The present invention relates to a method for producing coated workpieces to uses therefore, to an installation for implementing the above-mentioned method and to uses therefore.
The present invention is based on problems which occur during the manufacturing of thin layers by means of CVD and PECVD methods. The findings made in this case, according to the invention, can be applied particularly to the production of semiconductor layers, for example, when producing solar cells or modulation doped FETs or hetero-bipolar transistors.
Thin semiconductor films are deposited either in a monocrystalline form, that is, epitaxially, on an also monocrystalline substrate, such as a silicon substrate, or are deposited in a polycrystalline form or amorphous form on polycrystalline or amorphous substrates, such as glass. Although in the following the invention will be described mainly with respect to the production of silicon-coated and/or germanium-coated substrates, it may, as mentioned above, also be used for the production of other workpieces and workpieces coated with other materials.
Known methods for depositing epitaxial semiconductor films are:
Molecular beam epitaxy (MBE),
chemical vapor deposition (CVD),
remote plasma enhanced CVD with DC or HF discharge,
electron cyclotron resonance plasma-assisted CVD.
(ECRCVD).
“CVD method” is a collective term for a large number of thermal deposition methods which differ either in the construction of the assigned apparatuses or in their operating mode. Thus, for example, a CVD method can be carried out at a normal atmospheric pressure or at much lower pressures down into the range of the ultra high vacuum. Reference can be made in this respect to (1) as well as to (2).
In the commercial production of epitaxial Si layers, only CVD is normally used. In this case, the applied reactive gases are silicon-containing gases, such as silane chlorides, SiCl4, Si, HCl and SiH2Cl2 as well as silanes, such as SiH4, or Si2H4. Characteristics of the standard CVD methods are the high deposition temperatures in the order of 1,000° and more, as well as pressures of typically 20 mbar to 1,000 mbar, that is, to normal atmospheric pressure.
According to the process conditions, coating rates of several μm per minute can be achieved in this manner. corresponding to several 100 Å/sec., with respect to which reference is again made to (1).
In contrast, low pressure chemical vapor deposition (LPCVD), which is synonymous with low pressure vapor phase epitaxy (LPVPE), takes place at pressures below 1 mbar and permits lower process temperatures to typically 700° C. In this respect, reference is made, in addition to (1), also to (3) and (6).
With respect to the LPCVD and with reference to (6), at a deposition temperature of 650° c., a growth rate of
GR=50 Å/min
is indicated. This takes place at a reactive gas flow for silane of
F=14 sccm.
This results in a characteristic number which is relevant to the gas yield, specifically the growth rate per reactive gas flow unit GRF at
GRF=3.6 Å/(sccm·min)
On 5″ wafers, corresponding to a surface
AS=123 cm2,
converted from the actual surface A2 for 2″ wafers, a deposition quantity (growth amount) GA is obtained at
GA=5.2·1014 Si atoms/sec.
Again, with respect to a reactive gas flow unit, the characteristic number “deposition quantity per reactive gas flow unit”, in the following called “gas utilization number”, GAF is obtained at
GAF=8.4·10−3,
corresponding to 8.4 o/oo.
At 650°, an epitaxial layer is formed.
If the deposition temperature is reduced to 600° C., a polycrystalline layer is formed. In this case, the following applies:
GR=3 Å/min
F=28 sccm silane
GRF=0.11 Å/sccm/min)
GA=3.1·1015 Si atoms/sec on AR
GAF=2.5·10−4, corresponding to 0.25 o/oo.
Basically, the following criteria are required for a defect-free epitaxial layer growth:
Another development is the ultra high vacuum chemical vapor deposition (UHV-CVD) with working pressures in the range of 10−4 to 10−2 mbar, typically in the range of 10−3 mbar, with respect to which reference is made to (4) as well as to (5), (7). It permits very low workpiece temperatures; however, the growth rates or coating rates being extremely low; thus, for example, approximately 3 Å/min for pure silicon at 550° C. according to (5).
The reason for the low growth rates is the fact that the absorption rate and decomposition rate of the reactive molecules, thus, for example, of SiH4, decreases with an increasing hydrogen coating of the workpiece surface. The layer growth is therefore limited by the desorption rate of H2, which, however, rises exponentially with the temperature. In this respect, reference is made to (8). Because of the lower bonding energy of the Ge—H bonding in comparison to the Si—H bonding, the hydrogen desorption of an Si—Ge alloy surface is higher, so that, while the substrate temperature is the same, a higher growth rate is obtained than in the case of pure Si; for example, at a content of 10% Ge by a factor 25 at 550° C. (5).
Another possibility of achieving high deposition rates of an epitaxy quality at low substrate temperatures consists of (9) decomposing the reactive gases by means of a u-wave plasma (ECRCVD).
By the use of plasma sources, which are based on the principle of electron cyclotron resonance, the incidence of high-energy ions onto the substrate is to be avoided.
As a rule, such sources operate in the pressure range of 10−3 to 10−4 mbar, which, however, results in larger free path lengths than in the case of capacitively coupled-in high-frequency Hf plasmas. This, in turn, can lead to an undesirable ion bombardment of the substrate and thus to the generating of defects, as indicated in (10). The energy of the ions impacting on the substrate, however, can be limited by an external control of the substrate potential, whereby ion-related damage can largely be avoided. Also by means of the ECRCVD method, the growth rates for pure silicon, as a rule, amount only to a few 10 Å/min, at low deposition temperatures ≦600° C.
Summarizing, this results in the following:
Layers which are deposited with a quality which is suitable also for the depositing of epitaxial layers can be deposited at deposition temperatures ≦ up to now:
PECVD methods, whose plasmas are produced by DC discharges, could be used for the manufacturing of layers of epitaxy quality—that is, a correspondingly lower fault density (see above)—neither for the construction of epitaxial nor for the construction of amorphous or polycrystalline layers; at least not with a growth rate GR, reliability and efficiency to be ensured for industrial manufacturing.
On the other hand, the use of capacitively coupled-in high-frequency fields for generating HF plasmas for PECVD methods was reported very early, with respect to which reference is made to (11). The difficulty of this approach is the fact that not only the reactive gases are decomposed in such Hf plasmas. Simultaneously, the substrate surface is exposed to an intensive bombardment of highly energetic ions, as utilized specifically also in the case of reactive atomizing or high-frequency etching. This, on the one hand, promotes the hydrogen desorption but, simultaneously results in defects in the growing layers. A method, which is modified in this respect, the RPCVD—remote plasma chemical vapor deposition—takes this into account in that the substrates to be coated are not exposed directly to the HF plasma, which leads to better results (12). However, the achieved growth rates are low, specifically usually fractions of nm per minute to no more than several nm per minute according to (13).
It is an object of the present invention to indicate a method which can be used in industrial manufacturing and which permits the growing of layers of an epitaxy quality which have significantly higher growth rates than previously known.
This is achieved by methods of the initially mentioned type and by a system which is characterized. The method according to the invention is particularly suitable for the manufacturing of semiconductor-coated substrates with an epitaxial, amorphous or polycrystalline layer, in this case particularly of Si, Ge or Si/Ge alloy layers as well as Ga or Ga bonding layers.
In this case, particularly also doped semiconductor layers can be deposited; layers containing silicon and/or germanium, doped preferably with at least one element of Groups III or V of the classification of elements or layers containing gallium with at least one element of Groups II, III, IV or VI of the classification of elements, for example, with Mg or Si.
Concerning the initially discussed coating techniques for producing epitaxial layers, the following can be summarized:
Thus, there seems to be an inherent contradiction: An ion bombardment of the substrate, on the one hand, leads to an increased growth rate because of an increased hydrogen absorption, but simultaneously increases the defect density.
The following picture exists according to (2) for thermal CVD methods operated at atmospheric pressure:
This results in a growth rate GR per SiCl2H2 flow unit, GRF≈2×10−4 Å/(sccm.min).
A gas flow F of 100 sccm SiCl2H2 corresponds to 4.4×1019 molecules/sec.
The growth rate OR of 2×10−3 nm/mm corresponds to a growth rate of 2×10−4 silicon monolayers per second on an “5” wafer, corresponding to a surface A5 of 123 cm2. Thus, on the total surface, a deposited quantity of
GA=1.7×1013 silicon atoms/sec.
is obtained per second. By relating the silicon quantity deposited per second and the reactive gas quantity admitted per second, the gas utilization number GAF is obtained at
GAF=3.9×10−7.
This corresponds to a utilization of approximately 0.0004 o/oo.
We note that, at atmospheric CVD, the following is obtained:
GRF≈2×10−4 Å/(sccm.min)
GAF≈0.0004 o/oo.
From (5), combined with (4) and (7), the following estimate is obtained for UHV-CVD:
GRF≈0.1 Å/(sccm.min) and
GAF≈0.0035 corresponding to approximately 35 o/oo
The above concerns the methods which so far have been used industrially for the production of epitaxy quality layers.
From German Patent Document DE-OS 36 14 384, a PECVD method is known in which DC glow discharge in the form of a low-voltage discharge is used. As the result, layers which have particularly good mechanical characteristics are to be deposited rapidly, that is at a high growth rate.
A cathode chamber with a hot cathode communicates with a vacuum recipient by way of a diaphragm. An anode is provided opposite the diaphragm. In parallel to the discharge axis formed between the diaphragm and the cathode, an inlet arrangement is provided for a reactive gas. Workpieces are arranged opposite this arrangement with respect to the discharge axis. With respect to the anode potential, discharge voltages UAK below 150 V are applied, and the discharge is operated with a current intensity IAK of at least 30 A. For the coating, the workpieces are brought to negative potentials between 48 and 610 V.
The tests illustrated therein result in the following picture:
101
The present invention is now based on the recognition that workpiece coatings can be carried out which have a layer quality which meets the demands made on epitaxy layers in that, for this purpose, in contrast to previous expectations, a non-microwave-plasma PECVD method is used—that is, a PECVD method with DC discharge—and specifically a PECVD method as known, with respect to its principle, from German Patent Document DE-OS 36 14 348. As will be illustrated, it will be possible to achieve in epitaxy quality:
a) Growth rates GR of at least 150 Å/min, even of at least 600 Å/min;
b) GRF of at least 7.5 Å/(sccm.min), or even 40 Å/(sccm.min), preferably even 75 Å/(sccm.min), and further
It is recognized that, in the case of the DC-PECVD method used according to the invention, the plasma discharge leads to the lowest-energy ions, also to the lowest-energy electrons, but that the charge carrier density, particularly the electron density at the utilized discharge is very high.
In the following, the invention will be explained by means of figures on the basis of examples.
First, a system according to, for example, German Patent Document DE-OS 36 14 384 can definitely be used for implementing the method according to the invention if it is operated such that the conditions according to the invention are met.
According to
In the cathode chamber 5, a hot cathode 7—a filament—is provided, preferably heated directly by means of a heating current generator 9.
A workpiece holder 13, which is mounted in an insulated manner, is provided in the diaphragm axis A opposite the diaphragm 3 in the recipient 1. A workpiece heater 17 can be provided in the area of the workpiece holder 13. The recipient 1 is evacuated by means of a vacuum pump 27, preferably a turbo vacuum pump, in this case, particularly a turbo molecular pump. For observation and possibly for control purposes, sensors, such as a plasma monitor, etc. may be provided at a connection 31.
Concentrically to the axis A of the discharge with the discharge current IAK, a gas injection ring 23 is provided as a reactive gas injection arrangement connected with a gas tank arrangement 25 for reactive gas which, by means of a controllable flow F (sccm), is admitted into the recipient.
In the cathode chamber 5, a connection 6 leads to a working gas tank, for example, containing Ar. By means of an electromagnet and/or permanent magnet arrangement 29, a magnetic field R is generated essentially concentrically to the axis A in the recipient, particularly also effectively in the area of the diaphragm 3. The field can preferably be displaced from the concentricity.
In its embodiment according to
A ring-shaped auxiliary anode 19 is provided which is arranged concentrically to the discharge axis A.
The following operating modes can take place here:
Currently, the operation of the system according to
Total Pressure PT in the Recipient:
10−4 mbar≦PT≦10−1 mbar
preferably 10−3 mbar≦PT≦10−2 mbar
typically in the range of 5 10−3 mbar. This pressure is mainly ensured by the partial pressure of the working gas, preferably argon. As mentioned above, the vacuum pump 27, for this purpose is preferably constructed as a turbo vacuum pump, particularly a turbo molecular pump.
Working Gas Pressure PA:
This pressure is selected as follows:
10−4 mbar≦PA≦10−1 mbar
preferably 10−1 mbar≦PA≦10−2 mbar
Reactive Gas Partial Pressure PR:
This pressure is preferably selected as follows:
10−1 mbar<PR≦10−1 mbar
preferably 10−4 mbar≦PR≦10−2 mbar.
Particularly for silicon-containing and/or germanium-containing gases, partial pressures between 10−4 mbar and 25·10−1 mbar are advisable. For promoting the (illegible—translator) (surface roughness), mainly for multiple-layer depositions and layers with doping, it is also advisable to additionally provide a hydrogen partial pressure in the order of form 10−4 to 10−1 mbar, preferably of approximately 10−2 mbar.
Gas Flows:
Argon: Largely dependent on recipient volume and cathode chamber volume, for the setting of the required partial pressure PA and PT.
Reactive gas flow: 1 to 100 sccm, particularly for silicon-containing and/or germanium-containing gases:
H2: 1 to 100 sccm.
Discharge Voltage UAK:
The discharge voltage, whether between the cathode 7 and the recipient 1 according to
10 V≦UAK≦80 V, preferably
20 V≦UAK≦35 V.
Discharge Currents, IAK:
These are selected as follows:
5 A≦IAK≦400 A, preferably
20 A≦IAK≦100 A.
Workpiece Voltage US:
In each case, this voltage is selected below the sputtering threshold of the discharge. It is set in all cases as follows:
−25 V≦US≦+25 V,
preferably for Ga bonding, preferably for Si, Ge and their bonds
−20 V≦US≦20 V,
preferably negative, and in this case preferably
−15 V≦US<−3 V.
Current Density at the Site of the Workpiece Surfaces to Be Coated:
This density is first measured by means of a probe at the site where then the surface to be coated will be positioned. It is set relative to the probe surface at at least 0.05 A/cm2, preferably at least 0.1 A/cm2 to maximally discharge current/substrate surface.
This current density is measured and set as follows:
One or several probes are positioned at the site of the surface which will be coated and, with respect to the ground or anode potential, are connected to variable positive voltage. This voltage is increased until the measured current does not continue to rise. Relative to the probe surface, the measured current value indicates the entire current density. This current density will then be set to the required value by adjusting the discharge. The setting of the above-mentioned current density values can easily be carried out by means of the preferably set discharge currents IAK between 5 and 400 A, or and preferably between 20 and 100 A.
The high flux of low-energy ions and electrons which impact on the workpiece is a characteristic of the method according to the invention, which is therefore abbreviated LEPECVD for “Low Energy Plasma Enhanced CVD”.
During the coating, silicon and/or germanium layers can be doped by the addition of a doping gas with an element of Group III or V of the Classification of Elements, such as phosphine, boroethane, arsine, etc. to form n-conductive or p-conductive layers. Thus, p/n semiconductor transitions can be produced in situ, for example, particularly economically for the manufacturing of solar cells.
When gallium layers or gallium bonding layers are deposited, these can be doped by using a doping gas with an element of Groups II or III or IV or VI of the Classification of Elements, for example, with Mg or Si.
By means of the anode 19 and/or the magnetic field B, the low-voltage discharge can be compressed and/or can be deflected with respect to the workpiece holder 13. As the result, the plasma density at the workpiece holder can be increased (rate) and/or can be varied over a large range (adjustment of the distribution) or can be wobbled or deflected in a controlled manner. By means of the heater 17, the workpieces and substrates can be heated independently of the ion and/or electron yield to approximately 800° C. By means of permanent and/or electro-magnets, the magnet arrangement 29 generates the field B, preferably with a flux density of several 10 to several 100 gauss in the discharge space.
Because of the unusually low discharge voltages, as mentioned above, preferably in the range of from 20 to 35 V, a plasma potential of the discharge corresponding to (15) is obtained close to the anode potential. With respect to the potential, the workpiece or substrate potential can easily be adjusted such that the ion energies are below 15 eV, whereby ion-related damage during the layer growth on the workpiece can be completely avoided.
As mentioned above, a plasma density which is as high as possible must be endeavored on the workpiece. In the present case, the plasma density is defined by the current density at the workpiece surface. As indicated above, it is measured and set by means of probes in one calibrating operation.
The systems as illustrated schematically in
By means of a system as schematically illustrated in
The system was operated as follows:
Auxiliary anode 19 to potential of the recipient; workpiece holder 13 to controlled bias potential. Recipient as anode to ground.
The following operating point adjustments were made:
Workpiece Temperatures TS:
In a plasma-induced manner, workpiece temperatures of only a few 100° C., thus, for example, of approximately 150° C., are obtained.
This is extremely advantageous for coating thermally critical substrates, such as organic substrates.
Higher desired temperatures are achieved by a separate heating. For producing Si and/or Ge layers and layers with Ge—Si bonding, workpiece temperatures TS
300° C.≦TS≦600° C.
are advisable; for Ga layers or Ga bonding layers:
300° C.≦TS≦800° C.
are advisable.
Because the method is “cold”, the temperature selection is very flexible, depending on the layer material and the substrate material.
In a first test, the substrate temperature was varied by means of the heater 17. In this case, the other operating point parameters remain constant.
Based on the above-mentioned operating point values, the discharge current IAK was now varied by adjusting the discharge voltage UAK and optionally the variation of the cathode heating current. All other parameters were kept constant again. Although the discharge current IAK also does not correspond directly to the charge carrier density or the plasma density on the surface to be coated, nevertheless, while the parameters otherwise remain constant, the plasma density, corresponding to the current density on the workpiece surface to be coated, is essentially proportional to the discharge current. The result illustrated in
Curve (b) shows the rate while the discharge is not deflected and at IAK=20 A. Finally, (c) shows the increased rate while the discharge is not deflected with IAK=70 A.
As confirmed in
In the case of a discharge current of 70 A with a reactive gas flow of 10 sccm, this result is also confirmed by FIG. 4. In the case of a discharge current of 20 A, the GR decreases to approximately 6 Å/sec.
The results according to the invention will now be compared with the results of the prior art.
a) Comparison with APCVD (2)
From
From
The corresponding value in the case of APCVD amounts to:
When, in the case of the LEPECVD according to the invention, the gas utilization number is calculated for a 3″ substrate, the following is obtained:
In this case, it should be taken into account that this number becomes significantly better as the substrate surface becomes larger, for example, on 5″.
They apply to temperatures ≦600° C.
In this context, it should be stressed again that the approach according to the invention permits the coating of relatively large surfaces, whereby the gas utilization number GAP also rises.
If, analogously, the large growth rate GR, the growth rate per reactive gas flow unit GRF, and the gas utilization number GAF are compared with the corresponding number for CVD at atmospheric pressure conditions, drastic improvements occur according to the invention in every respect. If finally the results according to the present invention are compared with those which are obtained when a PECVD method is operated by means of low-voltage discharge according to German Patent Document DE-OS 36 14 384, it is found that astonishingly the growth rate of 1200 Å/min achieved according to the invention is significantly higher than the highest growth rates achieved by means of the previously known methods and that, in addition, the growth rate per reactive gas flow unit GRF achieved according to the invention is virtually by two powers of ten higher.
It is therefore extremely surprising that by means of very specific operating conditions at the system, as they were known in principle from German Patent Document DE-OS 36 14 384, such improvements can be achieved, taking into account that the layers deposited according to the invention correspond to epitaxy conditions with respect to the density of defects.
This was examined in a very simple manner in that, in the case of the described operation of the system according to
Furthermore, the measuring point is illustrated at P2 in
As indicated by the above, in contrast to the above-explained findings, in the case of the approach according to the invention, the conditions will not change when a Ge/Si alloy is deposited. This is confirmed by
The approach according to the invention was primarily confirmed by means of attempts to deposit Se, Ge or Si/Ge alloy layers or GA and GA bonding layers, all in a doped and undoped condition.
By means of the approach according to the invention, in a combined manner, the highest layer quality is achieved while the deposition rates are very high and the efficiency is simultaneously very high as far as deposited layer material per admitted reactive gas quantity is concerned, and at low temperatures ≦600° C. Thus, the suggested approach is extremely well suited for industrial production, whether with respect to epitaxial layers or other layers of the highest quality.
Literature:
Number | Date | Country | Kind |
---|---|---|---|
1445/97 | Jun 1997 | CH | national |
This application is a DIV of Ser. No. 09/460,210 filed on Dec. 13, 1999 now U.S. Pat. No. 6,454,855 which is a 371 of PCT/CH98/00221 filed on May 27, 1998.
Number | Name | Date | Kind |
---|---|---|---|
4440108 | Little et al. | Apr 1984 | A |
4443488 | Little et al. | Apr 1984 | A |
4488506 | Heinecke et al. | Dec 1984 | A |
4749587 | Bergmann et al. | Jun 1988 | A |
4989544 | Yoshikawa | Feb 1991 | A |
5009922 | Harano et al. | Apr 1991 | A |
5052339 | Vakerlis et al. | Oct 1991 | A |
5104509 | Buck et al. | Apr 1992 | A |
5384018 | Ramm et al. | Jan 1995 | A |
5554222 | Nishihara et al. | Sep 1996 | A |
5580420 | Watanabe et al. | Dec 1996 | A |
5730808 | Yang et al. | Mar 1998 | A |
5952061 | Yoshida et al. | Sep 1999 | A |
6139964 | Sathrum et al. | Oct 2000 | A |
Number | Date | Country |
---|---|---|
36 14 384 | Jan 1987 | DE |
2 219 578 | Dec 1989 | GB |
Number | Date | Country | |
---|---|---|---|
20030005879 A1 | Jan 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09460210 | US | |
Child | 10199050 | US |