The present invention relates to a method for producing a profiled strip comprising a visible side, a first longitudinal side, provided with first male connecting means and a second longitudinal side situated opposite the first longitudinal side and provided with first female connecting means, which profiled strip is furthermore provided, on a first end side, with second male connecting means and is provided, on a second end side situated opposite the first end side, with second female connecting means, wherein the said connecting means are suitable for connecting adjacent profiled strips by the first or second male connecting means engaging in the first or second female connecting means. The profiled strip obtained by means of the method may be both a floor or a wall panel (element) in the form of a tile or board. The resulting profiled strip (panel) is made from plastic, preferably from vinyl or PVC.
When connecting floorboards which do not use gluing techniques, several systems are known which differ by the way in which the floorboards can be joined.
The most well-known present systems are described in the following patent publications: BE 9600527; BE 9700344; EP 0843763 and EP 1026341.
For the Short Side of the Floorboard Once the Longitudinal Connection has been Achieved:
A significant drawback of the horizontal movement, better known as the snap movement, of the floorboards with respect to each other is the fact that, on the one hand, an accessory and hammer are required and that the force exerted by means of the “hammering together” of the floorboards may result in damage to the decorative top layer. The same phenomenon may occur if the accessory, which is intended to prevent damage to the projecting tooth at the other end of the floorboard to be connected, is not handled correctly. When using the hammer for horizontally moving the floorboards with respect to each other, the force used to hammer on the correctly positioned accessory has to be regulated in order to achieve a strong connection. In addition, it is also important for the moving floorboard to be taken towards the other floorboard in a steady manner so as to also prevent damage. It is known in practice that this is practically impossible as well, due to the point load of the hammer.
Due to the issues described which are associated with the horizontal snap connection, a user-friendly technology is being developed, namely the vertical connection of the panel to be fastened with respect to the horizontally positioned panel. More specifically, the fall-down or push-down technology.
However, with the most common known vertical connecting techniques, there remains a problem with regard to possible damage of the connecting means due to the vertical force which will have to be exerted, in most cases, still using a hammer in order to achieve a correct locking strength after juxtaposed profiled strips have been fitted.
Another common problem is the fact that the connection can absorb only small upward forces caused by unevenness of the floor. Often, the force with which the floorboards are joined is also the force with which they can come apart (cf. EP 0085196 and EP 0562402). The force with which the floorboards can come apart again is also referred to as the locking strength. In this known embodiment, the force used to press the floorboards together at the end side by means of a vertical force is often the same as the eventual locking strength. A low vertical force for connecting floorboards arranged next to each other to each other, such as can be exerted by a thumb, will eventually also result in a low locking strength. In order to solve this last problem, several versions are known which use inserts made from a different material than the floorboard itself (cf. EP 1 650 375 and EP 1 415 056) in order to increase the locking strength and to thus be able to absorb greater upward forces.
European patent publication EP 3 121 348 describes a panel comprising a body with at least one plastic layer wherein the longitudinal sides and/or the end sides are provided with complementary hook-shaped connecting means. In order to prevent the connection between two adjacent panels (sides) from becoming detached, the panel is provided with first vertical locking means. To this end, the connecting area of the one side is provided with a locking element in the form of a groove and the connecting area of the adjacent side is provided with a locking part which cooperates with the locking element and is in the form of a projecting part. In order to achieve an even better vertical lock, the panel described in EP 3 121 348 comprises second vertical locking means in the form of a foldable lip which engages in a recess provided for the purpose. However, this solution has the drawback that the panels have to be sufficiently thick in order thus to have sufficient space (matter) in order to obtain a sufficiently large locking strength by means of a foldable lip. This is the result of the limitations in the design which the foldable lip may have.
In addition, in accordance with the proposed procedure of milling the flexible locking lip, there is a greater risk of this lip breaking off after the connection has been brought about during fitting of the floorboards, as a result of material fatigue in combination with a notch effect at the location where the flexible locking lip is still connected to the body of the panel following milling. The foregoing is pernicious as the connections of the floorboards have to be taken into account when there is a relevant dynamic load on the connections during use of the floor.
It is now an object of the present invention to provide a method which makes it possible to provide a profiled strip provided with vertical locking means in which the risk of them breaking off due to the exerted dynamic loads or occurring when disassembling the profiled strips arranged next to each other by means of a tilting movement is minimal.
The profiled strip produced by means of the present method preferably has a reduced thickness, preferably a thickness of between 3 mm and 12 mm, preferably having a thickness of 4 mm to 6 mm, wherein the user has the possibility of connecting profiled strips to each other in any desired direction in order thus to be able to create different laying patterns.
The object of the invention is achieved by providing a method for producing a profiled strip, comprising: a first longitudinal side, provided with first male connecting means and a second longitudinal side situated opposite the first longitudinal side and provided with first female connecting means, which profiled strip is furthermore provided, on a first end side, with second male connecting means and is provided, on a second end side situated opposite the first end side, with second female connecting means, wherein the said connecting means are suitable for connecting adjacent profiled strips by the first or second male connecting means engaging in the first or second female connecting means, wherein the method comprises the following steps:
The produced bent locking element is preferably a locking lip which is formed by heating up the milled-out projecting element and bending it to form a bent locking element. By producing the locking element in this way, a locking element having a much greater locking strength results. In addition, there are many more possibilities of modifying the design of the locking element. Due to the fact that bending is only carried out after milling, there is much greater freedom with regard to the design for the locking element. For example, whereas it was impossible in the past with certain embodiments to mill out a downwardly directed locking element in the female connecting means, the present method allows a projecting element on a side of the profiled strip to be milled which will subsequently be heated and bent to form a bent locking element in a perfect manner.
Heating will be effected by means of a heating element, e.g. an infrared heater or an industrial heater or a nozzle with hot air which will bring the material to the suitable temperature at which the material of the projecting element becomes mouldable. Once the material has become mouldable, the projecting element is bent at a desired angle in the direction of the end side and temporarily held there until the material has cooled down. After cooling down, a bent element is formed. The bent element bears against a part of the body of the profiled strip. The part of the body against which the bent element partly bears forms a support for the bent element and is formed while the milling operations are being carried on the first end side. The respective support preferably has a curved configuration. The distal end of the bent projecting element does not bear against the profiled strip body, as a result of which it is displaceable (depressable), as a result of which it will be displaced in the direction of the profile body while connection to an adjacent profile takes place and it will return to its original position after the connection has been achieved and will consequently, in the connected position, make contact with a locking part which is suitable for the purpose and provided in the adjacent profile.
This novel way of producing a locking element (lip), in particular by means of thermoforming, has numerous advantages:
The method according to the invention makes it possible to make the locking element more flexible, so that the profiled strip, when connected to an adjacent profiled strip, can be removed again more easily without causing damage, in particular to the locking element. The resulting locking element can be used to produce a vertical lock. With the known profiled strips, a profiled strip would only be detached again by performing a sliding movement. It was not possible to detach the profiled strips from each other by means of a simple rotating movement without damage to the locking elements.
Using the method according to the invention, it is also possible to produce end connecting means which make it possible to connect a profiled strip to the end side or a longitudinal side of an adjacent profiled strip by means of its end side. It is also possible to provide the first or second longitudinal side with a locking element which is formed by milling out a projecting element and subsequently heating, bending and, optionally, cooling it.
Preferred embodiments are described in the dependent claims.
There now follows a more detailed description of the method for producing a profiled strip (the wall or floor panel) according to the invention in order to explain the properties of the present invention and to indicate additional advantages and particulars thereof. It will be clear that nothing in the following description may be interpreted as a limitation of the scope of protection defined in the claims.
In this description, reference numerals are used to refer to the attached drawings, in which:
A profiled strip (1) comprising: a first longitudinal side (2A), provided with first male connecting means and a second longitudinal side (2B) situated opposite the first longitudinal side (2A) and provided with first female connecting means, which profiled strip (1) is furthermore provided, on a first end side (3A), with second male connecting means and is provided, on a second end side (3B) situated opposite the first end side (3A), with second female connecting means, wherein said connecting means are suitable for connecting the longitudinal sides (2A, 2B) and/or the end sides (3A, 3B) of adjacent profiled strips to each other is illustrated in
The produced locking element is a locking lip which is formed by first performing a milling operation, thereby forming a projecting element (6a), heating this element (6a) and bending it to form a bent locking element (6b). The distal end of the bent locking element (6b) does not make contact with the profile body, as a result of which it is displaceable (depressable), as a result of which it will be displaced in the direction of the profile body while connection to an adjacent profile takes place and it will return to its original position after the connection has been achieved and will consequently, in the connected position, as illustrated in
A profiled strip (1) which is provided with a bent locking element (6b) which has been produced by means of thermoforming, wherein a milled projecting element (6a) is heated and subsequently bent, has the advantage that the freedom of design for the bent locking element (6b) is relatively great. The milled projecting element (6a) and the bent locking element (6b) formed therefrom may be dimensioned such that such profiled strips (1,1′) can readily be locked to each other by applying only a small force (pushing with a thumb), whereas many other connecting systems require a great force (use of a hammer). In addition, two profiled strips (1,1′) connected to each other can easily be disassembled without the risk of the bent locking element (6b) breaking off.
According to a preferred method, in order to produce the aforementioned support for the bent locking element (6b), as is visible, inter alia, in
The respective recesses (9 and 10) allow for greater flexibility of the bent locking element (6b) and make it possible to disassemble the profiled strip (1) again after it has been connected to an adjacent profiled strip (1′) without causing damage, such as the bent locking element (6b) breaking off at the base (13). The reason for this is that, in practice, disassembling will occur by means of a tilting movement at the end side (3A; 3B) of the connected profiled strips with respect to each other. The various possible embodiments of transition (12) between the second recess (10) and the first recess (9), more specifically the depth of the second recess (10), will, in a number of embodiments, contribute to greater flexibility of the flexible part of the bent locking element (6b), which is a requirement in order to be able to disassemble the respective profiled strips by means of a tilting movement. Because of the greater flexibility of the bent locking element (6b) as a result of the foregoing, the bent locking element (6b) will consequently break off less easily at its base (13) when tilting the foldable lip away in a direction away from the transition (12) when disassembling the adjacent profiled strip.
In addition, the force to be exerted vertically in order to connect the profiled strips (1,1′) to each other, will, in various ways and depending on the type of base material, be made greater or less great. This force to be exerted vertically defines whether a vertical force is to be exerted using a hammer or whether a vertical pressure exerted only by a thumb (or another finger) suffices to produce a lock.
The fact is that, as can be seen in
By modifying the depth of the first recess (9), the thickness and the design of the projecting lip of the bent locking element (6b) may be modified. As is illustrated in
In the embodiment illustrated in
In the embodiment as illustrated in
As is clear, inter alia, from
The profiled strips produced by means of the method are preferably elongate floorboards which are substantially composed of a polymer or polyolefines. Obviously, other embodiments, such as e.g. square, or wall parts provided with connecting means as described in the present text also fall within the scope of protection of the present invention.
In a connected position, the floorboards define a vertical surface. The materials for producing the profiled strip (1) which may possibly be used depend on the mechanical properties. The profiled strip (1) has a decorative finish on the top side. The profiled strip according to the present invention preferably has a thickness of between 3 mm and 12 mm, in particular a thickness of 4 mm to 6 mm.
The profiled strip (1) produced by means of the method is made in a single part and comprises a visible side (V) having at least one transparent wear layer. The profiled strip is made from plastic, preferably PVC or polyolefines. The profiled strip comprises one or several mineral fillers, possible fillers being chalk or talc. Preferably, at least 2%, more particularly at least 10% fillers are present in the profiled strip. The profiled strip (1) furthermore preferably comprises a number of process stabilizers for the heat resistance during processing, such as for example lead (Pb), calcium-zinc (Ca—Zn) or tin (Sn).
The bent locking element (6b) in the profiled strip (1) produced in accordance with the method may be directed upwards (see, e.g.
Using the method according to the invention, it is also possible (see
This method according to the invention is also applicable to the connections as illustrated in
The second side is shown in detail in
The first side is also subjected to a milling operation in order to produce a projecting lip (6a), as is shown in
Number | Date | Country | Kind |
---|---|---|---|
BE-2018/5173 | Mar 2018 | BE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/IB2019/051494 | 2/25/2019 | WO | 00 |