a lacquer which hardens under UV radiation, in particular by means of a tool, in particular a stamping punch or a roller. The formation of a surface relief structure by injection molding or the use of a photolithography process is also possible. A relief structure is formed in particular on the surface on a replication layer in the form of a glass, semiconductor or metal layer, by using a photolithography process in which a photosensitive layer is applied, exposed by way of a mask and developed. The regions of the photosensitive layer remaining on the replication layer are used as an etching mask and a relief structure is formed by etching in the replication layer. The photosensitive layer is then preferably removed. Depending on the respective production process used and the later purpose of use of the multi-layer body formed, transmissive or non-transmissive replication layers, in particular replication layers which are opaque or transparent to the human eye, can be used.
Preferably at least one second relief structure is produced in the at least one second region of the replication layer, the at least one second relief structure having a depth-to-width ratio h/d which is different in relation to the first relief structure. The second relief structure is formed in particular in a similar manner to the formation of the first relief structure. In addition at least two different second relief structures can be produced in the at least one second region.
It has proven desirable if the first relief structure is produced with a greater depth-to-width ratio than the at least one second relief structure and a transmission and in particular a transparency of the first layer in the first region is increased in relation to the transmission and in particular the transparency of the first layer in the at least one second region.
Preferably the first and/or the at least one second relief structure is in the form of a diffractive relief structure. In particular it is preferable for a diffractive relief structure with a depth-to-width ratio in respect of the individual structure elements of >0.3 to be produced in the first region as the first relief structure. A spatial frequency for the first relief structure is selected in particular in a region of >300 lines/mm, in particular in a region of >1000 lines/mm. It can further be provided that the product of spatial frequency and relief depth of the first relief structure is greater than the product of spatial frequency and relief depth of the second relief structure. That also makes it possible for the transmission of the first layer applied to the replication layer in the first region to be increased in relation to the layer applied in the second region, by virtue of the configuration of the relief structures in the replication layer in the first region and in the second region.
The first relief structure and/or the at least one second relief structure can be in the form of a light-diffracting and/or light-refracting and/or light-scattering and/or light-focusing micro- or nanostructure, in the form of an isotropic or anisotropic matt structure, a binary or continuous Fresnel lens, a microprism structure, a blaze grating, a macrostructure or a combination structure consisting thereof.
In addition it is also possible for the first relief structure and/or the at least one second relief structure to be a linear or crossed sine grating. The spatial frequency of the sine grating in that case is in the region of >300 lines/mm. In addition it is possible for the sine grating also to be based on a transformed line grid raster, for example oriented at a grid raster in wave form or in circular form. In the case of a crossed sine grating the difference in the azimuth angles is preferably 90° but can also include an angular range of between 5° and 85°. In this case sine grating means that the surface relief of the sine structure is of a sinusoidal form. Besides sinusoidal surface reliefs, relief structures with different kinds of surface relief shapes are also possible, for example binary (rectangular), triangular and so forth relief shapes.
The relief structures introduced into the replication layer can also be so selected that they can serve for orientation of liquid crystal (polymers). Thus the replication layer and/or the first layer can then be used as an orientation layer for liquid crystals. By way of example structures in groove form are introduced into such orientation layers, the liquid crystals being oriented at such structures before they are fixed in their orientation in that position by crosslinking or in some other fashion. It can be provided that the crosslinked liquid crystal layer forms the at least one further partially shaped layer.
The orientation layers can have regions in which the orientation direction of the structure constantly changes. If a region produced by means of such a diffractive structure is viewed through a polarizer with for example a rotating polarization direction, various clearly perceptible security features, for example motion effects, can be generated on the basis of the linearly changing polarization direction of the region. It can also be provided that the orientation layer has diffractive structures for orientation of the liquid crystals, which are locally differently oriented in such a way that the liquid crystals when considered under polarized light represent an item of information, such as for example a logo.
By virtue of the use of diffractive relief structures, with a suitable choice in respect of the thickness of the first layer, it is possible to generate very great differences, which can already be perceived with the eye, in the optical density of the first layer in the first region and in the second region. Surprisingly however it was found that such great differences in transmission in the first and second regions are not compellingly necessary for implementation of the process according to the invention. Structures with slight differences in the depth-to-width ratio, with a small layer thickness, usually have relatively minor differences in transmission. Even minor relative differences however can be boosted by increasing the thickness of the first layer and thus the mean optical density. Thus, good results can already be achieved with quite slight differences in transmission in respect of the first layer in the first and second regions.
The dimensionless depth-to-width ratio is a characterizing feature in regard to the enlargement of the surface area, preferably of periodic structures, for example of a sine-square configuration. Here the spacing between the highest and the lowest successive points of such a structure is referred to as the depth, that is to say this involves the spacing between a “peak” and a “trough”. The spacing between two adjacent highest points, that is to say between two “peaks”, is referred to as the width. Now, the higher the depth-to-width ratio, the correspondingly steeper are the “peak flanks” and the correspondingly thinner is the first layer deposited on the “peak flanks”. The effect of producing a higher level of transmission, in particular transparency, upon an increase in the depth-to-width ratio is also observed in relation to structures with vertical flanks, for example rectangular gratings. This however can also involve structures to which this model cannot be applied. By way of example, this can involve discretely distributed line-shaped regions which are only in the form of a “trough”, wherein the spacing between two “troughs” is a multiple greater than the depth of the “troughs”. Upon formal application of the above-indicated definition the depth-to-width ratio calculated in that way would be approximately zero and would not reflect the characteristic physical behavior. Therefore in the case of discretely arranged structures which are formed substantially only from a “trough”, the depth of the “trough” is to be related to the width of the “trough”.
As was shown it is not important in that respect that the first layer is of a transparent nature in regions with a high depth-to-width ratio. This can involve structures which for example form optically active regions of a hologram or Kinegram® security feature. The only important consideration is that those regions are delimited in relation to other regions by their transmission properties or a lesser or a greater optical density.
The first and second relief structures involve different relief structures, for example a Kinegram®, in which one or more relief parameters, for example orientation, fineness or profile shape vary to produce the desired diffractive properties. Thus the task of such structures is not only to achieve a change in the transmission properties of the first layer in the region in which the relief structure is shaped into the replication layer, but additionally also the function of acting as an optically variable design element upon being backed with a reflection layer or an optical separation layer. If, besides such a first relief structure, such a second relief structure is also shaped in the replication lacquer layer, then the first and second relief structures preferably differ in one or more parameters relevant to the transmission properties of the first layer, and thus differ for example in relief depth or in the depth-to-width ratio. Thus it is possible for example for two Kinegrams® security features with filigree line patterns to be shaped in partially overlapping relationship in the replication layer. The first Kinegram® forms the first relief structure and the second Kinegram® forms the second relief structure. The relief structures of the two designs differ in the typical depth-to-width ratio while the other structural parameters are similar. There are thus three “groups” of structures, namely structures of group I in the first Kinegram®, structures of group II in the second Kinegram® and structures of group III or no structures in the background. In a first step the first layer remains, for example a vapor-deposited metal layer such as a copper layer, in the Kinegram® region of the first design, the remainder is removed. Then for example a colored functional layer is applied over the entire surface area and removed by suitable process implementation in the background regions. Two designs in register relationship are obtained in that way.
Experiments have shown that the differences in the transmission properties of the first layer, which can be achieved by the differing configuration of the relief structures in the first and second regions, are particularly pronounced in the range of UV radiation. Thus particularly good results can be achieved when using UV radiation for the exposure procedure.
The first layer can be a very thin layer of the order of magnitude of some nm. The first layer is considerably thinner in regions with a high depth-to-width ratio, by virtue of the greater surface area, than in regions with a lower depth-to-width ratio, upon deposition of the first layer with a constant density in relation to surface area, with respect to the plane defined by the replication layer. It is advantageously provided that the first layer is in the form of a metal layer or a layer of a metal alloy. Such layers can be applied with tried-and-tested processes such as sputtering and they already afford adequate optical density at small layer thicknesses. The first layer however can also be a layer including a functional layer material or a non-metallic layer which for example can be colored, in particular brightly colored, which can be doped or which can be mixed with nanoparticles or nanospheres to increase the optical density thereof. It has further proven desirable for the first layer to be formed from a substance containing a liquid crystal material.
For the first process it has been found desirable if the first layer is applied with a constant density in relation to surface area to a plane defined by the replication layer and the first layer is exposed to an etching agent, in particular an acid or lye in an etching process both in the first region and also in the at least one second region until the first layer is removed in the first region or at least until the transmission and in particular transparency of the first layer is increased in the first region in relation to the transmission and in particular transparency of the first layer in the at least one second region, or vice-versa.
For example lyes or acids can be provided as the etching agent for first layer. It can further be provided that the first layer is only partially removed and the etching operation is interrupted as soon as a predetermined transparency is achieved. In that way it is possible for example to produce security features based on locally differing transparency. If for example aluminum is used as the first layer it is thus possible to use lyes such as NaOH or KOH as isotropically acting etching agents. It is also possible to use acid media such as PAN (a mixture of phosphoric acid, nitric acid and water).
The reaction speed typically increases with the concentration of the lye and temperature. The choice of the process parameters depends on the reproducibility of the process and the resistance of the multi-layer body. Influencing factors when etching with lye are typically the composition of the etching bath, in particular the concentration of etching agent, the temperature of the etching bath and the afflux flow conditions of the layer to be etched in the etching bath. Typical parameter ranges in the concentration of the etching agent in the etching bath are in the range of between 0.1% and 10% and for the temperature they are in the range of between 20° C. and 80° C.
The etching operation for the first layer can be electrochemically supported. The etching procedure is boosted by application of an electrical voltage. The action is typically isotropic so that the structure-dependent enlargement in surface area additionally amplifies the etching effect. Typical electrochemical additives such as wetting agents, buffer substances, inhibitors, activators, catalysts and the like for example to remove oxide layers can support the etching process.
During the etching process a depletion in etching medium or an enrichment in the etching products respectively can occur in the interface layer with the first layer, whereby the etching speed is reduced. Forced thorough mixing of the etching medium, possibly by producing a suitable flow or by ultrasonic excitation, improves the etching characteristics.
The etching process can further involve a temperature profile in respect of time in order to optimize the etching result. Thus it is possible to etch cold at the beginning and hotter with an increasing period of operation. In the etching bath that is preferably implemented by a three-dimensional temperature gradient, wherein the multi-layer body is drawn through an elongate etching bath with different temperature zones.
The last nanometers of the first layer can prove in the etching process to be relatively stubborn and resistant to the etching procedure. To remove residues of the first layer slight mechanical support for the etching process is therefore advantageous. The stubbornness is based on a possibly slightly different composition in the first layer, presumably by virtue of interface layer phenomena in the formation of the first layer on the replication layer. In that case the last nanometers of the first layer are preferably removed by means of a wiping process by the multi-layer body being passed over a roller covered with a fine cloth. The cloth wipes off the residues of the first layer without damaging the multi-layer body.
The etching operation does not have to involve a production step which is carried out with liquids. It may also be a “dry process” such as for example plasma etching.
It can however also be provided that the first layer is not completely partially removed, but only its thickness is reduced. Such an embodiment can be particularly advantageous if regions with layers which overlie each other are to be formed for example to vary optical and/or electrical properties or to produce decorative effects.
It has further proven to be desirable for the first process if the first layer is applied with a constant density in relation to surface area with respect to a plane defined by the replication layer and if the first layer is used as an absorption layer for partial removal of the first layer itself by the first layer being exposed to a laser light both in the first region and also in the second region.
In the case of structures with a high depth-to-width ratio and in particular relief structures in which the typical spacing between two adjacent raised portions is less than the wavelength of the incident light, referred to as zero order structures, a large part of the incident light can be absorbed, even if the degree of reflection of a reflection layer is high in a region having a mirror reflection effect. A first layer in the form of a reflection layer is irradiated by means of a focused laser beam, in which case the laser radiation is absorbed to an increased extent and the reflection layer correspondingly increased in temperature in the greatly absorbing regions which have the above-mentioned relief structures with a high depth-to-width ratio. With high levels of energy input the reflection layer can locally flake off, in which case removal or ablation of the first layer in the form of a reflection layer or coagulation of the material of the reflection layer or the first layer occurs. If energy input by the laser takes place only for a short time and if the effect of heat conduction is thus only slight, then ablation or coagulation occurs only in the regions predefined by the relief structure.
Influencing factors in laser ablation are the configuration of the relief structure (period, depth, orientation and profile), wavelength, polarization and the angle of incidence of the incident laser radiation, the duration of the action (time-dependent power) and the local dose of laser radiation, the properties and the absorption characteristics of the first layer, and whether the first layer is possibly overlaid and underlaid with further layers such as the structured photosensitive layer or a wash lacquer layer.
Inter alia Nd:YAG lasers have proven to be suitable for the laser treatment. They radiate at about 1064 nm and are preferably also pulse-operated. It is also possible to use diode lasers. The wavelength of the laser radiation can be altered by means of a frequency charge, for example frequency doubling.
The laser beam is passed over the multi-layer body by means of what is referred to as a scanning device, for example by means of galvanometric mirrors and a focusing lens. Pulses of a duration in the region of nano- to microseconds are emitted during the scanning operation and lead to the above-described ablation or coagulation of the first layer, which is predetermined by the structure. The pulse durations are typically below milliseconds, advantageously in the region of a few microseconds or therebelow. It is certainly also possible to use pulse durations of between nanoseconds and femtoseconds. Precise positioning of the laser beam is not necessary as the process is self-referencing insofar as the photosensitive layer or wash lacquer layer which is present in structured form partially prevents access of the laser radiation to the first layer. The process is preferably further optimized by suitable selection of the laser beam profile and the overlapping of adjoining pulses.
It is however also possible for the path of the laser over the multi-layer body to be controlled in register relationship with the relief structures arranged in the replication layer or openings in the photosensitive layer or wash lacquer layer so that only regions with the same relief structure or with/without openings in the photosensitive layer or wash lacquer layer are irradiated. For example camera systems can be used for such a control.
Instead of a laser focused onto a point or a line, it is also possible to use areal radiating devices which emit a short controlled pulse such as for example flash lamps.
The advantages of the laser ablation process include inter alia that partial removal of the first layer, in register relationship with a relief structure, can also be effected if it is covered on both sides with one or more further layers which are transparent for the laser radiation, and is thus not directly accessible to the etching media. The first layer is only broken open by the laser. The material of the first layer is deposited again in the form of small conglomerates or small balls which are not optically visible to the viewing person and only immaterially influence the transparency in the irradiated region.
Residues which have still remained on the replication layer after the laser treatment, from the first layer in the first region, can optionally be removed by means of a subsequent washing or etching process if the first layer is directly accessible there. After etching of the first layer the remaining residues of the etching masks can be removed.
For the first process it is particularly preferred if the first layer is applied with a constant density in relation to surface area with respect to a plane defined by the replication layer and the first layer is already formed with a layer thickness such that transmission and in particular transparency of the first layer in the first region is increased in relation to transmission and in particular transparency of the first layer in the at least one second region, or vice-versa.
It is particularly preferred for the first process if the first layer is applied with a constant density in relation to surface area in relation to a plane defined by the replication layer and a first photosensitive lacquer layer is applied to the first layer or the replication layer is formed by a first photosensitive wash lacquer layer, wherein the first photosensitive lacquer layer or the first wash lacquer layer is exposed through the first layer so that the first photosensitive lacquer layer or the first wash lacquer layer is exposed differently governed by the first relief structure in the first and the at least one second region, wherein structuring of the exposed first photosensitive lacquer layer or the first wash lacquer layer is effected, and either simultaneously or subsequently, using the structured first photosensitive lacquer layer or wash lacquer layer as a first mask layer, the first layer is removed and thus structured in the first region but not in the at least one second region or in the at least one second region but not in the first region.
The process can moreover be such that a photosensitive material having a binary characteristic is applied as the photosensitive layer or the photosensitive wash lacquer layer and the photosensitive layer or the photosensitive wash lacquer layer are exposed through the first layer with an exposure strength and exposure time, that the photosensitive layer or the photosensitive wash lacquer layer is activated in first region in which the transmission of the first layer is increased by the first relief structure and is not activated in the second region. The process according to the invention can also be applied if the optical densities of the first and second regions differ only little from each other, in which case, as already mentioned above, it is surprisingly possible to assume that there is a high to medium optical density.
The photosensitive layer or wash lacquer layer can be a photoresist which can be in the form of a positive or a negative photoresist. In that way, with the replication layer being otherwise of the same nature, it is possible to remove different regions of the first layer.
It can further be provided that the photosensitive layer is in the form of a photopolymer.
Depending on whether the photosensitive layer or wash lacquer layer is a positive or negative photoresist, it is hardened in the first regions or made soluble in a developer. In that respect positive and negative photoresist layers can also be applied in mutually juxtaposed relationship and exposed at the same time. In that case the first layer serves as a mask and is preferably arranged in direct contact with the photoresist so that precise exposure can be effected. Upon development of the photoresist finally the non-hardened regions are washed off or the damaged regions removed. Depending on the photoresist used the developed photoresist is now either present precisely in the regions in which the first layer is transparent to the UV radiation or non-transparent. To increase the resistance of the photoresist layer which has remained and which is structured in accordance with the first layer remaining regions are preferably subsequently hardened, after the development procedure.
The first layer is used in particular as a mask layer for partial removal of the first layer itself, insofar as the photosensitive layer or wash lacquer layer adjoining the first layer is exposed through the first layer. That achieves the advantage over the mask layers applied with conventional processes that the mask layer is oriented in accurate register relationship without the complication and expenditure involved in adjustment. Only the tolerances of the relief structure have an influence on the tolerances of the position of the differently transmissive regions of the first layer. Lateral displacement between the first relief structure and those regions of the first layer does not occur. The arrangement of regions of the first layer with identical physical properties is therefore exactly in register relationship with the first relief structure.
In regard to the mode of operation when using a photosensitive layer it is further possible if a photoactivatable layer is applied as the photosensitive layer to the first layer, the photoactivatable layer is exposed through the first layer and the replication layer and activated in the first region, and the activated regions of the photoactivatable layer form an etching means for the first layer so that the first layer is removed in the first region and thus structured.
The photosensitive layer or wash lacquer layer can further be partially removed if the exposed regions are structurally weakened so that to remove the exposed regions, a scraping-off, brushing-off, wiping-off, ultrasound or laser treatment or the like can be effected. If exposure of the photosensitive layer or wash lacquer layer results in partially increased brittleness of the layer, the replication layer, insofar as it is flexible or bendable, can be drawn over a sharp edge or knife edge and the brittle regions can be caused to flake off.
An advantageous configuration provides that the photosensitive layer or wash lacquer layer is exposed through the first layer by means of UV radiation.
Accordingly the first layer can be structured or partially removed by means of different processes immediately or after the implementation of further process steps. In that respect the at least one partially shaped functional layer is formed immediately and/or subsequently, using the structured first layer as a mask layer, the at least one partially shaped functional layer is formed.
In regard to the first process and the first multi-layer body the invention is based on the one hand on the realization that, governed by the first relief structure in the first region of the replication layer, physical properties of the first layer applied to the replication layer in that region, for example effective thickness or optical density, are influenced, so that the transmission properties of the first layer differ in the first and second regions. The first layer is applied to the replication layer preferably by means of sputtering, vapor deposition, by being powdered on or by being sprayed on. Due to the procedure involved the sputtering operation entails directed application of material so that, in an operation of sputtering on material of the first layer in a constant density in relation to surface area with respect to the plane defined by the replication layer, the material is deposited in locally differing thicknesses on the replication layer provided with the relief structure. In terms of process technology, vapor deposition of the first layer or powdering it on or spraying it on preferably also involves the production of an at least partially directed application of material.
When carrying out the first process the first layer preferably directly produces the partially shaped functional layer. Furthermore it is also advantageous if the structured first photosensitive layer or first wash lacquer layer directly forms the partially shaped functional layer.
Finally, it has proven desirable for the first process if the at least one partially shaped functional layer and/or the further partially shaped layer is formed by a procedure whereby subsequently a first positive or negative photoresist lacquer layer is applied, the first photoresist lacquer layer is exposed through the structured first layer and structuring of the exposed first photoresist lacquer layer is effected.
It is preferable if a respective partially shaped functional layer is formed in register relationship with the first relief structure and at least one second relief structure, in which case different photoresist lacquer layers, in particular differently colored photoresist lacquer layers are used for forming the partially shaped functional layer. It is possible to use photoresist lacquer layers involving markedly different properties such as for example spectral sensitivity, chemical composition, positive or negative characteristic and so forth. However use of similar photoresist lacquer layers which however are exposed in different ways is also possible. The difference in the two photoresist lacquer layers can be effected in particular by way of the properties involved in the exposure operation such as wavelength, angle of incidence, polarization and so forth.
By means of the nature of the first relief structure, possibly also that of the first layer or further layers, an adhesion property and/or diffusion resistance and/or surface reactivity of the replication layer or further layers is possibly locally influenced so that a material for forming the first layer or further layers adheres to, diffuses into or reacts with the replication layer or further layers, in locally different ways. When material diffuses into the replication layer a part of the replication layer inclusive of the material diffused therein becomes the first layer.
As an alternative thereto the replication layer is partially produced by diffusion of a coloring means itself thereinto, in part in the form of a partially shaped functional layer, in which case a further layer partially shaped on the replication layer, for example a structured photosensitive, metallic or organic dielectric layer, functions locally as a diffusion barrier. The photosensitive layer can be removed after partial coloring of the replication layer or prior to the application of a further layer.
It has further proven desirable for the first process if the first layer is formed by the application of a powder or a liquid medium, then the first layer is structured, possibly after physical or chemical treatment of the powder or the liquid medium, and either directly the at least one partially shaped functional layer is formed and/or, using the structured first layer as a masking layer, the at least one partially shaped functional layer is then formed.
The powder is applied in particular by dusting or spreading while the liquid medium is applied in particular by casting, printing or spraying. Mechanical incorporation into the relief structure can be subsequently effected, for example by shaking, brushing or similar. Partial removal of the first layer is then effected in the regions in which the adhesion is less or the diffusion resistance is increased, by mechanically pulling it off, in particular by means of a stripping rake, an air rake or a stripping blade, chemical dissolution, a washing process or a combination of those procedures. Structuring of the first layer is preferably effected by a stripping blade or stripping rake which is moved over the replication layer, wherein the regions of the first layer which have not penetrated into recesses of the relief structure are removed. Subsequently a time-controlled etching process can follow, for removal of residues of the first layer in flat regions or of color fogs. The etching process can also be locally used to influence the thickness of the first layer within the relief structure, to set different levels of color saturation or to adjust the iridescence of a first layer with a viewing angle-dependent interference effect.
However a washing process can also be suitable for structuring of the first layer, in particular if the capillary forces within the relief structure are sufficient to fix the material, which is therein, of the first layer in the washing procedure. Here in particular relief structures which have macroscopic recesses and in addition in the recesses a microstructure can be advantageous.
In a further preferred embodiment the relief structure is formed with at least two trenches of different depths or is provided on the bottom of at least two trenches of different depths, wherein the trenches are each in particular of a depth in the range of between 1 and 10 μm and a width in the range of between 5 and 100 μm. If the trenches are filled for example with colored photoresist and the replication layer is freed of the photoresist in the regions without trenches different color saturation levels occur in dependence on the trench depth and possibly further optical effects.
In this case also it is further possible that the configuration of the first relief structure, possibly also the configuration of the first layer or further layers, locally influence an adhesion property and/or a diffusion resistance and/or a surface reactivity of the replication layer or further layers so that the powder or the liquid medium adheres in locally differing fashion to the replication layer or further layers, diffuses thereinto or reacts therewith.
Subsequently in a preferred embodiment the at least one partially shaped functional layer or the at least one further partially shaped layer is formed by a procedure whereby a first positive or negative photoresist lacquer layer is applied, the first photoresist lacquer layer is exposed through the structured first layer and structuring of the exposed first photoresist lacquer layer is effected.
Furthermore optionally the replication layer is also formed partially by diffusion thereinto of a coloring agent in the form of a partially shaped functional layer, in which case the replication layer itself or a layer partially shaped thereon locally functions as a diffusion barrier.
In regard to the first process the replication layer is at least partially flat in particular in the at least one second region. That facilitates for example pulling off the surface with a stripping rake or stripping blade as the flat region serves in optimum fashion as a support therefor. In addition the flat regions can be backed with a metallic reflection layer so that optically the effect of mirror surfaces is produced.
Finally, for the first process, for the formation of relatively thick partially shaped layers, it has proven desirable if a material is raked into exposed regions of the replication layer with the first relief structure or the at least one second relief structure which, viewed perpendicularly to the plane of the replication layer, are surrounded by a partially shaped functional layer or further layer, and at least one further partially shaped functional layer or further partially shaped layer is formed.
For the second process it has proven desirable if the at least one partially shaped functional layer or the at least one further partially shaped layer is formed by a procedure whereby a second positive or negative photoresist lacquer layer mixed with coloring agent is applied, the second photoresist lacquer layer is exposed through the structured first layer and structuring of the exposed second photoresist lacquer layer is effected. In that respect it is preferable if the first or the second photoresist lacquer layer forms the at least one partially shaped functional layer. Subsequently optionally the carrier layer is formed partially by diffusion of a coloring agent, in the form of a partially shaped functional layer or further layer, wherein at least the first and/or second structured photoresist lacquer layer functions as a diffusion barrier.
Optionally a material is raked into exposed regions of the carrier layer, which viewed perpendicularly to the plane of the carrier layer are surrounded by a partially shaped functional layer or further partially shaped layer, and at least one further partially shaped functional layer or further partially shaped layer is formed.
The configuration of the photoresist layers, optionally also the configuration of further layers, possibly also locally influences an adhesion property and/or a diffusion resistance and/or a surface reactivity of the carrier layer or further layers so that a material for forming a partially shaped functional layer or further layers adheres to the carrier layer or further layers in locally differing fashion, diffuses thereinto or reacts therewith. In the operation of diffusing material into the carrier layer a part of the carrier layer inclusive of the material diffused therein becomes a partially shaped functional layer or further partially shaped layer.
Furthermore it has proven desirable if polyester is used as the replication layer or carrier layer and a metal layer is used as the first layer, and the regions which have remained in that way are exposed to an electrostatic field and the powder is selectively deposited in the regions which have remained, due to the different field characteristics, similarly to a toner. Thermal consolidation of the powder is then effected to form a closed, firmly adhering, partially shaped functional layer or further layer.
The first layer is therefore generally a layer which can perform a dual function. On the one hand it can implement the function of a high-precision exposure mask for the production procedure for the partially shaped functional layer and/or further layers, while on the other hand at the end of the production procedure it possibly itself forms a partially shaped layer which is highly accurately positioned, for example the partially shaped functional layer or further layer, possibly in the form of an OVD layer, a conductor track or a functional layer of an electrical component, for example an organic semiconductor component, a decorative layer such as a bright multicolored layer or the like.
It is preferable if the at least one partially shaped functional layer is in the form of a lacquer layer or a polymer layer. The above-mentioned preferred functional layer materials such as pigments or dyestuff can be particularly easily integrated into such a layer.
In particular the at least one partially shaped functional layer is produced with the addition of one or more, in particular non-metallic functional layer materials.
It is particularly advantageous in regard to the decorative effect of the partially shaped functional layer if the at least one partially shaped functional layer is produced with the addition of one or more colored, in particular brightly multicolored functional layer materials.
The at least one further partially shaped layer is formed in particular by the first layer and/or at least one colored positive or negative photoresist lacquer layer and/or by at least one optically variable layer with an optical effect which differs in dependence on the viewing angle and/or by at least one metallic reflection layer and/or by at least one dielectric reflection layer. It can be provided that the dielectric is for example of TiO2 or ZnS. The at least one partially shaped functional layer and the at least one further partially shaped layer can be formed with different refractive indices so that optical effects can be afforded thereby.
The first layer and/or the second layer can also be a polymer so that for example the one layer can be in the form of an electrical conductor and the other layer can be in the form of an electrical insulator, in which case both layers can be in the form of transparent layers.
The optically variable layer is preferably such that it includes at least one substance with an optical effect which differs in dependence on the viewing angle and/or is formed by at least one liquid crystal layer with an optical effect which differs in dependence on the viewing angle and/or by a thin film reflection layer stack with an interference color effect which is dependent on the viewing angle.
Furthermore it has proven desirable if the structured first layer is at least partially removed and replaced by the at least one partially shaped functional layer and/or the at least one further partially shaped layer. It is also possible to effect complete removal of the structured first layer.
Equally a hydrophilic or hydrophobic medium with functional components (for example dyestuffs, pigments) can be partially deposited over a hydrophobic or hydrophilic deposit layer which is partially shaped by the process, in a following step by way for example of printing, dipping or spray processes.
In an advantageous configuration a first further partially shaped layer can be introduced into the regions in which the first layer has been removed. It can further be provided that the residues of the first layer are replaced after complete removal by a second further partially shaped layer. The multi-layer body can now only have a high-resolution “color print” of photoresist, for the viewing person, but otherwise can be transparent. In that case the photoresist functions as an etching mask for the first layer.
The process according to the invention is therefore not restricted to the partial removal of a layer but it can involve further process steps which provide for the exchange of layers or the repetition of process steps when using differences in optical density for forming or differentiating regions.
Advantageously it is possible in that way to form high-resolution display elements. Without departing from the scope of the invention it is possible for display elements of differing colors to be applied in accurate register relationship and for them to be arranged for example in a pixel grid raster. As different multi-layer bodies can be produced with an initial layout for the first layer, by a procedure whereby for example different exposure and etching processes are combined together or carried out in succession, positioning in accurate register relationship of the successively applied layers is possible when using the process according to the invention, in spite of increasing the process steps.
It can further be provided that the first layer and/or the at least one partially shaped functional layer and/or the at least one further partially shaped layer are galvanically reinforced if this involves electrically conductive layers or layers which are suitable for current-less galvanization.
It is preferred if the at least one partially shaped functional layer, viewed perpendicularly to the plane of the replication layer or carrier layer, is arranged in coincident relationship above or beneath the at least one further partially shaped layer.
Alternatively thereto however it is equally desirable if the at least one partially shaped functional layer, viewed perpendicularly to the plane of the replication layer or carrier layer, is arranged alternately or with a uniform spacing relative to at least one further partially shaped layer.
Particularly attractive optical effects can be achieved if at least one first transparent spacer layer is arranged between the at least one partially shaped functional layer and the at least one further partially shaped layer. As an alternative thereto or in combination therewith, at least one second transparent spacer layer is disposed between at least two further partially shaped layers. In that way different color effects and/or patterns can be visible at different viewing angles or a three-dimensional impression or optical depth can be achieved. The effect can also be reinforced if the first and/or the second spacer layer is formed locally in at least two different layer thicknesses. In combination therewith the at least one partially shaped functional layer and the at least one further partially shaped layer can each be of a line-shaped configuration, in which case in particular a continuously varying line width can afford an additional optical effect.
It has been found desirable if the first and/or the second spacer layers are formed locally with a layer thickness in the region of <100 μm, in particular in the range of between 2 and 50 μm.
It is particularly preferred if the at least one partially shaped functional layer and the at least one further partially shaped layer are of such a configuration that at least one optical superpositioning effect which is possibly viewing angle-dependent, in particular a moiré effect or shadowing effect, occurs.
The first layer is preferably applied over the full surface area to the replication layer or the carrier layer in a thickness at which the first layer is opaque to the human eye, and in particular involves an optical density of greater than 1.5, in particular an optical density in the range of between 2 and 7. More specifically it has surprisingly been found that the ratio of the transmissivities of the regions with a diffractive relief structure can be increased by the increase in opacity of the first layer. If thus exposure is effected with a suitable illumination strength through a layer usually referred as opaque (for example optical density of 5), which by virtue of its high optical density would normally not be used as a mask layer, particularly good results can be achieved.
A particularly preferred embodiment is one in which the at least one partially shaped functional layer and the at least one further partially shaped layer are such that, viewed perpendicularly to the plane of the replication layer or carrier layer, they supplement each other to afford a decorative and/or informative geometric, alphanumeric, pictorial, graphic or figurative representation.
In that respect an embodiment which has proven to be particularly forgery-proof is one in which the at least one partially shaped functional layer and the at least one further partially shaped layer are each at least region-wise of a line-shaped configuration, wherein the lines blend into each other without displacement, and in particular also blend into each other with a continuous color configuration, for example a rainbow configuration. The different lines can alternatively or additionally also be arranged in mutually juxtaposed relationship and form a concentric circular line pattern.
Particularly fine lines have proven to be advantageous in that respect, in particular if the lines, viewed perpendicularly to the plane of the replication layer or carrier layer, are produced with a width in the region of <50 μm, in particular in the range of between 0.5 and 10 μm.
For a multi-layer body produced in accordance with the described process however it can also be provided that the second region comprises two or more subregions enclosed by the first region, a diffractive second relief structure is shaped in the replication layer in the second region and the first layer is a reflection layer which is removed in the first region and is thus arranged in accurate register relationship with the second relief structure. Such multi-layer bodies can advantageously be provided as forgery-proof security elements. They are already particularly forgery-proof for the reason that particularly fine line widths can be produced with the process according to the invention. In addition, because of their diffractive structure and their orientation in accurate register relationship with the reflection layer, those fine lines can produce optical effects which can only be imitated with extreme difficulty.
It can further be provided that the first region comprises two or more subregions enclosed by the second region or vice-versa and the first layer is a reflection layer which is removed in the second region and is thus arranged in precise register relationship with the first relief structure. Advantageous configurations that the subregions of the second region or the subregions of the first region respectively are of a width of less than 2 mm, preferably less than 1 mm.
The at least one partially shaped functional layer is preferably colored with at least one opaque and/or at least one transparent coloring agent which at least in the wavelength range of the electromagnetic spectrum is colored or color-producing and in particular is brightly multicolored or brightly color-producing. In particular it has proven desirable if a coloring agent is included in the at least one partially shaped functional layer, which can be excited outside the visible spectrum, for example under UV or IR radiation, and produces a visually recognizable colored impression. It is thus possible that at least one partially shaped functional layer is provided with at least one dyestuff or pigment which is radiation-excitable and which fluoresces red, green and/or blue, and thereby produces an additive color upon being irradiated.
The at least one coloring agent is preferably selected from the group of inorganic or organic coloring agents, in particular pigments or dyestuffs.
Inter alia coloring agents are particularly preferred, which luminesce and in particular fluoresce upon being irradiated or excited with ultraviolet radiation in the visible wavelength range. In that respect it is possible to use luminescing pigments, dyestuffs or copolymers which without excitation are colored or colorless in the visible wavelength range. It is further possible to use a mixture comprising at least two or more luminescent coloring agents of the same or different kinds.
Pigments can be in the form of nanopigments of a size of between 1 and 100 nm. Particularly preferred in that respect are fluorescent nanopigments which are colorless in the visible wavelength range and which fluoresce under UV radiation, in particular at 254 nm, 313 nm or 365 nm. Nanopigments can be dispersed by simple stirring in printing media and can be easily processed in printing inks in inkjet printing processes while conventional pigments have to be ground with the printing medium in a complicated and expensive procedure in order to achieve a useable dispersion. In regard to nanoparticles and the use thereof attention is also directed to WO 03/052025 A1.
The use of a luminescent coloring agent or a combination of at least two luminescent coloring agents which upon excitation with different wavelengths produce different visible colored emissions is particularly preferred. In that respect at least one luminescence appearance can occur in the infrared and/or visible and/or ultraviolet range. Thus for example a single coloring agent, upon UV excitation with a wavelength of 365 nm, can emit a different colored fluorescence manifestation in the visible range, than is emitted upon UV excitation with a wavelength of 254 nm in the visible range. Such a bifluorescent pigment which visibly fluoresces red with an excitation at 254 nm and visibly fluoresces blue-white upon excitation at 365 nm can be obtained for example under the designation BF11 from Specimen Document Security Division, Budapest. Examples relating to monoluminescent coloring agents which exhibit visible emissions of different colors upon excitation and which can be used in combination are also to be found in U.S. Pat. No. 5,005,873.
A combination of luminescent coloring agents which are colorless at visible wavelengths and which luminesce in color under UV radiation in the visible range in such a way that a true-color image is generated is particularly preferred.
Organic luminescent coloring agents which are excitable by means of UV irradiation can be obtained for example under the designation UVITEX® which for example fluoresce in the UV range and in the visible range.
Inorganic, excitable luminescent coloring agents can be obtained among other materials such as La2O2S:Eu, ZnSiO4:Mn or YVO4:Nd and for example under the designation LUMILUX®.
Luminescent copolymers are for example co-polyamides, co-polyesters or co-polyesteramides which have mixed-in fluorescent components.
Luminescent coloring agents and mixtures thereof can in that respect be used alone or in combination with conventional non-luminescent coloring agents.
A particularly attractive configuration is a configuration involving the at least one partially shaped functional layer and the at least one further partially shaped layer in complementary colors as in the colors red and green, at least when viewed at a given viewing angle or under a given kind of radiation.
Particularly striking and attractive effects are achieved for the first multi-layer body if the at least one partially shaped functional layer and/or the at least one further partially shaped layer is backed with a diffractive relief structure and exhibits a holographic or kinegraphic optically variable effect.
A preferred first embodiment of the multi-layer body is formed if the at least one partially shaped functional layer is an in particular opaque metal layer and the at least one further partially shaped layer is a colored lacquer layer or vice-versa.
A preferred second embodiment of the multi-layer body is formed if the at least one partially shaped functional layer is a layer containing liquid crystals and the at least one further partially shaped layer is a colored lacquer layer or vice-versa.
A preferred third embodiment of the multi-layer body is formed if the at least one partially shaped functional layer is formed by a thin film reflection layer stack with viewing angle-dependent interference color effect and the at least one further partially shaped layer is a colored lacquer layer or vice-versa.
A preferred fourth embodiment of the multi-layer body is formed if the at least one partially shaped functional layer is a first colored lacquer layer and the at least one further partially shaped layer is a further differently colored lacquer layer.
A preferred fifth embodiment of the multi-layer body is formed if the at least one partially shaped functional layer is a first colored lacquer layer and the at least one further partially shaped layer is a dielectric reflection layer, or vice-versa.
Preferably in that case the lacquer layers are colored with at least one opaque and/or at least one transparent substance. In particular it has proven desirable if the colored lacquer layer is colored with at least one coloring agent of the color yellow, magenta, cyan or black (CMYK) or the color red, green and blue (RGB). Accordingly different color impressions can be produced by both subtractive and also by additive color mixing which for example can be produced by the above-described radiation-excitable (for example UV, IR) pigments or dyestuffs.
The above-mentioned fifth embodiment in which the multi-layer body has the at least one partially shaped functional layer in the form of a first colored lacquer layer and the at least one further partially shaped layer in the form of a dielectric reflection layer, or vice-versa, is particularly suitable for lacquer layers which have luminescent coloring agents excitable by means of UV radiation. More specifically it has been found that various transparent dielectric layers such as for example ZnS or many plastic materials do not allow UV radiation through and thus excitation of colored layers arranged therebehind in the beam path, containing luminescent coloring agents excitable by means of UV radiation, is prevented or at least impeded. Now, in the fifth embodiment, the lacquer layer can be arranged alternately in relation to the dielectric reflection layer so that the lacquer layer which is to be excited with UV radiation is preferably only to be found in regions in which the dielectric reflection layer is not in the beam path between the UV light source and the lacquer layer.
Furthermore it has proven desirable if the at least one partially shaped functional layer and/or the at least one further partially shaped layer forms/form at least region-wise a raster image made up of pixels, image points or lines which cannot be individually resolved by the human eye.
Rastering of the first layer is also possible to the effect that, besides raster elements which are underlaid with a reflection layer and which have—possibly different—diffractive diffraction structures, there are besides raster elements representing transparent regions without a reflection layer. In that respect amplitude-modulated or surface-modulated rastering can be selected as the rastering effect. Interesting optical effects can be achieved by a combination of such reflective/diffractive regions and non-reflective, transparent—under some circumstances also diffractive—regions. If such a raster image is arranged for example in a window of a value-bearing document, a transparent raster image can then be seen in the transillumination mode. In incident light that image is only visible in a given range of angles, in which no light is diffracted/reflected by the reflecting surfaces. In addition it is also possible to use such elements not only in a transparent window but also to apply them to a colored imprint. The colored imprint is visible for example in the form of the raster image in a given range of angles while in another range of angles it is not visible by virtue of the light reflected by the diffraction structures or other (macro) structures. In addition it is also possible for a plurality of outgoing reflection regions which decrease in their reflectivity to be produced by suitably selected rastering.
Finally it has proven to be optically attractive if at least two further partially shaped layers are provided.
The replication layer can be arranged on a carrier layer, for example if the replication layer is a layer which is not self-supporting or at least a very thin layer. The carrier layer is adapted to be removable or releasable in particular from the multi-layer body formed.
An embodiment of the multi-layer body in the form of a film element, in particular a transfer film, a hot embossing film or a laminating film, is advantageous. In that case the film element preferably has an adhesive layer on at least one side.
The multi-layer body however may be not only a film element but also a rigid body. Film elements are used for example to provide documents, bank notes and the like with security features. That can also involve security threads for being woven into paper or for being introduced into a card, which can be produced with the process according to the invention with a partially shaped functional layer in perfect register relationship with a further partially shaped layer. Advantageously rigid bodies such as for example an identity card, a base plate for a sensor element, semiconductor chips or surfaces of electronic devices, for example a casing portion for a cellular telephone, can also be provided with a multi-layer body according to the invention.
A security element for security or value-bearing documents, which is provided with a multi-layer body according to the invention or is formed at least partially from the multi-layer body is particularly forgery-proof and of an optically attractive nature. In particular an identity card or pass, a passport, a bank card, an identity card, a bank note, a security bond, a ticket, a security packaging or the like is considered as a security or value-bearing document. To safeguard such documents, preferably an at least partially transparent multi-layer body is arranged as a security element in particular in critical regions of the document such as the passport photograph or the signature of the holder, or over the entire document or a window opening in the document. In addition it is possible for a first item of information to be caused to be visible in such a window in a reflection mode and a second item of information to be caused to be visible in the transillumination mode. It is possible to generate new security elements with a particularly brilliant and filigree appearance. Thus it is possible for example to produce images which are semitransparent in the transillumination mode by the formation of a rastering of the at least one partially shaped functional layer and/or further partially shaped layer.
Besides the multi-layer body the security document may also have further security means such as for example printed layers containing optically variable coloring agents, magnetic layers, watermarks and so forth. In that case printed layers can be integrated into security elements or formed directly on a substrate of the security document. If printed layers are arranged on the security document, having luminescent coloring agents which are excitable by means of UV radiation, it has proven to be desirable if, for the reasons already referred to hereinbefore, they are not covered by transparent dielectric layers such as ZnS, which act as UV filters and prevent or impede excitation of the fluorescent coloring agents.
The use of printing inks which are colored under normal illumination and which in addition contain fluorescent coloring agents excitable by means of UV radiation means however that it is also possible to produce interesting optical effects when the printed image formed therefrom is partially covered by a transparent dielectric layer non-transmissive for UV radiation, and partially not. In the case of UV irradiation, the accustomed color is then still exhibited in the regions of the printed image, in which there is the transparent dielectric layer functioning as a UV filter, while a fluorescence manifestation occurs in the regions in which the UV radiation impinges directly on the printing ink of the printed image. Depending on the respective configuration of the openings in the transparent dielectric layer therefore fluorescence manifestations are produced in pattern form or in the form of alphanumeric characters and so forth, independently of the form of the printed image.
Electronic components can however also be produced with the multi-layer body according to the invention. By way of example the at least one partially shaped functional layer and/or the at least one further layer can form an electronic component, for example an antenna, a capacitor, a coil or an organic semiconductor component. The at least one partially shaped functional layer and/or the at least one further partially shaped layer can also involve a polymer so that for example the one layer can be in the form of an electrical conductor and the other layer in the form of an electrical insulator, in which case both layers can be in the form of transparent layers.
As mentioned hereinbefore it is possible to provide further layers which can be arranged on the multi-layer body in accurate register relationship, with the process of the invention. Multi-layer bodies according to the invention are suitable for example as optical components such as lens systems, exposure and projection masks. They can also be used as components or decoration elements in the field of telecommunications.
Further optical effects can be produced if the at least one partially shaped functional layer and/or the at least one further layer is or are formed from a plurality of sublayers, in particular if the sublayers form a thin film layer system.
It can be provided that the sublayers are formed from different materials. Such a configuration can be provided not just for the above-mentioned thin film layer system. In that way it is also possible for example to produce nanotechnological functional elements, for example a bimetal switch involving dimensions in the μm range can be produced from two different metallic layers.
The processes according to the invention afford many different possible options in terms of producing multi-layer bodies and the process steps are not limited to a single use in order for example to form a still more complex multi-layer body. In addition the layers of the multi-layer body can be chemically, physically or electrically treated at any point in the process implementation in order for example to alter mechanical or chemical resistance or to influence another property of the respective layer.
Independently of the above-described invention protection is also here quite generally claimed for a security element and the production thereof, having a transparent dielectric layer which is opaque to UV radiation, in particular a reflection layer, which is provided with openings, wherein viewed perpendicularly to the plane of the dielectric layer a lacquer layer containing luminescent coloring agents excitable by means of UV radiation is arranged on the side of the dielectric layer remote from the viewing person, at least partially and at least in the region of the openings thereof.
The invention is described by way of example with reference to the drawings in which:
a shows a diagrammatic sectional view of a modified embodiment of the production stage shown in
b shows a diagrammatic sectional view of the production stage following the production stage of
The multi-layer body 100 can be a portion of a transfer film, for example a hot embossing film, which is applied to a substrate by means of an adhesive layer (not shown here). The adhesive layer can be a hot melt adhesive which melts under the effect of heat and permanently bonds the multi-layer body to the surface of the substrate.
The carrier film 1 can be in the form of a mechanically and thermally stable film of PET.
Regions with different relief structures can be shaped in the replication layer 3 by means of known processes. The illustrated embodiment has first regions 4 with diffractive relief structures and second regions which are flat regions 6.
The first layer 3m on the replication layer 3 has demetallized regions 10d arranged in coincident relationship with the first regions 4. The multi-layer body 100 appears transparent or partially transparent in the regions 10d.
The replication layer 3 is surface-structured by known processes. For that purpose for example a thermoplastic replication lacquer is applied as the replication layer 3 by printing, spraying or lacquering and a relief structure is shaped in the replication lacquer by means of a heated punch or a heated replication roller.
The replication layer 3 can also be a UV hardenable replication lacquer which is structured for example by a replication roller. The structuring however can also be produced by UV radiation through an exposure mask. In that way the regions 4 and 6 are shaped in the replication layer 3. The region 4 can be for example the optically active regions of a hologram or a Kinegram® security feature.
It is particularly advantageous here for the first layer 3m to be applied in a layer thickness at which the first layer 3m is substantially opaque upon being applied to a planar surface, that is to say as in the regions 6, and involves an optical density of greater than 2. The thicker the first layer 3m applied to the replication layer 3, the correspondingly greater is the effect of the change, caused by the diffractive relief structure provided in the regions 4, in the effective optical layer thickness on the transmission characteristics of the first layer 3m. Investigations have shown that the change in the effective optical density of the first layer 3m, that is caused by the diffractive relief structure, is approximately proportional to the vapor-deposited layer thickness and thus approximately proportional to the optical density. As the optical density represents the negative logarithm of transmission, the difference in transmission between the regions 4 and 6 is over-proportionally increased in that way by increasing the application of material of the first layer 3m, in relation to surface area.
It will be noted that the optical densities of the first layer 3m differ in the regions 4 and 6 in such a way that it is reduced in the regions 4 in relation to the regions 6. The responsibility for this lies with the enlargement in surface area in the regions 4 because of the depth-to-width ratio of the structure elements that differs from zero and the thickness of the first layer 3m, that is reduced as a result. The dimensionless depth-to-width ratio and the spatial frequency are characterizing features in regard to the enlargement of the surface area of preferably periodic structures. Such a structure forms in a periodic succession “peaks” and “troughs”. Here the spacing between a “peak” and a “trough” is referred to as the depth while the spacing between two “peaks” is referred to as the “width”. Now, the greater the depth-to-width ratio, the correspondingly steeper are the “peak flanks” and the correspondingly thinner is the first layer 3m deposited on the “peak flanks”. That effect is also to be observed when the situation involves discretely distributed “troughs” which can be arranged relative to each other at a spacing which is a multiple greater than the depth of the “troughs”. In such a case the depth of the “trough” is to be related to the width of the “trough” in order to correctly describe the geometry of the “trough” by specifying the depth-to-width ratio.
In the production of regions of reduced optical density it is important to know and appropriately select the individual parameters in their dependencies. The degree of reduction in optical density can vary in dependence on the background, illumination and so forth. An important part is played in that respect by the absorption of light in the first layer. For example chromium and copper reflect much less under some circumstances.
Table 1 shows the ascertained degree of reflection of first layers of metal arranged between plastic films (refractive index n=1.5), here comprising Ag, Al, Au, Cr, Cu, Rh and Ti with a light wavelength λ=550 nm. In that case the thickness ratio ∈ is formed as a quotient of the thickness t of the metal layer that is required for the degree of reflection R=80% of the maximum Rmax and the thickness required for the degree of reflection R=20% of the maximum Rmax.
On the basis of heuristic consideration, silver and gold (Ag and Au), as can be seen, have a high maximum degree of reflection Rmax and require a relatively low depth-to-width ratio of a relief structure to reduce the optical density of the first layer, in the foregoing example to afford transparency. Aluminum (Al) admittedly has also a high maximum degree of reflection Rmax, but it requires a higher depth-to-width ratio of the relief structure. Preferably therefore it can be provided that the first layer is made of silver or gold. It can however also be provided that the first layer is made from other metals, metal alloys or functional layer materials.
Table 2 now shows the calculation results obtained from strict diffraction calculations for relief structures, in the form of linear sinusoidal gratings with a grating spacing of 350 nm, with different depth-to-width ratios. The relief structures are coated with silver with a nominal thickness t0=40 nm. The light incident on the relief structures is of the wavelength λ=550 nm (green) and is TE polarized and TM polarized respectively.
As was found, in particular the degree of transparency or transmission, apart from the depth-to-width ratio, is dependent on the polarization of the incident light. That dependency is illustrated in Table 2 for the depth-to-width ratio h/d=1.1. It is possible to use that effect for the selective formation of further partially shaped layers.
It was further found that the degree of transparency or reflection of the metal layer is wavelength-dependent. That effect is particularly highly pronounced for TE polarized light.
It was further found that the degree of transparency or transmission decreases if the angle of incidence of the light differs from the normal angle of incidence, that is to say the degree of transparency decreases if the light is not perpendicularly incident. That means that the first layer 3m can be of a transparent or less opaque nature than in the reflecting regions 6, only in a limited cone of incidence of the light. It can therefore be provided that the first layer 3m is opaque when inclined illumination is involved, in which respect that effect is also useful for the selective formation of further partially shaped layers.
Besides the depth-to-width ratio of a relief structure the variation in optical density is also influenced by the spatial frequency of the relief structure. Thus it has further been found that a variation in the transmission characteristics of a first layer applied to a relief structure can be achieved if the product of spatial frequency and relief depth in a first region of the relief structure is greater than the product of spatial frequency and relief depth in a second region of the relief structure.
The provision of regions involving different transparency or transmission however can also be achieved by other effects, for example by:
If the first relief structure is a structure with a stochastic profile, for example a matt structure, correlation length, roughness depth and statistical distribution of the profile can be typical parameters which influence transmission.
Thus, to produce regions involving different transparency or transmission it is also possible to use in the first region and in the second region, relief structures which differ in one or more of the above-listed parameters.
The photosensitive layer 8 can be for example a positive photoresist such as AZ 1512 or AZ P4620 from Clariant or S1822 from Shipley which is applied to the first layer 3m in a density in relation to surface area of between 0.1 g/m2 and 50 g/m2. The layer thickness depends on the desired resolution and the procedure involved. Thus with lift-off procedures rather thicker layers of a layer thickness >1 μm are wanted, corresponding to a density in relation to surface area of about 1 g/m2. Preferred weights in relation to surface area are in the range of between 0.2 g/m2 and 10 g/m2.
Here the application is over the entire surface area. It is however also possible to provide for application in partial regions, for example in regions arranged outside the above-mentioned regions 4 and 6. These can involve regions which have to be only relatively roughly arranged in register relationship with the design, for example decorative pictorial representations such as for example random patterns or patterns formed from repeated images or texts.
The
a) leave structures with a high depth-to-width ratio as design elements and not to demetallize them;
b) introduce an additional item of information, for example through a mask in belt form, which moves with the multi-layer body 100d during the exposure operation; and
c) to introduce an individual item of information such as for example a serial number.
It can be provided in that respect that an identification is introduced by way of brief exposure by means of a programmable three-dimensional light modulator or a controlled laser.
The wavelength and polarization of the light and the angle of incidence of the light are illumination parameters which make it possible to emphasize and selectively process relief structures in a specifically targeted fashion.
Chemical properties can also be used for that purpose. The regions 10 and 11 can differ for example by their solubility in solvents. In that way the photosensitive layer 8 can be “developed” after exposure with UV light, as is further shown in
If a depth-to-width ratio >0.3 is usually provided in the regions 4 to afford a transparency which is visible to the human eye, it has surprisingly been found that the depth-to-width ratio which is sufficient for development of the photosensitive layer 8 can be substantially less. There is also no need for the first layer 3m to be so thin that the regions 4 appear transparent when viewed visually. The vapor-deposited carrier film can therefore be opaque for the reduced transparency can be compensated by the increased exposure dose of the photosensitive layer 8. It is further to be borne in mind that exposure of the photosensitive layer 8 is typically provided in the near UV range so that the visual viewing impression is not crucial in terms of assessing the optical density.
a and 5b a modified embodiment. The multi-layer body 100d′ in
b now shows a multi-layer body 100d″ resulting from the multi-layer body 100d′ after the washing process. In the regions 10 the first layer 3m has been removed at the same time during the washing process with the replication layer 3′. The structured replication layer 3′ forms a first partially shaped thermochromic functional layer, while the first layer 3m forms in perfect register relationship therewith a first further partially shaped layer of aluminum.
In the embodiment shown in
Now, as shown by reference to a multi-layer body 100f in
In that way therefore the first layer 3m can be structured in accurate register relationship without involving additional technological endeavor. No expensive precautions have to be taken for that purpose, such as for example when applying an etching mask by mask exposure or printing. Tolerances >0.2 mm are usual with such a conventional process. In contrast, with the process according to the invention, tolerances in the μm range down to the nm range are possible, that is to say tolerances which are only determined by the origination and the replication process selected for structuring of the replication layer.
It can be provided that the first layer 3m is produced as a succession of various metals and the differences in the physical and/or chemical properties of the metallic layer portions are put to use. For example it can be provided that the first metallic layer portion deposited is aluminum which has a high level of reflection and therefore means that reflecting regions stand out well, when viewing the multi-layer body from the carrier side. Chromium can be deposited as the second metallic layer portion, which has a high level of chemical resistance to various etching agents. The etching process for the first layer 3m can now be implemented in two stages. It can be provided that the chromium layer is etched in the first stage, in which case the developed photosensitive layer 8 is used as the etching mask, and then the aluminum layer is etched in the second stage, in which case the chromium layer now serves as the etching mask.
Such multi-layer systems allow a greater degree of flexibility in the choice of the materials used in the production procedure for the photoresist, for the etching agents and for the first layer 3m.
As illustrated in
It can now be provided that the first layer 3m is galvanically reinforced and in that way the regions 11 are produced for example in the form of regions enjoying particularly good electrical conductivity. Subsequently a transparent, UV hardenable liquid crystal can be applied over the full surface area as a quasi-negative photoresist and exposed through the carrier layer 1. The less exposed or unexposed regions of the photoresist layer are disposed over the partially shaped first layer 3m and are removed. The result is a multi-layer body (not shown separately here) which has a first partially shaped functional layer of transparent photoresist, a first further partially shaped layer in the form of the dielectric layer 3p and a second partially shaped further layer in the form of the first layer 3m.
It can alternatively or subsequently be provided that the regions 11 are transparent and for that purpose the first layer 3m is removed by etching. It is possible to provide an etching agent which does not attack the dielectric layer 3p applied in the other regions. It can however also be provided that the etching agent is caused to act only until the first layer 3m is no longer recognizable from the point of view of visual impression.
The process according to the invention can be further continued without losses of quality to structure further layers in accurate register relationship. For that purpose it can be provided that further optical effects such as total reflection, polarization and spectral transmissiveness of the previously applied layers are used for producing regions of different optical density in order to form exposure masks in accurate register relationship.
It can also be provided that a differing level of local absorption capability is produced by means of mutually superposed layers and exposure or etching masks are formed by laser-supported thermal ablation.
If therefore the angle of inclination is equal to zero the first layer 3m is deposited with the nominal thickness t0, if the magnitude of the angle of inclination is greater than zero, the first layer 3m is deposited with the thickness t, that is to say a smaller thickness than the nominal thickness t0.
Referring to 15(B), a positive photoresist layer 12 is applied to the layer composite shown in
Referring to
Referring to
The layer stack shown in
Finally, layers which are possibly no longer required are now removed in the flat second region D, by the structured photoresist layer 12 being dissolved away and the regions, arranged thereon, of the dielectric reflection layer R also being removed. The result is shown in
Referring to
The result is shown in
A first layer 3m of aluminum was subsequently sputtered opaquely over the full surface area to the replication layer 3 as shown in
A positive photoresist layer 12 was applied thereto over the full surface area as shown in
The positive photoresist 12 is now removed, a blue-colored negative photoresist layer 12′ is applied over the full surface area and exposed through the carrier layer 1. In the less exposed regions B, C and D, the negative photoresist layer 12′ can subsequently be removed, while hardening is effected in the regions A.
Referring to
The further positive photoresist layer 12″ is thereupon removed in the regions B. The result is shown in
The exposed first layer 3m is now removed by etching in the regions B. The result is shown in
The further positive photoresist layer 12″ is optionally removed and an adhesive layer applied over the full surface area involved. If a colored positive photoresist layer 12″ is used it can however also remain on the multi-layer body.
Referring to
A blue-colored negative photoresist layer 12′ is now applied over the full surface area and exposed through the carrier layer, hardening occurring in the regions A. The negative photoresist layer 12′ is removed in the regions B and D. The result is shown in
The positive photoresist layer 12 is now completely removed and the first layer 3m also completely removed by etching.
Thereupon a further first layer 3m′ of aluminum is applied by sputtering over the full surface area and a further positive photoresist layer 12″ is applied over the full surface area. The result is shown in
A red-colored further negative photoresist layer 12′″ is now applied over the full surface area and exposed through the carrier layer 1, hardening occurring in the regions B. In the other regions the red-colored further negative photoresist layer 12′″ is removed. The result is shown in
Finally the further positive photoresist layer 12″ is removed and the further first metal layer 3m′ completely dissolved away by etching. The result is shown in
If a structure as in the left region A1 is to be produced, a transparent spacer layer 2′ is formed and a red-colored positive photoresist layer 12 is applied thereto over the full surface area involved. The photoresist layer 12 is exposed through the carrier layer 1 and the first layer 3m″ functioning as an exposure mask. The photoresist layer 12 is then removed in the regions B. That gives a partially shaped functional layer in the form of the green printing ink which is exactly backed with a further partially shaped layer in the form of the red structured photoresist layer 12. In addition, optical superpositioning effects such as viewing angle-dependent moiré effects or local shadowing effects are produced by virtue of the spacer layer 2′.
If a structure as in the right-hand region A2 is to be produced, a red-colored positive photoresist layer 12 is applied over the full surface area involved. The photoresist layer 12 is exposed through the carrier layer 1 and the first layer 3m″ functioning as an exposure mask. The photoresist layer 12 is then removed in the regions B. The result is a partially shaped functional layer in the form of the green printing ink which is exactly backed with a further partially shaped layer in the form of the red structured photoresist layer 12.
Finally it is also possible to provide an adhesive layer 2″.
A yellow-colored transparent negative photoresist layer 12 is then applied thereto over the full surface area and exposed through the carrier layer 1. The unexposed regions of the photoresist layer 12, that is to say in the regions D, are then removed and the first layer 3m exposed there.
A further opaquely blue-colored negative photoresist layer 12′ is then applied over the full surface area and exposed through the carrier layer 1. The unexposed regions of the further photoresist layer 12′, that is to say in the regions D, are then removed and the first layer 3m exposed there. The result is shown in
Then the first layer 3m is removed by etching in the regions D, the two photoresist layers 12, 12′ serving as an etching mask. The result is shown in
Now the procedure either involves applying a transparent lacquer layer as a spacer layer and then a green-colored positive photoresist layer 12′ or however, as shown in
Now the exposed regions of the green photoresist layer 12′ are removed while the unexposed regions remain on the partially shaped red photoresist layer 12. Finally an adhesive layer 2 is applied over the full surface area involved.
It will be appreciated that, with the whole host of possible process procedures and multi-layer bodies and security documents or components which can be formed, it is not possible for them all to be set out exhaustively. The man skilled in the art however, with knowledge of the invention, is readily in a position to modify or combine the process steps to arrive at the desired result. Thus the man skilled in the art can also readily combine the first process according to the invention with the second process according to the invention to achieve further embodiments, in particular decorative effects with filigree line patterns, with at the same time a high level of safeguard against imitation.
Number | Date | Country | Kind |
---|---|---|---|
10 2006 037 431 | Aug 2006 | DE | national |
10 2007 002 163 | Jan 2007 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2007/006196 | 7/12/2007 | WO | 00 | 8/12/2009 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2008/017362 | 2/14/2008 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4094575 | Kellie | Jun 1978 | A |
4353952 | Brown et al. | Oct 1982 | A |
4673253 | Tanabe et al. | Jun 1987 | A |
4971894 | Memis et al. | Nov 1990 | A |
5005873 | West | Apr 1991 | A |
5138604 | Umeda et al. | Aug 1992 | A |
5538753 | Antes et al. | Jul 1996 | A |
5538757 | Fitchmun et al. | Jul 1996 | A |
6328342 | Belousov et al. | Dec 2001 | B1 |
7425894 | Lutz et al. | Sep 2008 | B2 |
20050068395 | Haubold et al. | Mar 2005 | A1 |
20050141094 | Wild et al. | Jun 2005 | A1 |
20060209412 | Schilling et al. | Sep 2006 | A1 |
20060251863 | Katschorek et al. | Nov 2006 | A1 |
20080050660 | Staub et al. | Feb 2008 | A1 |
20080310025 | Staub et al. | Dec 2008 | A1 |
Number | Date | Country |
---|---|---|
10318103 | Nov 2004 | DE |
10318157 | Nov 2004 | DE |
10328760 | Jan 2005 | DE |
10333704 | Apr 2005 | DE |
102005006231 | Aug 2006 | DE |
102005006277 | Aug 2006 | DE |
0382944 | May 1995 | EP |
0537439 | Jul 2003 | EP |
2136352 | Sep 1984 | GB |
6079331 | May 1985 | JP |
10100573 | Apr 1998 | JP |
11058581 | Mar 1999 | JP |
2008530600 | Aug 2008 | JP |
2008530601 | Aug 2008 | JP |
200604036 | Feb 2006 | TW |
WO0103945 | Jan 2001 | WO |
WO 03052025 | Jun 2003 | WO |
WO 2006084686 | Aug 2006 | WO |
Number | Date | Country | |
---|---|---|---|
20090317595 A1 | Dec 2009 | US |