The present invention concerns the manufacture of coated or non-coated high strength steel sheet having improved tensile strength and improved total elongation and the sheets obtained by this method.
To manufacture various equipment such as parts of body structural members and body panels for automotive vehicles, it is now usual to use bare, electro-galvanized, galvanized or galvannealed sheets made of DP (dual phase) steels multi-phase, complex phase or martensitic steels.
For example, a high strength multi-phase may include a bainite-martensitic structure with/without some retained austenite and contains about 0.2% of C, about 2% of Mn, about 1.5% of Si which would result in yield strength of about 750 MPa, a tensile strength of about 980 MPa, a total elongation of about 10%. These sheets are produced on continuous annealing line by quenching from an annealing temperature higher than Ac3 transformation point, down to an overaging temperature above Ms Transformation point and maintaining the sheet at the temperature for a given time. Optionally, the sheet is galvanized or galvannealed.
To reduce the weight of the automotive parts in order to improve their fuel efficiency in view of the global environmental conservation it is desirable to have sheets having improved strength-ductility balance. But such sheets must also have a good formability.
In this respect, it was proposed to produce sheets made of steel using so called quenched and partitioned having improved mechanical properties and good formability. Coated or non-coated (bare) sheets having, a tensile strength TS of about 1470 MPa and a total elongation of at least 19%, are targeted. These properties are targeted at least when the sheet is not coated or galvanized.
When the sheet is galvannealed, a tensile strength TS of at least 1470 MPa and a total elongation of at least 15%, preferably at least 16% are targeted.
Therefore, the purpose of the present invention is to provide such sheet and a method to produce it.
For this purpose, the invention relates to a method for producing a cold rolled steel sheet having a tensile strength TS of at least 1470 MPa and a total elongation TE of at least 16%, the method comprising the successive steps of:
the remainder being Fe and unavoidable impurities, the annealing temperature AT being equal or higher than the Ac3 transformation point of the steel, to obtain an annealed steel sheet,
Preferably, during quenching, the annealed steel sheet is cooled down to said quenching temperature at a cooling rate fast enough to avoid ferrite formation upon cooling, in order to obtain a quenched sheet having a structure consisting of martensite and austenite.
Preferably, the annealing temperature AT is between 870° C. and 930° C.
According to an embodiment, the total elongation TE of the cold rolled steel sheet is of at least 19%, the composition of the steel is such that 0%<Cr≤0.5%, 0%<Mo≤0.3%, and the partitioning time is between 15 seconds and 150 seconds. Preferably, according to this embodiment, there is no addition of Nb.
Thus, according to this embodiment, the invention relates to a method for producing a cold rolled steel sheet having a tensile strength TS of at least 1470 MPa and a total elongation TE of at least 19%, the method comprising the successive steps of:
the remainder being Fe and unavoidable impurities, the annealing temperature AT being equal or higher than the Ac3 transformation point of the steel, to obtain an annealed steel sheet,
In two embodiments, after partitioning the steel sheet is cooled to the room temperature in order to obtain a non-coated steel sheet:
In the first of these two embodiments, the composition of the steel is such that 0.36%≤C≤0.40%, Cr<0.05% and Mo<0.05%, the quenching temperature is between 190° C. and 210° C. and the partitioning time Pt is between 90 seconds and 110 seconds.
In the second of these two embodiments, the composition of the steel is such that 0.34%≤C≤0.37%, 0.35%≤Cr≤0.45% and 0.07%≤Mo≤0.20%, the quenching temperature is between 200° C. and 230° C. and the partitioning time Pt is between 25 seconds and 120 seconds.
Preferably, the bare cold rolled steel is afterwards electro-galvanized.
In another embodiment, after partitioning the steel sheet is galvanized then cooled to the room temperature in order to obtain a coated steel sheet, the composition of the steel is such that 0.34%≤C≤0.37%, 0.35%≤Cr≤0.45% and 0.07%≤Mo≤0.20%, the quenching temperature is between 200° C. and 230° C. and the partitioning time Pt is between 25 seconds and 55 seconds.
Thus, in a preferred embodiment, the composition of the steel is such that, 0.35%≤Cr≤0.45% and 0.07%≤Mo≤0.20%, and preferably such that 0.34%≤C≤0.37%.
With this preferred embodiment, if after partitioning the steel sheet is cooled to the room temperature in order to obtain a non-coated steel sheet, the quenching temperature is preferably between 200° C. and 230° C. and the partitioning time Pt is preferably between 15 seconds and 120 seconds.
Still with this preferred embodiment, if after partitioning the steel sheet is galvanized then cooled to the room temperature in order to obtain a coated steel sheet, the quenching temperature is preferably between 200° C. and 230° C. and the partitioning time Pt is preferably between 25 seconds and 55 seconds.
According to another embodiment, the composition of the steel is such that 0.46%≤Cr≤0.7% and/or 0.03%≤Nb≤0.05%, and preferably such that 0%≤Mo≤0.005%.
According to this embodiment, after partitioning the steel sheet is preferably coated then cooled to the room temperature in order to obtain a coated steel sheet.
According to this embodiment, the coating step is for example a galvanizing step. Preferably, the quenching temperature is between 200° C. and 230° C. and the partitioning time Pt is between 50 seconds and 250 seconds.
The coating step may be a galvannealing step with an alloying temperature GA between 470 and 520° C., preferably between 480° C. and 500° C., the sheet being maintained at the alloying temperature GA for a time comprised between 5 s and 15 s. Preferably, the quenching temperature is then between 200° C. and 230° C. and the partitioning time Pt between 40 s and 120 s.
The invention relates also to a coated or non-coated steel sheet made of steel whose chemical composition comprises in weight %:
0.34%≤C≤0.40%
1.50%≤Mn≤2.30%
1.50≤Si≤2.40%
0%<Cr≤0.7%
0%≤Mo≤0.3%
0.01%≤Al≤0.08%
and optionally 0%≤Nb≤0.05%,
the remainder being Fe and unavoidable impurities, the structure comprising at least 60% of martensite and between 12% and 15% of residual austenite, the tensile strength is at least 1470 MPa and the total elongation being at least 16%.
In a particular embodiment, the steel is such that 0%<Cr≤0.5% and 0%<Mo≤0.3%.
The total elongation of the sheet is preferably at least 19%.
Thus, the invention relates in particular to a coated or non-coated steel sheet made of steel whose chemical composition comprises in weight %:
0.34%≤C≤0.40%
1.50%≤Mn≤2.30%
1.50≤Si≤2.40%
0%<Cr≤0.5%
0%<Mo≤0.3%
0.01%≤Al≤0.08%
the remainder being Fe and unavoidable impurities, the structure comprising at least 60% of martensite and between 12% and 15% of residual austenite, the tensile strength is at least 1470 MPa and the total elongation being at least 19%.
In a particular embodiment, the steel sheet is non-coated, the composition of the steel is such that 0<Cr<0.05% and 0<Mo<0.05%, and the yield strength is higher than 1150 MPa. Preferably, there is no addition of Nb.
In another embodiment, the steel sheet is non-coated, the composition of the steel is such that 0.35≤Cr≤0.45% and 0.07≤Mo≤0.20%, and the yield strength is higher than 880 MPa, the tensile strength is higher than 1520 MPa, and the total elongation is of at least 20%. Preferably, there is no addition of Nb.
In another embodiment, the steel sheet is galvanized, the composition of the steel is such that 0.35%≤Cr≤0.45% and 0.07%≤Mo≤0.20%, the tensile strength is higher than 1510 MPa and the total elongation is at least 20%. Preferably, there is no addition of Nb.
Thus, according to a preferred embodiment, the composition of the steel is such that 0.35%≤Cr≤0.45% and 0.07%≤Mo≤0.20%. If the sheet is not coated, the yield strength may be higher than 880 MPa, the tensile strength higher than 1520 MPa and the total elongation of at least 20%. If the sheet is galvanized, the tensile strength may be higher than 1510 MPa and the total elongation of at least 20%.
According to another preferred embodiment, the composition of the steel is such that 0.46%≤Cr≤0.7%, and/or 0.03%≤Nb≤0.05%. Preferably, the composition of the steel is such that 0%≤Mo≤0.005%.
Preferably, with this preferred embodiment, at least one face of the sheet is galvanized or galvannealed.
The invention will now be described in details but without introducing limitations.
According to the invention, the sheet is obtained by heat treating a hot or preferably a cold rolled non-treated steel sheet made of steel which chemical composition contains, in weight %:
The remainder is iron and residual elements or unavoidable impurities resulting from the steelmaking. In this respect, Ni, Cu, V, Ti, B, S, P and N at least are considered as residual elements which are unavoidable impurities. Therefore, generally, their contents are less than 0.05% for Ni, 0.05 for Cu, 0.007% for V, 0.001% for B, 0.005% for S, 0.02% for P and 0.010% for N.
Addition of microalloy elements such as Nb from 0 to 0.05% and/or Ti from 0 to 0.1% could be utilized to obtain the desired microstructure and an optimal combination of product properties.
In particular, when the sheet is coated, Nb may be added in an amount up to 0.05%. According to an embodiment, Nb is preferably comprised between 0.03 and 0.05%. According to this embodiment, the sheet is preferably coated, by galvanizing or galvannealing. A Nb content of 0.03 to 0.05% allows obtaining satisfactory tensile strength and elongation, in particular a tensile strength of at least 1470 MPa and an elongation of at least 16%, when the sheet is coated by galvanizing or galvannealing.
Thus, when the sheet is coated, in particular by galvannealing, the composition may comprise Nb in an amount between 0.03% and 0.05%, Cr in an amount between 0.46% and 0.7%, and no addition of Mo.
The non-treated steel sheet is a cold rolled sheet prepared according to the methods known by those who are skilled in the art.
After rolling the sheets are pickled or cleaned then heat treated and optionally hot dip coated.
The heat treatment which is made preferably on a continuous annealing when the sheet is not coated and on a hot dip coating line when the steel sheet is coated, comprises the following successive steps:
The heating to the coating temperature is made preferably at a heating speed of at least 30°/s and the coating takes between 2 and 10 s.
According to a particular embodiment, the hot dip coating is galvannealing. In this embodiment, the partitioning time is preferably comprised between 40 s and 120 s, for example higher than or equal to 50 s and/or lower than or equal to 100 s.
The sheet is heated from the partitioning temperature PT to the coating temperature, which is in this case an alloying temperature, and cooled down to room temperature after galvannealing.
The heating to the alloying temperature is made preferably at a heating speed of at least 20° C./s, preferably at least 30° C./s.
Preferably, the alloying temperature is lower than 520° C. and higher than 470° C. Still preferably, the alloying temperature is lower than or equal to 500° C. and/or higher than or equal to 480° C.
The sheet is maintained at the alloying temperature for a time which is for example comprised between 5 s and 20 s, preferably between 5 s and 15 s, for example between 8 s and 12 s. Indeed, maintaining the sheet at the alloying temperature for more than 20 s, leads to a reduction of the ductility, in particular to a decrease in the total elongation of the sheet.
Whether or not a coating is applied, the cooling speed to the room temperature is preferably between 3 and 20° C./s.
When the sheet is not coated and the steel contains preferably less than 0.05% of chromium and less than 0.05% of molybdenum, then the partitioning time is preferably between 90 sec and 110 sec. With such treatment it is possible to obtain sheets having a yield strength of more than 1150 MPa, a tensile strength of more than 1470 MPa and a total elongation of more than 19%.
When the sheet is not coated and the steel contains 0.35% and 0.45% of chromium and between 0.07% and 0.20% of molybdenum, then the partitioning time is preferably between 15 sec and 120 sec. With such treatment it is possible to obtain sheets having a yield strength of more than 880 MPa, a tensile strength of more than 1520 MPa and a total elongation of more than 20%.
When the sheet is coated, the composition and the treatment parameters are preferably adjusted according to the two following embodiments.
According to a first embodiment, when the sheet is coated, the steel contains preferably between 0.35% and 0.45% of chromium and between 0.07% and 0.20% of molybdenum and the partitioning time Pt is preferably between 25 seconds and 55 seconds. In these conditions it is even possible to obtain coated steel sheet having a tensile strength higher than 1510 MPa and a total elongation of at least 20%.
According to a second embodiment, when the sheet is coated, the steel may comprise between 0.46 and 0.7% of Cr, less than 0.005% of Mo and between 0.03 and 0.05% of Nb. With this composition, the partitioning time is preferably higher than 30 s, still preferably higher than or equal to 50 s.
When the sheet is coated by galvanizing, the partitioning time may be as high as 230 s.
When the sheet is coated by galvannealing, the partitioning time Pt is preferably between 40 seconds and 120 seconds, still preferably between 50 and 100 seconds. The alloying temperature is preferably comprised between 470° C. and 520° C., still preferably between 480° C. and 500° C.
The sheet is preferably maintained at the alloying temperature for less than 20 s, preferably less than 15 s, and more than 5 s. In these conditions it is possible to obtain a galvannealed steel sheet having a tensile strength higher than 1470 MPa, even higher than 1510 MPa, and a total elongation of at least 16%.
As examples and comparison, it was manufactured sheets made of steels whose compositions in weight and characteristic temperatures such as Ac3 and Ms are reported in table I.
The sheets were cold rolled, annealed, quenched, partitioned and cooled to the room temperature or, galvanized after partitioning before being cooled to the room temperature.
The mechanical properties were measured in the transverse direction relative to the direction of rolling. As it is well known in the art, the ductility level is slightly better in the direction of rolling than in the transverse direction for such high strength steel. Measured properties are Hole expansion ratio HER measured according to the standard ISO 16630:2009, the yield strength YS, the tensile stress TS, the uniform elongation UE and the total elongation TE.
The conditions of treatment and the mechanical properties are reported in Table II for the non coated sheets and in Table III for the coated sheets.
In these tables, AT is the annealing temperature, QT the quenching temperature, PT the partitioning temperature. In Table II, GI is the temperature of galvanizing.
The examples 1 to 14 show that it is only with the steel S181, which contains neither chromium nor molybdenum, and steel S80, which contains both chromium and molybdenum, that it is possible to reach the desired properties i.e. TS≥1470 MPa and TE≥19%. In alloy S181, the desired properties are achieved for a quenching temperature QT of 200° C. and a partitioning time of 100 seconds. In this case, the yield strength is higher than 1150 MPa. In alloy S80, which contains chromium and molybdenum, the desired properties are achieved for a quenching temperature QT of 220° C. and a partitioning time between 30 to 100 seconds (examples 7 to 10). In this case, the tensile strength is higher than 1520 MPa and the total elongation is more than 20%. Moreover, it is worth mentioning that all the examples containing Cr and Mo (7 to 14) have yield strengths significantly lower than the examples 1 to 6, concerning a steel without Cr and Mo.
The examples 15 to 33 show that only the examples corresponding to steels containing Cr and Mo are able to reach the desired properties when the sheets are galvanized (examples 27 and 28). For the steel S80, the quenching temperature has to be of 220° C. and a partitioning of 10 seconds is too short while a partitioning time of 100 seconds is too long. When the steel does not contain Cr and does not contain Mo, the tensile strength always remains lower than 1470 MPa.
Other sheets made of an alloy having the composition shown in Table IV were cold rolled, annealed, quenched, partitioned, galvanized or galvannealed and cooled to the room temperature.
The mechanical properties of the sheets were measured in the transverse direction relative to the direction of rolling. As it is well known in the art, the ductility level is slightly better in the direction of rolling than in the transverse direction for such high strength steel. Measured properties are the Hole Expansion Ratio HER measured according to the standard ISO 16630:2009, the yield strength YS, the tensile strength TS, the uniform elongation UE and the total elongation TE.
The conditions of treatment and the mechanical properties of the galvanized sheets are reported in Table V.
In this table, GI is the temperature of galvanizing.
Examples 35 to 37 show that with a steel comprising higher amounts of chromium and niobium and a lower amount of molybdenum, the desired properties, i.e. TS≥1470 MPa and TE≥19%, can be reached with a partitioning time of more than 30 s, in particular of at least 50 s.
The conditions of treatment and the mechanical properties of the galvannealed sheets are reported in Table VI.
In this table, TGA is the alloying temperature and tGA is the holding time at this alloying temperature TGA.
Examples 38-44 show that a partitioning time Pt between 40 seconds and 120 seconds, in particular between 50 and 100 seconds, allow obtaining a galvannealed steel sheet having a tensile strength higher than 1510 MPa and a total elongation of at least 16%.
In particular, example 44 show that an alloying temperature of 480° C. and a holding time at the alloying temperature of 10 s even allow obtaining a tensile strength of more than 1510 MPa and a total elongation of more than 16%, even more than 17%.
Number | Date | Country | Kind |
---|---|---|---|
PCT/IB2014/002379 | Jul 2014 | WO | international |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/IB2015/055034 | 7/3/2015 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2016/001890 | 1/7/2016 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5895534 | Daley | Apr 1999 | A |
6368728 | Tobiyama | Apr 2002 | B1 |
8828557 | Takagi et al. | Sep 2014 | B2 |
9121087 | Matsuda et al. | Sep 2015 | B2 |
9200343 | Matsuda et al. | Dec 2015 | B2 |
9290834 | Hasegawa et al. | Mar 2016 | B2 |
20040074575 | Kashima | Apr 2004 | A1 |
20060144482 | Moulin | Jul 2006 | A1 |
20110146852 | Matsuda et al. | Jun 2011 | A1 |
20110168301 | Song et al. | Jul 2011 | A1 |
20110186189 | Futamura | Aug 2011 | A1 |
20110198002 | Nakagaito et al. | Aug 2011 | A1 |
20130087253 | Matsuda et al. | Apr 2013 | A1 |
20130133786 | Matsuda et al. | May 2013 | A1 |
20140322559 | Becker | Oct 2014 | A1 |
20150086808 | Kasuya et al. | Mar 2015 | A1 |
20150203947 | Hasegawa et al. | Jul 2015 | A1 |
20160312326 | Drillet et al. | Oct 2016 | A1 |
20170145536 | Girina et al. | May 2017 | A1 |
Number | Date | Country |
---|---|---|
101225499 | Jul 2008 | CN |
102149840 | Aug 2011 | CN |
102884209 | Jan 2013 | CN |
102884218 | Jan 2013 | CN |
103103435 | May 2013 | CN |
103361547 | Oct 2013 | CN |
10161465 | Feb 2003 | DE |
2325346 | May 2011 | EP |
2546368 | Jan 2013 | EP |
2660345 | Nov 2013 | EP |
2762592 | Aug 2014 | EP |
2762600 | Aug 2014 | EP |
486584 | Jun 1938 | GB |
S61157625 | Jul 1986 | JP |
2004308002 | Nov 2004 | JP |
2012031462 | Feb 2012 | JP |
2341566 | Dec 2008 | RU |
2518852 | Aug 2011 | RU |
2491357 | Aug 2013 | RU |
2004022794 | Mar 2004 | WO |
2010126161 | Nov 2010 | WO |
WO-2012156428 | Nov 2012 | WO |
WO2013146148 | Oct 2013 | WO |
2014020640 | Feb 2014 | WO |
2015087224 | Jun 2015 | WO |
Entry |
---|
Guhui Gao et al: “Enhanced Ductility and Toughness in an Ultrahigh-Strength Mn—Si—Cr—C Steel: The Great Potential of Ultrafine Filmy Retained Austentite” ACTA Materialia, vol. 76, Jun. 26, 2014, pp. 425-433. |
Guhui Gao et al: A Carbide-Free Bainite/Martensite/Austenite Triplex Steel with Enhanced Mechanical Properties Treated by a Novel Quenching-Partitioning-Tempering Process, Materials Science and Engineering A, vol. 559, Jan. 1, 2013, pp. 165-169. |
Kai Zhang et al: “Microstructure and Mechanical Properties of a Nb-Microalloyed Medium Carbon Steel Treated by Quenching-Partitioning Process”, Key Engineering Materials, vol. 531-532, Dec. 1, 2012, pp. 596-599. |
Kohichi Sugimoto et al: “Hot Forging of Ultra High-Strength TRIP-Aided Steel”, Materials Sceince Forum, vol. 638-642, Jan. 1, 2010, pp. 3074-3079. |
John G Speer et al: “Analysis of Microstructure Evolution in Quenching and Partitioning Automotive Sheet Steel”, Metallurgical and Materials Transactions A, Springer-Verlag, New York, vol. 42, Sep. 15, 2011, pp. 3591-3601. |
Number | Date | Country | |
---|---|---|---|
20170137910 A1 | May 2017 | US |