METHOD FOR PRODUCING DI-CHAIN CLOSTRIDIAL NEUROTOXINS

Information

  • Patent Application
  • 20210292379
  • Publication Number
    20210292379
  • Date Filed
    September 13, 2017
    7 years ago
  • Date Published
    September 23, 2021
    3 years ago
Abstract
The present invention provides methods, cells and kits suitable for recombinant production of di-chain clostridial neurotoxins, which avoid the requirement of an activation step, as well as di-chain clostridial neurotoxins thereby obtained which are suitable for use in therapy.
Description
FIELD OF THE INVENTION

The present invention provides a method for recombinant production of di-chain clostridial neurotoxins, which avoids the requirement of an activation step.


BACKGROUND OF THE INVENTION

Bacteria in the genus Clostridia produce highly potent and specific protein toxins, which can poison neurons and other cells to which they are delivered. Examples of such clostridial toxins include the neurotoxins produced by C. tetani (TeNT) and by C. botulinum (BoNT) serotypes A-G, as well as those produced by C. baratii and C. butyricum.


Among the clostridial neurotoxins are some of the most potent toxins known. By way of example, botulinum neurotoxins have median lethal dose (LD50) values for mice ranging from 0.5 to 5 ng/kg, depending on the serotype. Both tetanus and botulinum toxins act by inhibiting the function of affected neurons, specifically the release of neurotransmitters. While botulinum toxin acts at the neuromuscular junction and inhibits cholinergic transmission in the peripheral nervous system, tetanus toxin acts in the central nervous system.


Clostridial neurotoxins act by proteolytically cleaving intracellular transport proteins known as SNARE proteins (e.g. SNAP-25, VAMP, or Syntaxin)—see Gerald K (2002) “Cell and Molecular Biology” (4th edition) John Wiley & Sons, Inc. The acronym SNARE derives from the term Soluble NSF Attachment Receptor, where NSF means N-ethylmaleimide-Sensitive Factor. SNARE proteins are integral to intracellular vesicle fusion, and thus to secretion of molecules via vesicle transport from a cell. The protease function is a zinc-dependent endopeptidase activity and exhibits a high substrate specificity for SNARE proteins. Accordingly, once delivered to a desired target cell, the non-cytotoxic protease is capable of inhibiting cellular secretion from the target cell.


In nature, clostridial neurotoxins are synthesised as a single-chain polypeptide that is modified post-translationally by a proteolytic cleavage event to form two polypeptide chains joined together by a disulphide bond. Cleavage occurs at a specific cleavage site, often referred to as the activation site, which is located between the cysteine residues that provide the inter-chain disulphide bond. It is only through this activation event that full potency of the clostridial neurotoxin is achieved. The two chains are termed the heavy chain (H-chain), which has a molecular mass of approximately 100 kDa, and the light chain (L-chain), which has a molecular mass of approximately 50 kDa. The H-chain comprises an N-terminal translocation component (HN domain) and a C-terminal targeting component (HC domain). The cleavage site is located between the L-chain and the translocation domain components. Following binding of the HC domain to its target neuron and internalisation of the bound toxin into the cell via an endosome, the HN domain translocates the L-chain across the endosomal membrane and into the cytosol, and the L-chain provides a protease function (also known as a non-cytotoxic protease).


Botulinum neurotoxins are well known for their ability to cause a flaccid muscle paralysis and inhibit cholinergic secretions. These properties have led to botulinum neurotoxins being employed in a variety of medical and cosmetic procedures, including treatment of glabellar lines or hyperkinetic facial lines, headache, hemifacial spasm, hyperactivity of the bladder, hyperhidrosis, nasal labial lines, cervical dystonia, blepharospasm, spasticity and hyperhidrosis.


Currently all approved drugs/cosmetic preparations comprising BoNTs contain naturally occurring neurotoxins, purified from clostridial strains (BoNT/A in the case of DYSPORT®, BOTOX® or XEOMIN®, and BoNT/B in the case of MYOBLOC®). The traditional production of BoNT products is carried out by culture of C. botulinum, followed by isolation and purification of the botulinum neurotoxin complex or complex free neurotoxin. C. botulinum are spore-forming bacteria and therefore require special culture equipment and facilities, which are cumbersome. Recombinant production of BoNT in a heterologous host such as E. coli, would therefore be advantageous. However, a limiting step of recombinant manufacture of clostridial neurotoxins is the activation step.


Indeed, current practice for recombinant clostridial neurotoxin manufacture is to express the clostridial neurotoxin as a single polypeptide chain in a suitable heterologous host such as E. coli (upstream process). This initial step is usually followed by a series of purification steps (eg by chromatography) and an activation step requiring the addition of a suitable protease which converts the single chain inactive (or hardly active) clostridial neurotoxin into a di-chain fully active form (downstream process). The activation step requires a specific and controlled cleavage of the clostridial neurotoxin activation loop. This cleavage is achieved by using a suitable protease to produce the desired di-chain clostridial neurotoxin, comprising a light chain and a heavy linked by a disulfide bond. This activation step has proved a very challenging stage of clostridial neurotoxin production. In particular, cleavage events can occur outside the activation loop and lead to the generation of truncated clostridial neurotoxins which must then be separated from the full length di-chain clostridial neurotoxins. In addition, following an incubation period the activating protease has to be removed from the activated toxin in order to avoid contaminating the final pharmaceutical product.


Issues that can be encountered at the activation stage include:

    • The difficulty in identifying a protease that will cleave the activation loop while avoiding unwanted cleavage at other sites (leading to truncation and reduction/loss in potency);
    • The difficulty in removing the activating protease from the final product;
    • The difficulty in sourcing a GMP grade activating protease for the manufacture of development and commercial products;
    • The time-consuming approach to determine the best activation conditions (temperature, time, ratio activating enzyme/neurotoxin . . . ).


A method for recombinant manufacture of clostridial neurotoxins which would bypass the requirement for an activation step would therefore be of great benefit.


Maisey et al. 1988 (MAISEY, E. Anne, et al. “Involvement of the constituent chains of botulinum neurotoxins A and B in the blockade of neurotransmitter release.” European Journal of Biochemistry 177.3 (1988): 683-691.) attempted to form di-chain BoNT/A and B using previously purified toxin that had been unfolded with the resulting domains refolded separately. When the separate domains where combined they found >70% of toxin did form di-chain toxin however potency was greatly reduced. In their discussion they suggest that this reduced potency is likely to be attributed to the presence of the free domains, non-covalent associations or incorrect disulfide formation.


US2006/0024794 A1 addresses the possibility of co-expressing BoNT domains to produce a di-chain toxin in insect cells using a baclovirus expression system. However, the data presented in particular in FIGS. 10 and 11 of US2006/0024794 A1 show that although a small proportion of di-chain neurotoxin is formed the majority of the clostridial neurotoxin remains as free light chain and heavy chain.


There is therefore a need in the art for improved methods for the recombinant production of di-chain clostridial neurotoxins.


SUMMARY OF THE INVENTION

In a first aspect, the present invention provides a method for producing a di-chain clostridial neurotoxin, comprising separately expressing in a heterologous host cell a first gene encoding a clostridial neurotoxin light chain and a second gene encoding a clostridial neurotoxin heavy chain, wherein said first and second genes are expressed in an oxidizing environment of said host cell.


In a second aspect, the present invention provides a cell comprising a first gene encoding a clostridial neurotoxin light chain, and a second gene encoding a clostridial neurotoxin heavy chain, wherein said first and second genes are expressed in an oxidizing environment of said cell.


In a third aspect, the present invention provides a kit comprising

    • a. a cell comprising an oxidizing environment,
    • b. a first gene encoding a clostridial neurotoxin light chain, and
    • c. a second gene encoding a clostridial neurotoxin heavy chain,
    • wherein said first and second genes are suitable for separately expressing a clostridial neurotoxin light and a heavy chain in said oxidizing environment of said cell.


In a fourth aspect, the present invention provides a di-chain clostridial neurotoxin obtained by the method according to the invention.


In a fifth aspect, the present invention provides a pharmaceutical composition comprising a di-chain clostridial neurotoxin according to the invention.


In a sixth aspect, the present invention provides the use of a host cell which has an oxidative cytoplasm for producing a di-chain clostridial neurotoxin, wherein said host cell comprises a first gene encoding a clostridial neurotoxin light chain and a second gene encoding a clostridial neurotoxin heavy chain, wherein said first and second genes are expressed in the oxidative cytoplasm of said host cell.


DETAILED DESCRIPTION OF THE INVENTION

The present invention is based on the finding by the inventors that co-expressing clostridial neurotoxin light and heavy chains separately within an oxidizing environment of a heterologous host cell, allows the two domains to fold together to form a di-chain clostridial neurotoxin with a drastically increased efficiency.


In a first aspect, the present invention provides a method for producing a di-chain clostridial neurotoxin, comprising separately expressing in a heterologous host cell a first gene encoding a clostridial neurotoxin light chain and a second gene encoding a clostridial neurotoxin heavy chain, wherein the first and second genes are expressed in an oxidizing environment of said host cell.


The term “oxidizing environment” as used herein means a cellular environment that promotes cystine formation (oxidised dimer of cysteine). This is generally achieved through the balance of differing redox proteins such as but not limited to thioredoxin based proteins (e.g DsbA) and glutathione. Non-limiting examples of oxidising environments are the periplasm of Gram negative bacteria or the endoplasmic reticulum of eukaryotic expression systems such as Chinese hamster ovary (CHO), insect or yeast cells.


Numerous prokaryotic and eukaryotic expression systems are known in the state of the art. The host cell can be selected, for example, from prokaryotic cells such as Escherichia coli and Bacillus megaterium, or from eukaryotic cells such as Saccharomyces cerevisiae and Pichia pastoris. Although higher eukaryotic cells, such as insect cells or mammal cells, may be used as well, host cells are nevertheless preferred, which, like C. botulinum, do not possess glycosylation apparatus.


In a preferred embodiment, the host cell is a prokaryote cell. In a more preferred embodiment, the oxidizing environment is the cytoplasm of the prokaryote cell.


Disulfide bonds are formed by the oxidation of sulfhydryl groups between two cysteine side chains resulting in a covalent bond. In nature, cells have enzymes dedicated to reducing disulfide bonds in their cytoplasm (reducing cytoplasm) and the formation of disulphide bonds occurs in extra-cytoplasmic environments such as the periplasm in gram negative bacteria or the endoplasmic reticulum (ER) in eukaryotes. Therefore, production of recombinant proteins requiring disulfide bonds in the cytoplasm of cells such as E. coli is challenging.


The cytoplasm of bacterial cells can be rendered oxidizing through genetic engineering, eg by expressing in the cytoplasm genes involved in disulphide bond formation and/or repressing genes involved in disulphide bond reduction and/or modifying such genes. For example, introducing mutations into genes of the thioredoxin (trxB) and/or glutathione (gor or gshA) pathways and/or cytoplasmically over-expressing DsbC can render the cytoplasmic environment oxidadizing and allow for the formation of disulphide bonds (Bessette, Paul H., et al. “Efficient folding of proteins with multiple disulfide bonds in the Escherichia coli cytoplasm.” Proceedings of the National Academy of Sciences 96.24 (1999): 13703-13708; Lobstein, Julie, et al. “SHuffle, a novel Escherichia coli protein expression strain capable of correctly folding disulfide bonded proteins in its cytoplasm.” Microbial cell factories 11.1 (2012): 1).


Examples of commercially available E. coli strains with oxidizing environment include:

    • AD494 and BL21trxB strains, available from Novagen, in which the trxB gene is mutated;
    • Origami™ strains (Origami, Origami 2, Origami B) available from Novagen, in which the gor and trxB genes are mutated;
    • Rosetta-gami™ strains (Rosetta-gami, Rosetta-gami 2 and Rosetta-gami B) available from Novagen, in which the gor and trxB genes are mutated;
    • SHuffle® strains (SHuffle T7, SHuffle T7 express) available from New England Biolabs, in which the gor and trxB genes are mutated and a DsbC gene lacking its signal sequence is expressed in the cytoplasm.


In a preferred embodiment, the cell is a prokaryote cell in which at least one gene involved in disulphide bond formation is overexpressed in the cytoplasm as compared to an otherwise identical wild-type cell and/or at least one gene involved in disulphide bond reduction is repressed as compared to an otherwise identical wild-type cell. In one embodiment, the prokaryote cell is an E. coli cell from a strain selected from AD494, BL21trxB, Origami, Rosetta-gami and SHuffle strains. In a preferred embodiment, the prokaryote cell is an E. coli cell from a Origami or SHuffle strain.


The term “neurotoxin” as used herein means any polypeptide that enters a neuron and inhibits neurotransmitter release. This process encompasses the binding of the neurotoxin to a low or high affinity receptor, the internalisation of the neurotoxin, the translocation of the endopeptidase portion of the neurotoxin into the cytoplasm and the enzymatic modification of the neurotoxin substrate. More specifically, the term “neurotoxin” encompasses any polypeptide produced by Clostridium bacteria (“clostridial neurotoxins”) that enters a neuron and inhibits neurotransmitter release, and such polypeptides produced by recombinant technologies or chemical techniques. It is this di-chain form that is the active form of the toxin. The two chains are termed the heavy chain (H-chain), which has a molecular mass of approximately 100 kDa, and the light chain (L-chain), which has a molecular mass of approximately 50 kDa. The L-chain comprises the endopeptidase activity. The H-chain comprises two functionally distinct domains each having molecular weight of approximately 50 kDa: the “HC domain” that enables the binding of the neurotoxin to a receptor located on the surface of the target cell, and the “HN domain” that enables translocation of the light chain (endopeptidase) into the cytoplasm. The HC domain consists of two structurally distinct subdomains, the “HCN subdomain” (N-terminal part of the HC domain) and the “HCC subdomain” (C-terminal part of the HC domain), each of which has a molecular weight of approximately 25 kDa. The term “di-chain clostridial neurotoxin” as used herein means an active neurotoxin consisting of a clostridial neurotoxin light chain and heavy chain which are linked by a disulphide bond. It is understood that a di-chain clostridial neurotoxin according to the invention is capable of binding to a target cell, of translocating the light chain into the cytoplasm of the target cell and of cleaving a SNARE protein, thereby impairing the target's cell's secretion ability.


Different botulinum neurotoxin (BoNT) serotypes can be distinguished based on inactivation by specific neutralising anti-sera, with such classification by serotype correlating with percentage sequence identity at the amino acid level. BoNT proteins of a given serotype are further divided into different subtypes on the basis of amino acid percentage sequence identity. An example of a BoNT/A amino acid sequence is provided as SEQ ID NO: 1 (UniProt accession number A5HZZ9). An example of a BoNT/B amino acid sequence is provided as SEQ ID NO: 2 (UniProt accession number B1INP5). An example of a BoNT/C amino acid sequence is provided as SEQ ID NO: 3 (UniProt accession number P18640). An example of a BoNT/D amino acid sequence is provided as SEQ ID NO: 4 (UniProt accession number P19321). An example of a BoNT/E amino acid sequence is provided as SEQ ID NO: 5 (accession number WP_003372387). An example of a BoNT/F amino acid sequence is provided as SEQ ID NO: 6 (UniProt accession number Q57236). An example of a BoNT/G amino acid sequence is provided as SEQ ID NO: 7 (accession number WP_039635782). An example of a Tetanus neurotoxin (TeNT) amino acid sequence is provided as SEQ ID NO: 8 (UniProt accession number P04958).


An example of a nucleic acid sequence encoding a BoNT/A is provided as SEQ ID NO: 9. An a nucleic acid sequence encoding a BoNT/B is provided as SEQ ID NO: 10. An a nucleic acid sequence encoding a BoNT/C is provided as SEQ ID NO: 11. An a nucleic acid sequence encoding a BoNT/D is provided as SEQ ID NO: 12. An a nucleic acid sequence encoding a BoNT/E is provided as SEQ ID NO: 13. An a nucleic acid sequence encoding a BoNT/F is provided as SEQ ID NO: 14. An a nucleic acid sequence encoding a BoNT/G sequence is provided as SEQ ID NO: 15. An a nucleic acid sequence encoding a Tetanus neurotoxin (TeNT) sequence is provided as SEQ ID NO: 16.


Exemplary L, HN, HCN and HCC amino acid domains are shown in table 1.









TABLE 1







Exemplary amino acid L, HN, HC, HCN and HCC domains













Neurotoxin
Accession Number
SEQ ID NO
L
HN
HCN
HCC





BoNT/A1
A5HZZ9
1
1-448
449-872
873-1094
1095-1296


BoNT/B1
B1INP5
2
1-441
442-859
860-1081
1082-1291


BoNT/C1
P18640
3
1-449
450-867
868-1095
1096-1291


BoNT/D
P19321
4
1-442
443-863
864-1082
1083-1276


BoNT/E1
WP_003372387
5
1-423
424-846
847-1069
1070-1252


BoNT/F1
Q57236
6
1-439
440-865
866-1087
1088-1278


BoNT/G
WP_039635782
7
1-446
447-864
865-1089
1090-1297


TeNT
P04958
8
1-456
457-880
881-1111
1112-1315









Exemplary nucleic acid sequences encoding L, HN, HCN and HCC domains are shown in table 2.









TABLE 2







Exemplary nucleic acid sequences encoding


L, HN, HC, HCN and HCC domains












Neurotoxin
SEQ ID NO
L
HN
HCN
HCC















BoNT/A1
9
1-1344
1345-2616
2617-3282
3283-3888


BoNT/B1
10
1-1323
1324-2577
2578-3243
3244-3873


BoNT/C1
11
1-1347
1348-2601
2602-3285
3286-3873


BoNT/D
12
1-1326
1327-2589
2590-3246
3247-3828


BoNT/E1
13
1-1269
1270-2538
2539-3207
3208-3756


BoNT/F1
14
1-1317
1318-2595
2596-3261
3262-3834


BoNT/G
15
1-1338
1339-2592
2593-3267
3268-3891


TeNT
16
1-1368
1369-2640
2641-3333
3334-3945









The above-identified reference sequences should be considered a guide, as slight variations may occur according to sub-serotypes. By way of example, US 2007/0166332 (hereby incorporated by reference in its entirety) cites slightly different clostridial sequences”.


In one embodiment, the clostridial neurotoxin light chain is from a BoNT type A, type B, type C1, type D, type E, type F or type G, or a TeNT.


In one embodiment, the clostridial neurotoxin heavy chain is from a BoNT type A, type B, type C1, type D, type E, type F or type G, or a TeNT.


In one embodiment, the clostridial neurotoxin light chain is from a BoNT type A, type B, type C1, type D, type E, type F or type G, or a TeNT, and the clostridial neurotoxin heavy chain is from a BoNT type A, type B, type C1, type D, type E, type F or type G, or a TeNT.


In one embodiment, the clostridial neurotoxin light and heavy chains are from the same serotype or subtype.


In one embodiment, the clostridial neurotoxin light and heavy chains are from different serotypes or subtypes.


In one embodiment, the clostridial neurotoxin light chain comprises a sequence selected from:

    • amino acid residues 1 to 448 of SEQ ID NO: 1, or a polypeptide sequence having at least 70%, preferably at least 75%, 80%, 85%, 90%, 95% or 99% sequence identity thereto,
    • amino acid residues 1 to 441 of SEQ ID NO: 2, or a polypeptide sequence having at least 70%, preferably at least 75%, 80%, 85%, 90%, 95% or 99% sequence identity thereto,
    • amino acid residues 1 to 449 of SEQ ID NO: 3, or a polypeptide sequence having at least 70%, preferably at least 75%, 80%, 85%, 90%, 95% or 99% sequence identity thereto,
    • amino acid residues 1 to 442 of SEQ ID NO: 4, or a polypeptide sequence having at least 70%, preferably at least 75%, 80%, 85%, 90%, 95% or 99% sequence identity thereto,
    • amino acid residues 1 to 423 of SEQ ID NO: 5, or a polypeptide sequence having at least 70%, preferably at least 75%, 80%, 85%, 90%, 95% or 99% sequence identity thereto,
    • amino acid residues 1 to 439 of SEQ ID NO: 6, or a polypeptide sequence having at least 70%, preferably at least 75%, 80%, 85%, 90%, 95% or 99% sequence identity thereto,
    • amino acid residues 1 to 446 of SEQ ID NO: 7, or a polypeptide sequence having at least 70%, preferably at least 75%, 80%, 85%, 90%, 95% or 99% sequence identity thereto G,
    • amino acid residues 1 to 456 of SEQ ID NO: 8, or a polypeptide sequence having at least 70%, preferably at least 75%, 80%, 85%, 90%, 95% or 99% sequence identity thereto,
    • an amino acid sequence encoded by nucleotides 1 to 1344 of SEQ ID NO: 9, or by a nucleic acid sequence having at least 70%, preferably at least 75%, 80%, 85%, 90%, 95% or 99% sequence identity thereto,
    • an amino acid sequence encoded by nucleotides 1 to 1323 of SEQ ID NO: 10, or by a nucleic acid sequence having at least 70%, preferably at least 75%, 80%, 85%, 90%, 95% or 99% sequence identity thereto,
    • an amino acid sequence encoded by nucleotides 1 to 1347 of SEQ ID NO: 11, or by a nucleic acid sequence having at least 70%, preferably at least 75%, 80%, 85%, 90%, 95% or 99% sequence identity thereto,
    • an amino acid sequence encoded by nucleotides 1 to 1326 of SEQ ID NO: 12, or by a nucleic acid sequence having at least 70%, preferably at least 75%, 80%, 85%, 90%, 95% or 99% sequence identity thereto,
    • an amino acid sequence encoded by nucleotides 1 to 1269 of SEQ ID NO: 13, or by a nucleic acid sequence having at least 70%, preferably at least 75%, 80%, 85%, 90%, 95% or 99% sequence identity thereto,
    • an amino acid sequence encoded by nucleotides 1 to 1317 of SEQ ID NO: 14, or by a nucleic acid sequence having at least 70%, preferably at least 75%, 80%, 85%, 90%, 95% or 99% sequence identity thereto,
    • an amino acid sequence encoded by nucleotides 1 to 1338 of SEQ ID NO: 15, or by a nucleic acid sequence having at least 70%, preferably at least 75%, 80%, 85%, 90%, 95% or 99% sequence identity thereto, and
    • an amino acid sequence encoded by nucleotides 1 to 1368 of SEQ ID NO: 16, or by a nucleic acid sequence having at least 70%, preferably at least 75%, 80%, 85%, 90%, 95% or 99% sequence identity thereto.


It is understood that a clostridial neurotoxin light chain is capable of cleaving a SNARE protein.


In one embodiment, the clostridial neurotoxin heavy chain comprises a sequence selected from:

    • amino acid residues 449 to 1296 of SEQ ID NO: 1, or a polypeptide sequence having at least 70%, preferably at least 75%, 80%, 85%, 90%, 95% or 99% sequence identity thereto,
    • amino acid residues 442 to 1291 of SEQ ID NO: 2, or a polypeptide sequence having at least 70%, preferably at least 75%, 80%, 85%, 90%, 95% or 99% sequence identity thereto,
    • amino acid residues 450 to 1291 of SEQ ID NO: 3, or a polypeptide sequence having at least 70%, preferably at least 75%, 80%, 85%, 90%, 95% or 99% sequence identity thereto,
    • amino acid residues 443 to 1276 of SEQ ID NO: 4, or a polypeptide sequence having at least 70%, preferably at least 75%, 80%, 85%, 90%, 95% or 99% sequence identity thereto,
    • amino acid residues 424 to 1252 of SEQ ID NO: 5, or a polypeptide sequence having at least 70%, preferably at least 75%, 80%, 85%, 90%, 95% or 99% sequence identity thereto,
    • amino acid residues 440 to 1278 of SEQ ID NO: 6, or a polypeptide sequence having at least 70%, preferably at least 75%, 80%, 85%, 90%, 95% or 99% sequence identity thereto,
    • amino acid residues 447 to 1297 of SEQ ID NO: 7, or a polypeptide sequence having at least 70%, preferably at least 75%, 80%, 85%, 90%, 95% or 99% sequence identity thereto,
    • amino acid residues 457 to 1315 of SEQ ID NO: 8, or a polypeptide sequence having at least 70%, preferably at least 75%, 80%, 85%, 90%, 95% or 99% sequence identity thereto,
    • an amino acid sequence encoded by nucleotides 1345 to 3888 of SEQ ID NO: 9, or by a nucleic acid sequence having at least 70%, preferably at least 75%, 80%, 85%, 90%, 95% or 99% sequence identity thereto,
    • an amino acid sequence encoded by nucleotides 1324 to 3873 of SEQ ID NO: 10, or by a nucleic acid sequence having at least 70%, preferably at least 75%, 80%, 85%, 90%, 95% or 99% sequence identity thereto,
    • an amino acid sequence encoded by nucleotides 1348 to 3873 of SEQ ID NO: 11, or by a nucleic acid sequence having at least 70%, preferably at least 75%, 80%, 85%, 90%, 95% or 99% sequence identity thereto,
    • an amino acid sequence encoded by nucleotides 1327 to 3828 of SEQ ID NO: 12, or by a nucleic acid sequence having at least 70%, preferably at least 75%, 80%, 85%, 90%, 95% or 99% sequence identity thereto,
    • an amino acid sequence encoded by nucleotides 1270 to 3756 of SEQ ID NO: 13, or by a nucleic acid sequence having at least 70%, preferably at least 75%, 80%, 85%, 90%, 95% or 99% sequence identity thereto,
    • an amino acid sequence encoded by nucleotides 1318 to 3834 of SEQ ID NO: 14, or by a nucleic acid sequence having at least 70%, preferably at least 75%, 80%, 85%, 90%, 95% or 99% sequence identity thereto,
    • an amino acid sequence encoded by nucleotides 1339 to 3891 of SEQ ID NO: 15, or by a nucleic acid sequence having at least 70%, preferably at least 75%, 80%, 85%, 90%, 95% or 99% sequence identity thereto, and
    • an amino acid sequence encoded by nucleotides 1369 to 3945 of SEQ ID NO: 16, or by a nucleic acid sequence having at least 70%, preferably at least 75%, 80%, 85%, 90%, 95% or 99% sequence identity thereto.


It is understood that a clostridial neurotoxin heavy chain is capable of binding to a target cell and of translocating the light chain into the cytoplasm of the target cell.


It is also understood that the HN, HCN and HCC domains of the clostridial neurotoxin heavy chain according to the invention can be from the same or from different clostridial serotypes or subtypes.


In one embodiment, the clostridial neurotoxin heavy chain comprises a HN, a HCN and a HCC domain, wherein

    • the HN domain comprises a sequence selected from:
      • amino acid residues 449 to 872 of SEQ ID NO: 1, or a polypeptide sequence having at least 70%, preferably at least 75%, 80%, 85%, 90%, 95% or 99% sequence identity thereto,
      • amino acid residues 442 to 859 of SEQ ID NO: 2, or a polypeptide sequence having at least 70%, preferably at least 75%, 80%, 85%, 90%, 95% or 99% sequence identity thereto,
      • amino acid residues 450 to 867 of SEQ ID NO: 3, or a polypeptide sequence having at least 70%, preferably at least 75%, 80%, 85%, 90%, 95% or 99% sequence identity thereto,
      • amino acid residues 443 to 863 of SEQ ID NO: 4, or a polypeptide sequence having at least 70%, preferably at least 75%, 80%, 85%, 90%, 95% or 99% sequence identity thereto,
      • amino acid residues 424 to 846 of SEQ ID NO: 5, or a polypeptide sequence having at least 70%, preferably at least 75%, 80%, 85%, 90%, 95% or 99% sequence identity thereto,
      • amino acid residues 440 to 865 of SEQ ID NO: 6, or a polypeptide sequence having at least 70%, preferably at least 75%, 80%, 85%, 90%, 95% or 99% sequence identity thereto,
      • amino acid residues 447 to 864 of SEQ ID NO: 7, or a polypeptide sequence having at least 70%, preferably at least 75%, 80%, 85%, 90%, 95% or 99% sequence identity thereto,
      • amino acid residues 457 to 880 of SEQ ID NO: 8, or a polypeptide sequence having at least 70%, preferably at least 75%, 80%, 85%, 90%, 95% or 99% sequence identity thereto,
      • an amino acid sequence encoded by nucleotides 1345 to 2616 of SEQ ID NO: 9, or by a nucleic acid sequence having at least 70%, preferably at least 75%, 80%, 85%, 90%, 95% or 99% sequence identity thereto,
      • an amino acid sequence encoded by nucleotides 1324 to 2577 of SEQ ID NO: 10, or by a nucleic acid sequence having at least 70%, preferably at least 75%, 80%, 85%, 90%, 95% or 99% sequence identity thereto,
      • an amino acid sequence encoded by nucleotides 1348 to 2601 of SEQ ID NO: 11, or by a nucleic acid sequence having at least 70%, preferably at least 75%, 80%, 85%, 90%, 95% or 99% sequence identity thereto,
      • an amino acid sequence encoded by nucleotides 1327 to 2589 of SEQ ID NO: 12, or by a nucleic acid sequence having at least 70%, preferably at least 75%, 80%, 85%, 90%, 95% or 99% sequence identity thereto,
      • an amino acid sequence encoded by nucleotides 1270 to 2538 of SEQ ID NO: 13, or by a nucleic acid sequence having at least 70%, preferably at least 75%, 80%, 85%, 90%, 95% or 99% sequence identity thereto,
      • an amino acid sequence encoded by nucleotides 1318 to 2595 of SEQ ID NO: 14, or by a nucleic acid sequence having at least 70%, preferably at least 75%, 80%, 85%, 90%, 95% or 99% sequence identity thereto,
      • an amino acid sequence encoded by nucleotides 1339 to 2592 of SEQ ID NO: 15, or by a nucleic acid sequence having at least 70%, preferably at least 75%, 80%, 85%, 90%, 95% or 99% sequence identity thereto, and
      • an amino acid sequence encoded by nucleotides 1369 to 2640 of SEQ ID NO: 16, or by a nucleic acid sequence having at least 70%, preferably at least 75%, 80%, 85%, 90%, 95% or 99% sequence identity thereto;
    • the HCN domain comprises a sequence selected from:
      • amino acid residues 873 to 1094 of SEQ ID NO: 1, or a polypeptide sequence having at least 70%, preferably at least 75%, 80%, 85%, 90%, 95% or 99% sequence identity thereto,
      • amino acid residues 860 to 1081 of SEQ ID NO: 2, or a polypeptide sequence having at least 70%, preferably at least 75%, 80%, 85%, 90%, 95% or 99% sequence identity thereto,
      • amino acid residues 868 to 1095 of SEQ ID NO: 3, or a polypeptide sequence having at least 70%, preferably at least 75%, 80%, 85%, 90%, 95% or 99% sequence identity thereto,
      • amino acid residues 864 to 1082 of SEQ ID NO: 4, or a polypeptide sequence having at least 70%, preferably at least 75%, 80%, 85%, 90%, 95% or 99% sequence identity thereto,
      • amino acid residues 847 to 1069 of SEQ ID NO: 5, or a polypeptide sequence having at least 70%, preferably at least 75%, 80%, 85%, 90%, 95% or 99% sequence identity thereto,
      • amino acid residues 866 to 1087 of SEQ ID NO: 6, or a polypeptide sequence having at least 70%, preferably at least 75%, 80%, 85%, 90%, 95% or 99% sequence identity thereto,
      • amino acid residues 865 to 1089 of SEQ ID NO: 7, or a polypeptide sequence having at least 70%, preferably at least 75%, 80%, 85%, 90%, 95% or 99% sequence identity thereto,
      • amino acid residues 881 to 1111 of SEQ ID NO: 8, or a polypeptide sequence having at least 70%, preferably at least 75%, 80%, 85%, 90%, 95% or 99% sequence identity thereto,
      • an amino acid sequence encoded by nucleotides 2617 to 3282 of SEQ ID NO: 9, or by a nucleic acid sequence having at least 70%, preferably at least 75%, 80%, 85%, 90%, 95% or 99% sequence identity thereto,
      • an amino acid sequence encoded by nucleotides 2578 to 3243 of SEQ ID NO: 10, or by a nucleic acid sequence having at least 70%, preferably at least 75%, 80%, 85%, 90%, 95% or 99% sequence identity thereto,
      • an amino acid sequence encoded by nucleotides 2602 to 3285 of SEQ ID NO: 11, or by a nucleic acid sequence having at least 70%, preferably at least 75%, 80%, 85%, 90%, 95% or 99% sequence identity thereto,
      • an amino acid sequence encoded by nucleotides 2590 to 3246 of SEQ ID NO: 12, or by a nucleic acid sequence having at least 70%, preferably at least 75%, 80%, 85%, 90%, 95% or 99% sequence identity thereto,
      • an amino acid sequence encoded by nucleotides 2539 to 3207 of SEQ ID NO: 13, or by a nucleic acid sequence having at least 70%, preferably at least 75%, 80%, 85%, 90%, 95% or 99% sequence identity thereto,
      • an amino acid sequence encoded by nucleotides 2596 to 3261 of SEQ ID NO: 14, or by a nucleic acid sequence having at least 70%, preferably at least 75%, 80%, 85%, 90%, 95% or 99% sequence identity thereto,
      • an amino acid sequence encoded by nucleotides 2593 to 3267 of SEQ ID NO: 15, or by a nucleic acid sequence having at least 70%, preferably at least 75%, 80%, 85%, 90%, 95% or 99% sequence identity thereto, and
      • an amino acid sequence encoded by nucleotides 2641 to 3333 of SEQ ID NO: 16, or by a nucleic acid sequence having at least 70%, preferably at least 75%, 80%, 85%, 90%, 95% or 99% sequence identity thereto;
    • and the HCC domain comprises a sequence selected from:
      • amino acid residues 1095 to 1296 of SEQ ID NO: 1, or a polypeptide sequence having at least 70%, preferably at least 75%, 80%, 85%, 90%, 95% or 99% sequence identity thereto,
      • amino acid residues 1082 to 1291 of SEQ ID NO: 2, or a polypeptide sequence having at least 70%, preferably at least 75%, 80%, 85%, 90%, 95% or 99% sequence identity thereto,
      • amino acid residues 1096 to 1291 of SEQ ID NO: 3, or a polypeptide sequence having at least 70%, preferably at least 75%, 80%, 85%, 90%, 95% or 99% sequence identity thereto,
      • amino acid residues 1083 to 1276 of SEQ ID NO: 4, or a polypeptide sequence having at least 70%, preferably at least 75%, 80%, 85%, 90%, 95% or 99% sequence identity thereto,
      • amino acid residues 1070 to 1252 of SEQ ID NO: 5, or a polypeptide sequence having at least 70%, preferably at least 75%, 80%, 85%, 90%, 95% or 99% sequence identity thereto,
      • amino acid residues 1088 to 1278 of SEQ ID NO: 6, or a polypeptide sequence having at least 70%, preferably at least 75%, 80%, 85%, 90%, 95% or 99% sequence identity thereto,
      • amino acid residues 1090 to 1297 of SEQ ID NO: 7, or a polypeptide sequence having at least 70%, preferably at least 75%, 80%, 85%, 90%, 95% or 99% sequence identity thereto,
      • amino acid residues 1112 to 1315 of SEQ ID NO: 8, or a polypeptide sequence having at least 70%, preferably at least 75%, 80%, 85%, 90%, 95% or 99% sequence identity thereto,
      • an amino acid sequence encoded by nucleotides 3283 to 3888 of SEQ ID NO: 9, or by a nucleic acid sequence having at least 70%, preferably at least 75%, 80%, 85%, 90%, 95% or 99% sequence identity thereto,
      • an amino acid sequence encoded by nucleotides 3244 to 3873 of SEQ ID NO: 10, or by a nucleic acid sequence having at least 70%, preferably at least 75%, 80%, 85%, 90%, 95% or 99% sequence identity thereto,
      • an amino acid sequence encoded by nucleotides 3286 to 3873 of SEQ ID NO: 11, or by a nucleic acid sequence having at least 70%, preferably at least 75%, 80%, 85%, 90%, 95% or 99% sequence identity thereto,
      • an amino acid sequence encoded by nucleotides 3247 to 3828 of SEQ ID NO: 12, or by a nucleic acid sequence having at least 70%, preferably at least 75%, 80%, 85%, 90%, 95% or 99% sequence identity thereto,
      • an amino acid sequence encoded by nucleotides 3208 to 3756 of SEQ ID NO: 13, or by a nucleic acid sequence having at least 70%, preferably at least 75%, 80%, 85%, 90%, 95% or 99% sequence identity thereto,
      • an amino acid sequence encoded by nucleotides 3262 to 3834 of SEQ ID NO: 14, or by a nucleic acid sequence having at least 70%, preferably at least 75%, 80%, 85%, 90%, 95% or 99% sequence identity thereto,
      • an amino acid sequence encoded by nucleotides 3268 to 3891 of SEQ ID NO: 15, or by a nucleic acid sequence having at least 70%, preferably at least 75%, 80%, 85%, 90%, 95% or 99% sequence identity thereto, and
      • an amino acid sequence encoded by nucleotides 3334 to 3945 of SEQ ID NO: 16, or by a nucleic acid sequence having at least 70%, preferably at least 75%, 80%, 85%, 90%, 95% or 99% sequence identity thereto.


The “percent sequence identity” between two or more nucleic acid or amino acid sequences is a function of the number of identical nucleotides/amino acids at identical positions shared by the aligned sequences. Thus, % identity may be calculated as the number of identical nucleotides/amino acids at each position in an alignment divided by the total number of nucleotides/amino acids in the aligned sequence, multiplied by 100. Calculations of % sequence identity may also take into account the number of gaps, and the length of each gap that needs to be introduced to optimize alignment of two or more sequences. Sequence comparisons and the determination of percent identity between two or more sequences can be carried out using specific mathematical algorithms, such as BLAST, which will be familiar to a skilled person.


The light and/or heavy chains can be from a mosaic neurotoxin. The term “mosaic neurotoxin” as used in this context refers to a naturally occurring clostridial neurotoxin that comprises at least one functional domain from another type of clostridial neurotoxins (e.g. a clostridial neurotoxin of a different serotype), said clostridial neurotoxin not usually comprising said at least one functional domain. Examples of mosaic neurotoxins are naturally occurring BoNT/DC and BoNT/CD. BoNT/DC comprises the L chain and HN domain of serotype D and the HC domain of serotype C, whereas BoNT/CD consists of the L chain and HN domain of serotype C and the HC domain of serotype D.


The light and/or heavy chains can be from a modified neurotoxin and derivatives thereof, including but not limited to those described below. A modified neurotoxin or derivative may contain one or more amino acids that has been modified as compared to the native (unmodified) form of the neurotoxin, or may contain one or more inserted amino acids that are not present in the native (unmodified) form of the toxin. By way of example, a modified clostridial neurotoxin may have modified amino acid sequences in one or more domains relative to the native (unmodified) clostridial neurotoxin sequence. Such modifications may modify functional aspects of the neurotoxin, for example biological activity or persistence. Thus, in one embodiment, the first neurotoxin and/or the second neurotoxin is a modified neurotoxin, or modified neurotoxin derivative.


A modified neurotoxin retains at least one of the functions of a neurotoxin, selected from the ability to bind to a low or high affinity neurotoxin receptor on a target cell, to translocate the endopeptidase portion of the neurotoxin (light chain) into the cell cytoplasm and to cleave a SNARE protein. Preferably, a modified neurotoxin retains at least two of these functions. More preferably a modified neurotoxin retains these three functions.


A modified neurotoxin may have one or more modifications in the amino acid sequence of the heavy chain (such as a modified HC domain), wherein said modified heavy chain binds to target nerve cells with a higher or lower affinity than the native (unmodified) neurotoxin. Such modifications in the HC domain can include modifying residues in the ganglioside binding site of the HC domain or in the protein (SV2 or synaptotagmin) binding site that alter binding to the ganglioside receptor and/or the protein receptor of the target nerve cell. Examples of such modified neurotoxins are described in WO 2006/027207 and WO 2006/114308, both of which are hereby incorporated by reference in their entirety.


A modified neurotoxin may have one or more modifications in the amino acid sequence of the light chain, for example modifications in the substrate binding or catalytic domain which may alter or modify the SNARE protein specificity of the modified LC. Examples of such modified neurotoxins are described in WO 2010/120766 and US 2011/0318385, both of which are hereby incorporated by reference in their entirety.


A modified neurotoxin may comprise one or more modifications that increases or decreases the biological activity and/or the biological persistence of the modified neurotoxin. For example, a modified neurotoxin may comprise a leucine- or tyrosine-based motif, wherein said motif increases or decreases the biological activity and/or the biological persistence of the modified neurotoxin. Suitable leucine-based motifs include xDxxxLL, xExxxLL, xExxxlL, and xExxxLM (wherein x is any amino acid). Suitable tyrosine-based motifs include Y-x-x-Hy (wherein Hy is a hydrophobic amino acid). Examples of modified neurotoxins comprising leucine- and tyrosine-based motifs are described in WO 2002/08268, which is hereby incorporated by reference in its entirety.


In one embodiment, the clostridial neurotoxin is a retargeted neurotoxin. The term “retargeted neurotoxin” (also referred to as “targeted secretion inhibitors”, “TSIs”, “TVEMPs” or “TEMs”) as used herein means a clostridial neurotoxin comprising a Targeting Moiety (TM) which binds to a non clostridial receptor. The TM can replace part or all of the HC or HCC domain of the clostridial neurotoxin heavy chain. Examples of retargeted neurotoxins are disclosed in WO96/33273, WO98/07864, WO00/10598, WO01/21213, WO01/53336; WO02/07759 WO2005/023309, WO2006/026780, WO2006/099590, WO2006/056093, WO2006/059105, WO2006/059113, WO2007/138339, WO2007/106115, WO2007/106799, WO2009/150469, WO2009/150470, WO2010/055358, WO2010/020811, WO2010/138379, WO2010/138395, WO2010/138382, WO2011/020052, WO2011/020056, WO2011/020114, WO2011/020117, WO2011/20119, WO2012/156743, WO2012/134900, WO2012/134897, WO2012/134904, WO2012/134902, WO2012/135343, WO2012/135448, WO2012/135304, WO2012/134902, WO2014/033441, WO2014/128497, WO2014/053651, WO2015/004464, all of which are herein incorporated by reference.


In one embodiment, the gene encoding a clostridial neurotoxin light chain and the gene encoding a clostridial neurotoxin heavy chain are present on the same vector.


In one embodiment, the gene encoding a clostridial neurotoxin light chain and the gene encoding a clostridial neurotoxin heavy chain are present on different vectors.


In principle, any expression vectors can be used to achieve co-expression in E. coli for example pK7, pJ401, pBAD or pET vectors. When using separate vectors to express each domain it is preferable to use different antibiotic resistance markers and origins of replication to help plasmid stability. With the single vector approach it is generally beneficial to have genes under control of separate promoters and ribosome binding sites but this is not essential. Finally, both strategies can control both genes by the same type of promoter or can utilise different ones for each e.g. a T7-lac, T5-lac, rhaBAD and araBAD promoter.


In one embodiment, the gene encoding a clostridial neurotoxin light chain and the gene encoding a clostridial neurotoxin heavy chain are prepared as part of DNA or RNA vector(s), preferably DNA vector(s), comprising a promoter and a terminator. Suitable promoter and terminator sequences are well known in the art.


The choice of promoter depends in this case on the expression systems used for expression. In general, constitutive promoters are preferred, but inducible promoters may likewise be used. The construct produced in this manner includes at least one part of a vector, in particular regulatory elements, the vector, for example, being selected from A-derivates, adenoviruses, baculoviruses, vaccinia viruses, SV40-viruses and retroviruses. The vector is preferably capable of expressing the genes in a given host cell.


In one embodiment, the vector has a promoter selected from:



















Typical




Induction
Induction



Promoter
Agent
Condition









Tac (hybrid)
IPTG
 0.2 mM





(0.05-2.0 mM)



AraBAD
L-arabinose
 0.2%





(0.00002-0.4%)



T7-lac operator
IPTG
 0.2 mM





(0.05-2.0 mM)



T5-lac operator
IPTG
 0.2 mM





(0.05-2.0 mM)










The genes of the invention may be made using any suitable process known in the art. Thus, the genes may be made using chemical synthesis techniques. Alternatively, the genes of the invention may be made using molecular biology techniques.


The genes of the present invention are preferably designed in silico, and then synthesised by conventional gene synthesis techniques.


The above-mentioned genes are optionally modified for codon-biasing according to the ultimate host cell (e.g. E. coli) expression system that is to be employed.


In one embodiment, the method according to the invention further comprises a step of recovering the di-chain clostridial neurotoxin from the host cell. In particular, the method may include a step of lysing the host cell to provide a host cell homogenate, and a step of isolating the di-chain clostridial toxin protein. In one embodiment, the method according to the invention may further comprise a step of introducing the gene encoding a clostridial neurotoxin light chain and a gene encoding a clostridial neurotoxin heavy chain into the host cell. For example, the genes of the invention may be introduced into the cell in the form of expression vector(s) as described herein.


Typically the di-chain clostridial neurotoxin is purified and/or concentrated after recovery from the host cell. Any suitable method(s) may be used for the recovery, purification and/or concentration of the di-chain clostridial neurotoxin. Standard techniques for recovery, purification and/or concentration are known in the art, for example chromatography methods and/or electrophoresis.


The di-chain clostridial neurotoxin may comprise one or more N-terminal and/or C-terminal located purification tags to assist in the purification of the polypeptide. Whilst any purification tag may be employed, the following are preferred: His-tag (e.g. 6×histidine), preferably as a C-terminal and/or N-terminal tag; MBP-tag (maltose binding protein), preferably as an N-terminal tag; GST-tag (glutathione-S-transferase), preferably as an N-terminal tag; His-MBP-tag, preferably as an N-terminal tag; GST-MBP-tag, preferably as an N-terminal tag; Thioredoxin-tag, preferably as an N-terminal tag; and/or CBD-tag (Chitin Binding Domain), preferably as an N-terminal tag.


One or more peptide spacer/linker molecules may be included in the di-chain clostridial neurotoxin. For example, a peptide spacer may be employed between a purification tag and the rest of the polypeptide molecule.


In a further aspect, the present invention provides a cell comprising a first genes encoding a clostridial neurotoxin light chain and a second gene encoding a clostridial neurotoxin heavy chain, wherein the first and second genes are expressed in an oxidizing environment of the cell.


In a preferred embodiment, said cell is a prokaryote cell. In a more preferred embodiment, the oxidizing environment is the cytoplasm of the prokaryote cell.


In a preferred embodiment, the cell is a prokaryote cell in which at least one gene involved in disulphide bond formation is overexpressed by in the cytoplasm as compared to an otherwise identical wild-type cell and/or at least one gene involved in disulphide bond reduction is repressed as compared to an otherwise identical wild-type cell.


In one embodiment, the prokaryote cell is an E. coli cell from strain selected from AD494, BL21trxB, Origami, Rosetta-gami and SHuffle strains. In a preferred embodiment, the prokaryote cell is an E. coli cell from an Origami or Shuffle strain.


In one embodiment, the first gene encoding a clostridial neurotoxin light chain and the second gene encoding a clostridial neurotoxin heavy chain are present on the same vector.


In one embodiment, the first gene encoding a clostridial neurotoxin light chain and the second gene encoding a clostridial neurotoxin heavy chain are present on different vectors.


In a further aspect, the present invention provides a kit comprising

    • a. a cell comprising an oxidizing environment,
    • b. a first gene encoding a clostridial neurotoxin light chain, and
    • c. a second gene encoding a clostridial neurotoxin heavy chain,
    • wherein said first and second genes are suitable for separately expressing a clostridial neurotoxin light and a heavy chain in said oxidizing environment of said cell.


In a further aspect, the present invention provides a di-chain clostridial neurotoxin obtained by the method according to the invention.


In a further aspect, the present invention provides a pharmaceutical composition comprising a di-chain clostridial neurotoxin according to the invention. Preferably, the pharmaceutical composition comprises a di-chain clostridial neurotoxin according to the invention together with at least one component selected from a pharmaceutically acceptable carrier, excipient, adjuvant, propellant and/or salt.


In another aspect, the invention provides a di-chain clostridial neurotoxin according to the invention or pharmaceutical composition according to the invention for use in therapy.


In another aspect, the invention provides a method of treatment comprising the administration of a suitable dose of a di-chain clostridial neurotoxin according to the invention or pharmaceutical composition according to the invention to a patient in need thereof.


A di-chain clostridial neurotoxin according to the invention is suitable for use in treating a condition associated with unwanted neuronal activity, for example a condition selected from the group consisting of spasmodic dysphonia, spasmodic torticollis, laryngeal dystonia, oromandibular dysphonia, lingual dystonia, cervical dystonia, focal hand dystonia, blepharospasm, strabismus, hemifacial spasm, eyelid disorder, cerebral palsy, focal spasticity and other voice disorders, spasmodic colitis, neurogenic bladder, anismus, limb spasticity, tics, tremors, bruxism, anal fissure, achalasia, dysphagia and other muscle tone disorders and other disorders characterized by involuntary movements of muscle groups, lacrimation, hyperhidrosis, excessive salivation, excessive gastrointestinal secretions, secretory disorders, pain from muscle spasms, headache pain, migraine and dermatological conditions.


In another aspect, the invention provides a non-therapeutic use of a di-chain clostridial neurotoxin according to the invention for treating an aesthetic or cosmetic condition.


The di-chain clostridial neurotoxin according to the invention may be formulated for oral, parenteral, continuous infusion, inhalation or topical application. Compositions suitable for injection may be in the form of solutions, suspensions or emulsions, or dry powders which are dissolved or suspended in a suitable vehicle prior to use.


In the case of a di-chain clostridial neurotoxin according to the invention that is to be delivered locally, the chimeric neurotoxin may be formulated as a cream (e.g. for topical application), or for sub-dermal injection.


Local delivery means may include an aerosol, or other spray (e.g. a nebuliser). In this regard, an aerosol formulation of a chimeric neurotoxin enables delivery to the lungs and/or other nasal and/or bronchial or airway passages.


Di-chain clostridial neurotoxins according to the invention may be administered to a patient by intrathecal or epidural injection in the spinal column at the level of the spinal segment involved in the innervation of an affected organ.


A preferred route of administration is via laparoscopic and/or localised, particularly intramuscular, injection.


The dosage ranges for administration of the di-chain clostridial neurotoxins according to the invention are those to produce the desired therapeutic effect. It will be appreciated that the dosage range required depends on the precise nature of the di-chain clostridial neurotoxin or composition, the route of administration, the nature of the formulation, the age of the patient, the nature, extent or severity of the patient's condition, contraindications, if any, and the judgement of the attending physician. Variations in these dosage levels can be adjusted using standard empirical routines for optimisation.


Fluid dosage forms are typically prepared utilising the di-chain clostridial neurotoxin according to the invention and a pyrogen-free sterile vehicle. The di-chain clostridial neurotoxin, depending on the vehicle and concentration used, can be either dissolved or suspended in the vehicle. In preparing solutions the di-chain clostridial neurotoxin can be dissolved in the vehicle, the solution being made isotonic if necessary by addition of sodium chloride and sterilised by filtration through a sterile filter using aseptic techniques before filling into suitable sterile vials or ampoules and sealing. Alternatively, if solution stability is adequate, the solution in its sealed containers may be sterilised by autoclaving. Advantageously additives such as buffering, solubilising, stabilising, preservative or bactericidal, suspending or emulsifying agents and or local anaesthetic agents may be dissolved in the vehicle.


Dry powders, which are dissolved or suspended in a suitable vehicle prior to use, may be prepared by filling pre-sterilised ingredients into a sterile container using aseptic technique in a sterile area. Alternatively the ingredients may be dissolved into suitable containers using aseptic technique in a sterile area. The product is then freeze dried and the containers are sealed aseptically.


Parenteral suspensions, suitable for intramuscular, subcutaneous or intradermal injection, are prepared in substantially the same manner, except that the sterile components are suspended in the sterile vehicle, instead of being dissolved and sterilisation cannot be accomplished by filtration. The components may be isolated in a sterile state or alternatively it may be sterilised after isolation, e.g. by gamma irradiation.


Administration in accordance with the present invention may take advantage of a variety of delivery technologies including microparticle encapsulation, viral delivery systems or high-pressure aerosol impingement.


In a further aspect, the invention provides the use of a host cell which has an oxidative cytoplasm for producing a di-chain clostridial neurotoxin, wherein the host cell comprises a first gene encoding a clostridial neurotoxin light chain and a second gene encoding a clostridial neurotoxin heavy chain, wherein the first and second genes are expressed in the cytoplasm of the host cell.


This disclosure is not limited by the exemplary methods and materials disclosed herein, and any methods and materials similar or equivalent to those described herein can be used in the practice or testing of embodiments of this disclosure. Numeric ranges are inclusive of the numbers defining the range. Unless otherwise indicated, any nucleic acid sequences are written left to right in 5′ to 3′ orientation; amino acid sequences are written left to right in amino to carboxy orientation, respectively.


Where a range of values is provided, it is understood that each intervening value, to the tenth of the unit of the lower limit unless the context clearly dictates otherwise, between the upper and lower limits of that range is also specifically disclosed. Each smaller range between any stated value or intervening value in a stated range and any other stated or intervening value in that stated range is encompassed within this disclosure. The upper and lower limits of these smaller ranges may independently be included or excluded in the range, and each range where either, neither or both limits are included in the smaller ranges is also encompassed within this disclosure, subject to any specifically excluded limit in the stated range. Where the stated range includes one or both of the limits, ranges excluding either or both of those included limits are also included in this disclosure.


It must be noted that as used herein and in the appended claims, the singular forms “a”, “an”, and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to “a clostridial neurotoxin” includes a plurality of such candidate agents and reference to “the clostridial neurotoxin” includes reference to one or more clostridial neurotoxins and equivalents thereof known to those skilled in the art, and so forth.


The invention will now be described, by way of example only, with reference to the following Figures and Examples.





FIGURE LEGENDS


FIG. 1—Western blot with a polyclonal in-house antibodies raised against either the LC of BoNT/A (FIG. 1A) or full length BoNT/A1—preference towards HC (FIG. 1B).MK: Magic Mark, Sample 1: Control, Shuffle T7 lysate—No IPTG, Sample 2: Origami 2 lysate±DTT, Sample 3: Shuffle T7 lysate±DTT, Sample 4: Shuffle T7 Express lysate±DTT, Sample 5: BL21 (DE3)±DTT.



FIG. 2—SDS PAGE following purification of Co-expressed BoNT/A1(0) and Single-chain expressed BoNT/A1(0). MK: Bench Mark, Sample 1: Co-expressed BoNT/A1(0), 2: Single-chain expressed BoNT/A1(0), Sample 3: Co-expressed BoNT/A1(0) reduced, Sample 4: Single-chain expressed BoNT/A1(0) reduced.



FIG. 3—Optim read out. In all figures, lane 1 is purified single-chain expressed BoNT/A1(0) and Lane 2 is purified co-expressed BoNT/A1(0). FIG. 3A) is a measure of temperature dependent shift in fluorescence emission barycentric mean (BCM). FIG. 3B) is a measure of temperature dependent shift in static light scatter (SLS) at 266 nm and FIG. 3C) is a measure of temperature dependent shift in (SLS) at 473 nm. Average and standard deviation are shown from 4 replicate reads for each molecule.



FIG. 4—SEC read out at 280 nm, FIG. 4 shows the full scale chromatogram at 280 nm. Purified co-expressed BoNT/A1(0) and purified single-chain expressed BoNT/A1(0) have been annotated.



FIG. 5—Glutamate release assay. The Figure compares co-expressed BoNT/A1 (SXN104279-DK170710) against native clostridial BoNT/A1 (LIST Biological Laboratories) on their ability to inhibit glutamate release in rat cerebral cortical neurones.





EXAMPLES
Example 1—Co-Expression of BoNT/A1(0) Light and Heavy Chains Using the Single Vector (Dual Promoter) Approach

Primers were designed to amplify separately the light chain (Table 3—Primers 1 and 2) and the heavy chain (Table 3—Primers 3 and 4) of endonegative BoNT/A1(0) ensuring that a stop codon would be incorporated at the end of the Light chain (LC) and a start codon at the beginning of the Heavy chain (HC). Also included were the restriction sites NcoI (fwrd) and BamHI (rev) to allow the LC to be ligated into MSC 1 of the pETDuet vector (Millipore #71146) while NdeI (fwrd) and XhoI (rev) were used to be able to ligate the HC into MSC 2. Genes were amplified with Q5 Hot start HF master mix (NEB #M0494S) using BoNT/A1(0) template DNA shown in Table 4. The amplified LC and pETDuet vector were then digested with NcoI (NEB #R3193) and BamHI (NEB #R3136) and ligated using NEB T4 DNA Ligase (#M02025).









TABLE 3







Primers used to insert BoNT/A1(0) LC into


MSC 1 and HC into MSC 2 of PetDuet








Primers
Sequence (5′->3′)





1) LC-A1 forward
ATACACCATGGTATGCCATTCGTCAACAA


(Nco1)
GCAATT (SEQ ID NO: 20)





2) LC-A1 reverse
GCTTTTGGATCCGGTTTATTTGCTGGTGA


(BamH1)
TGATACCGCGC (SEQ ID NO: 21)





3) HC-A1 forward
ACAAGCATATGGCGCTGAATGACCTGTGC


(Nde1)
ATTAAG (SEQ ID NO: 22)





4) HC-A1 reverse
AAGCTTCTCGAGTCATTACAGCGGACGTT


(Xho1)
CGCCCC (SEQ ID NO: 23)
















TABLE 4





LC, activation loop and HC Sequences for BoNT/A1(0)


















Nucleic acid sequence of BoNT/A1(0) LC
SEQ ID NO: 17



Activation loop
SEQ ID NO: 18



Nucleic acid sequence of BoNT/A1(0) HC
SEQ ID NO: 19










Next, the resulting pETDuet/LC vector and the amplified HC gene were digested with Xho1 (NEB #R0146S) and Nde (NEB #R0111S) and ligated together resulting in the desired final construct.


To test co-expression of BoNT/A1(0) the vector was transformed into Shuffle T7 ((NEB #C3026H), Shuffle T7 Express cells (NEB #C3029), BL21(DE3) (C25271) and Origami 2 cells (Merks #714083) as instructed and the resulting colonies were stored as microbank beads at −80° C. Note all cloning and transformation steps followed manufacturer's instructions.


For the expression, 100 ml of modified TB (mTB) (Melford #T1703) containing 50 μg/ml Ampicillin in 250 ml baffled flasks were set up for each of the overnight cultures. These were inoculated with one microbank bead for each of the cell lines and grown overnight at 30° C. for 20 hours while shaking at 225 rpm. The next day the main cultures were set up using 900 ml of mTB+50 μg/ml Ampicillin in 2.5 L baffled flasks which were inoculated with 10 ml of the overnight culture. Cell density was allowed to reach an OD600 of 1 by growing at 30° C. while shaking at 225 rpm. Once the desired OD was reached the temperature was allowed to drop to 16° C. (1 hour) before inducing with 1 mM IPTG (Sigma #I6758). Expression cultures were incubated at 16° C. for a further 20 hours prior to recovering cells at 6000 rpm for 30 minutes.


Recovered cells from the expressions were re-suspended with 6 ml/g using 25 mM Tris, 150 mM NaCl pH 8 and then soluble protein was extracted by one pass through a constant systems homogenisior at 20 Kpsi. Cell debris was removed by centrifugation at 12 000 rpm for 30 minutes and then the clarified lysate was assessed by Western blot (FIG. 1).


Briefly, clarified lysates were diluted 1:10 with either ThermoFishers NuPAGE® LDS Sample Buffer (4×) #NP0007+0.1 M DTT (Sigma) for the reduced samples or Novex® Tris-Glycine SDS Sample Buffer (2×) #LC2676 for the non-reduced samples. Following heating at 95° C. for 10 minutes, SDS PAGE electrophoresis was performed on these samples using 4-12% Bis Tris acrylamide gels. Proteins were transferred to 0.2 μM nitrocellulose membranes prior to blotting with polyclonal in-house antibodies raised against either the LC of BoNT/A1 or full length BoNT/A1—preference towards HC. Antibody binding was detected using an Anti-Rabbit IgG—Peroxidase antibody (Sigma #A0545-1ML) and visualized using Super Signal West Dura extended duration substrate.


The results presented in FIG. 1 show that a band of 150 kDa equating to full length BoNT/A1(0) is present in Samples 2, 3 and 5 (also sample 4 to a lesser degree) but is not seen in the negative control. The fact that the 150 kDa protein is no longer visible in the presence of DTT confirms this as the disulphide bond which has been reduced and now the LC can be seen at 50 kDa in FIG. 1A and the HC at 100 kDa in FIG. 1B.


These results confirm that intracellular formation of the BoNT/A1(0) disulphide bridge following co-expression of the light and heavy chains is feasible in all the strains and that minimal amounts of free LC are present when using expression strains containing an oxidative cytoplasm as compared when a strain with a reducing cytoplasm is used (BL21 (DE3)).


Example 2—Purification of BoNT/A1(0) Following Co-Expression of the Light and Heavy Chains in Shuffle T7 Cells

3 Litres of BoNT/A1(0) culture were again co-expressed in Shuffle T7 cells and lysed as detailed in example 1. The resultant full length BoNT/A1(0) was purified from clarified lysate using 3 chromatography steps as follows:


Step 1: Butyl HP

The clarified lysate was diluted in half by the addition of 25 mM Tris, 2 M (NH4)2SO4 pH 8 to bring the (NH4)2SO4 concentration up to 1 M. The sample was then loaded onto a pre equilibrated 10 ml Butyl HP column (2×5 ml HiTrap Butyl HP, GE Healthcare #28-4110-05) at 150 cm/hr. Following a 10 column volume (CV) wash using 25 mM Tris, 1 M (NH4)2SO4 pH 8, any bound proteins were eluted over a 25 CV linear gradient down to 25 mM Tris, 35 mM NaCl pH 8 collecting 5 ml fractions. Fractions were then analysed by SDS PAGE and those that contained the target toxin were pooled.


Step 2: Q HP

The Butyl HP pool was buffer exchanged into a low salt buffer so that it could be loaded onto a Q HP column. This was achieved by performing several runs of buffer exchange into 25 mM Tris, 20 mM NaCl pH 8 using a HiPrep26/10 desalting column (GE healthcare, #17-5087-01) and following manufacturer's instructions.


The sample was then loaded onto a pre equilibrated 4.7 ml HiScreen Q HP column (GE healthcare, #28-9505-11) at 75 cm/hr. Following a 5 CV wash with 25 mM Tris, 20 mM NaCl pH 8, bound proteins were eluted over a 25 CV linear gradient up to 25 mM Tris, 300 mM NaCl pH 8 collecting 2.5 ml fractions. Following analysis by SDS PAGE, the fractions containing target protein were pooled.


Step 3: Phenyl HP

The Q HP pool was conditioned for the Phenyl HP column by diluting the sample in half with 25 mM Tris, 2 M (NH4)2SO4 pH 8 to bring the (NH4)2SO4 up to 1 M. The sample was loaded onto a pre equilibrated 1 ml Phenyl HP (GE Healthcare #17-1351-01) column at 150 cm/hr and then the column was washed with 3 CV of 25 mM Tris, 1 M (NH4)2SO4 pH 8. Elution of bound proteins used a 25 CV linear gradient down to 25 mM Tris, 35 mM NaClpH 8 collecting 0.5 ml fractions. Following analysis by SDS PAGE, fractions containing the target protein were pooled resulting in the final product as shown in FIG. 2.


To be used as a control, single chain recombinant BoNT/A1(0) was also expressed and purified. To achieve this, BoNT/A1(0) (Table 4—LC+Activation loop+HC) was inserted into pJ401 so that it could be expressed as a single chain product using the BLR (DE3) E. coli expression strain (Novagen #69053).


For the expression, 100 ml of modified TB (mTB) (Melford #T1703) containing 30 μg/ml Kanamycin in 250 ml baffled flasks was set up for the overnight culture. This was inoculated with one microbank bead grown overnight at 37° C. for 20 hours shaking at 225 rpm. The next day the main cultures were set up using 15×1 L of mTB+30 μg/ml Kanamycin in 2.5 L baffled flasks which were each inoculated with 10 ml of the overnight culture. Cell density was allowed to reach an OD600 of 0.5 by growing at 37° C. while shaking at 225 rpm. Once the desired OD was reached the temperature was allowed to drop to 16° C. (1 hour) before inducing with 1 mM IPTG (Sigma #I6758). Expression cultures were incubated at 16° C. for a further 20 hours prior to recovering cells at 5000 rpm for 20 minutes.


Recovered cells were lysed and toxin purified as with the Co-expressed BoNT/A1(0). The only 2 differences were that the purification was performed at a larger scale and also required an activation step between the 2nd and 3rd columns:


200 ml Butyl HP->53 ml Q HP->Activation (See below)->10 ml Phenyl HP


Activation stage—The Q HP pool (0.46 mg/ml by A280) was incubated with 92 μg (0.8 μg Lys-C/ml of sample) of Lys-C(Sigma #P2289) at 4° C. for 20 hours. Following activation the sample was immediately diluted in half with 25 mM Tris pH 8, 2 M (NH4)2SO4 so that it could be loaded onto the Phenyl HP, purification was then continued as with Example 1.


The two final products resulting from the Phenyl HP column were assessed by SDS-PAGE (FIG. 2). Briefly, the Phenyl HP pool containing Co-expressed and single-chain expressed BoNT/A1(0) was diluted to 0.1 mg/ml with either ThermoFishers NuPAGE® LDS Sample Buffer (4×) #NP0007+0.1 M DTT (Sigma) for the reduced samples or Novex® Tris-Glycine SDS Sample Buffer (2×) #LC2676 for the non-reduced samples. Single-chain expressed BoNT/A1(0) purified using the same process including the additional activation stage was used as the control. Prepared SDS samples were heated at 95° C. for 10 minutes, SDS PAGE electrophoresis was performed on these samples using 4-12% Bis Tris acrylamide gels. Staining used SimplyBlue SafeStain (Thermo fisher #LC6065) for one hour and then destained overnight.


The results shown in FIG. 2 confirm that purification was successful with co-expressed BoNT/A1(0) behaving in the same manner as single-chain expressed BoNT/A1(0) suggesting correct folding.


The purified samples were also compared on the optim which is a device that measures Intrinsic florescence and Light scattering giving an indication on folding and stability (FIG. 3) and Size exclusion chromatography (SEC) for size and aggregation profile (FIG. 4).


The Optim results show that Co-expressed BoNT A1(0) and single-chain expressed BoNT/A1(0) have very similar transition points in BCM, SLS at 266 and 473 nm which are readouts for melting temperature and small and large particle aggregation respectively.


The SEC results shows that Co-expressed BoNT A1(0) and single-chain expressed BoNT/A1(0) have identical monomer peaks with minimal aggregation in both.


Example 3—Co-Expression of BoNT/A1 and Glutamate Release Assay to Confirm Activity

Primers were designed to mutate two residues (Q224E/Y227H) within the LC domain (SEQ ID NO 17) of the BoNT/A1(0) pETDUET co-expression vector, in order to restore zinc-binding essential to the proteolytic activity of this domain. The resulting pETDUET vector will co-express active BoNT/A1 LC and HC, therefore allowing confirmation of potency in a cell-based system. The mutations were introduced using quick change lightning mutagenesis (#210514—Agilent technologies) following manufacturer's instructions.


The resulting vector was transformed into Shuffle T7 cells and expression/purification were performed as described in Example 1—co-expression of BoNT/A1(0) and Example 2—purification of co-expressed BoNT/A1(0). Note, that this molecule only required the first two chromatography columns, Butyl HP and Q HP as it does not require an activation step.


Co-expressed full length BoNT/A1 was then tested on the Rat Ctx Glutamate Release assay which will confirm translocation and snare cleavage by inhibition of glutamate release as a result of BoNT activity. Commercial native BoNT/A1 (LIST biological laboratories) was used as a control against the co-expressed BoNT/A1.


The glutamate release assay showed that co-expressed BoNT/A1 inhibits glutamate release with potency comparable to that of the native BoNT/A. This therefore demonstrates that co-expression is a viable method for production of fully active di-chain clostridial neurotoxin capable of performing all required steps for intoxication (binding and internalisation at the neuronal endplate, translocation of the light chain from the endosome into the cytoplasm and proteolytic cleavage of the target SNARE protein).










SEQUENCES



BoNT/A1, accession number A5HZZ9, amino acid sequence.


SEQ ID NO: 1



MPFVNKQFNYKDPVNGVDIAYIKIPNAGQMQPVKAFKIHNKIWVIPERDTFTNP






EEGDLNPPPEAKQVPVSYYDSTYLSTDNEKDNYLKGVTKLFERIYSTDLGRMLL





TSIVRGIPFWGGSTIDTELKVIDTNCINVIQPDGSYRSEELNLVIIGPSADIIQFECK





SFGHEVLNLTRNGYGSTQYIRFSPDFTFGFEESLEVDTNPLLGAGKFATDPAVTL





AHELIHAGHRLYGIAINPNRVFKVNTNAYYEMSGLEVSFEELRTFGGHDAKFID





SLQENEFRLYYYNKFKDIASTLNKAKSIVGTTASLQYMKNVFKEKYLLSEDTSG





KFSVDKLKFDKLYKMLTEIYTEDNFVKFFKVLNRKTYLNFDKAVFKINIVPKVN





YTIYDGFNLRNTNLAANFNGQNTEINNMNFTKLKNFTGLFEFYKLLCVRGIITS





KTKSLDKGYNKALNDLCIKVNNWDLFFSPSEDNFTNDLNKGEEITSDTNIEAAE





ENISLDLIQQYYLTFNFDNEPENISIENLSSDIIGQLELMPNIERFPNGKKYELDKY





TMFHYLRAQEFEHGKSRIALTNSVNEALLNPSRVYTFFSSDYVKKVNKATEAA





MFLGWVEQLVYDFTDETSEVSTTDKIADITIIIPYIGPALNIGNMLYKDDFVGALI





FSGAVILLEFIPEIAIPVLGTFALVSYIANKVLTVQTIDNALSKRNEKWDEVYKYI





VTNWLAKVNTQIDLIRKKMKEALENQAEATKAIINYQYNQYTEEEKNNINFNID





DLSSKLNESINKAMININKFLNQCSVSYLMNSMIPYGVKRLEDFDASLKDALLK





YIYDNRGTLIGQVDRLKDKVNNTLSTDIPFQLSKYVDNQRLLSTFTEYIKNIINTS





ILNLRYESNHLIDLSRYASKINIGSKVNFDPIDKNQIQLFNLESSKIEVILKNAIVY





NSMYENFSTSFWIRIPKYFNSISLNNEYTIINCMENNSGWKVSLNYGEIIWTLQD





TQEIKQRVVFKYSQMINISDYINRWIFVTITNNRLNNSKIYINGRLIDQKPISNLG





NIHASNNIMFKLDGCRDTHRYIWIKYFNLFDKELNEKEIKDLYDNQSNSGILKD





FWGDYLQYDKPYYMLNLYDPNKYVDVNNVGIRGYMYLKGPRGSVMTTNIYL





NSSLYRGTKFIIKKYASGNKDNIVRNNDRVYINVVVKNKEYRLATNASQAGVE





KILSALEIPDVGNLSQVVVMKSKNDQGITNKCKMNLQDNNGNDIGFIGFHQFN





NIAKLVASNWYNRQIERSSRTLGCSWEFIPVDDGWGERPL.





BoNT/B1, accession number B1INP5, amino acid sequence.


SEQ ID NO: 2



MPVTINNFNYNDPIDNNNIIMMEPPFARGTGRYYKAFKITDRIWIIPERYTFGYK






PEDFNKSSGIFNRDVCEYYDPDYLNTNDKKNIFLQTMIKLFNRIKSKPLGEKLLE





MIINGIPYLGDRRVPLEEFNTNIASVTVNKLISNPGEVERKKGIFANLIIFGPGPVL





NENETIDIGIQNHFASREGFGGIMQMKFCPEYVSVFNNVQENKGASIFNRRGYFS





DPALILMHELIHVLHGLYGIKVDDLPIVPNEKKFFMQSTDAIQAEELYTFGGQDP





SIITPSTDKSIYDKVLQNFRGIVDRLNKVLVCISDPNININIYKNKFKDKYKFVED





SEGKYSIDVESFDKLYKSLMFGFTETNIAENYKIKTRASYFSDSLPPVKIKNLLD





NEIYTIEEGFNISDKDMEKEYRGQNKAINKQAYEEISKEHLAVYKIQMCKSVKA





PGICIDVDNEDLFFIADKNSFSDDLSKNERIEYNTQSNYIENDFPINELILDTDLIS





KIELPSENTESLTDFNVDVPVYEKQPAIKKIFTDENTIFQYLYSQTFPLDIRDISLT





SSFDDALLFSNKVYSFFSMDYIKTANKVVEAGLFAGWVKQIVNDFVIEANKSN





TMDKIADISLIVPYIGLALNVGNETAKGNFENAFEIAGASILLEFIPELLIPVVGAF





LLESYIDNKNKIIKTIDNALTKRNEKWSDMYGLIVAQWLSTVNTQFYTIKEGMY





KALNYQAQALEEIIKYRYNIYSEKEKSNINIDFNDINSKLNEGINQAIDNINNFIN





GCSVSYLMKKMIPLAVEKLLDFDNTLKKNLLNYIDENKLYLIGSAEYEKSKVN





KYLKTIMPFDLSIYTNDTILIEMFNKYNSEILNNIILNLRYKDNNLIDLSGYGAKV





EVYDGVELNDKNQFKLTSSANSKIRVTQNQNIIFNSVFLDFSVSFWIRIPKYKND





GIQNYIHNEYTIINCMKNNSGWKISIRGNRIIWTLIDINGKTKSVFFEYNIREDISE





YINRWFFVTITNNLNNAKIYINGKLESNTDIKDIREVIANGEIIFKLDGDIDRTQFI





WMKYFSIFNTELSQSNIEERYKIQSYSEYLKDFWGNPLMYNKEYYMFNAGNKN





SYIKLKKDSPVGEILTRSKYNQNSKYINYRDLYIGEKFIIRRKSNSQSINDDIVRK





EDYIYLDFFNLNQEWRVYTYKYFKKEEEKLFLAPISDSDEFYNTIQIKEYDEQPT





YSCQLLFKKDEESTDEIGLIGIHRFYESGIVFEEYKDYFCISKWYLKEVKRKPYN





LKLGCNWQFIPKDEGWTE.





BoNT/C1, accession number P18640, amino acid sequence.


SEQ ID NO: 3



MPITINNFNYSDPVDNKNILYLDTHLNTLANEPEKAFRITGNIWVIPDRFSRNSNP






NLNKPPRVTSPKSGYYDPNYLSTDSDKDPFLKEIIKLFKRINSREIGEELIYRLSTD





IPFPGNNNTPINTFDFDVDFNSVDVKTRQGNNWVKTGSINPSVIITGPRENIIDPE





TSTFKLTNNTFAAQEGFGALSIISISPRFMLTYSNATNDVGEGRFSKSEFCMDPIL





ILMHELNHAMHNLYGIAIPNDQTISSVTSNIFYSQYNVKLEYAEIYAFGGPTIDLI





PKSARKYFEEKALDYYRSIAKRLNSITTANPSSFNKYIGEYKQKLIRKYRFVVES





SGEVTVNRNKFVELYNELTQIFTEFNYAKIYNVQNRKIYLSNVYTPVTANILDD





NVYDIQNGENIPKSNLNVLFMGQNLSRNPALRKVNPENMLYLFTKFCHKAIDG





RSLYNKTLDCRELLVKNTDLPFIGDISDVKTDIFLRKDINEETEVIYYPDNVSVD





QVILSKNTSEHGQLDLLYPSIDSESEILPGENQVFYDNRTQNVDYLNSYYYLESQ





KLSDNVEDFTFTRSIEEALDNSAKVYTYFPTLANKVNAGVQGGLFLMWANDV





VEDFTTNILRKDTLDKISDVSAIIPYIGPALNISNSVRRGNFTEAFAVTGVTILLEA





FPEFTIPALGAFVIYSKVQERNEIIKTIDNCLEQRIKRWKDSYEWMMGTWLSRIIT





QFNNISYQMYDSLNYQAGAIKAKIDLEYKKYSGSDKENIKSQVENLKNSLDVKI





SEAMNNINKFIRECSVTYLFKNMLPKVIDELNEFDRNTKAKLINLIDSHNIILVGE





VDKLKAKVNNSFQNTIPFNIFSYTNNSLLKDIINEYFNNINDSKILSLQNRKNTLV





DTSGYNAEVSEEGDVQLNPIFPFDFKLGSSGEDRGKVIVTQNENIVYNSMYESFS





ISFWIRINKWVSNLPGYTIIDSVKNNSGWSIGIISNFLVFTLKQNEDSEQSINFSYD





ISNNAPGYNKWFFVTVTNNMMGNMKIYINGKLIDTIKVKELTGINFSKTITFEIN





KIPDTGLITSDSDNINMWIRDFYIFAKELDGKDINILFNSLQYTNVVKDYWGNDL





RYNKEYYMVNIDYLNRYMYANSRQIVFNTRRNNNDFNEGYKIIIKRIRGNTND





TRVRGGDILYFDMTINNKAYNLFMKNETMYADNHSTEDIYAIGLREQTKDIND





NIIFQIQPMNNTYYYASQIFKSNFNGENISGICSIGTYRFRLGGDWYRHNYLVPT





VKQGNYASLLESTSTHWGFVPVSE.





BoNT/D, accession number P19321, amino acid sequence.


SEQ ID NO: 4



MTWPVKDFNYSDPVNDNDILYLRIPQNKLITTPVKAFMITQNIWVIPERFSSDTN






PSLSKPPRPTSKYQSYYDPSYLSTDEQKDTFLKGIIKLFKRINERDIGKKLINYLV





VGSPFMGDSSTPEDTFDFTRHTTNIAVEKFENGSWKVTNIITPSVLIFGPLPNILD





YTASLTLQGQQSNPSFEGFGTLSILKVAPEFLLTFSDVTSNQSSAVLGKSIFCMDP





VIALMHELTHSLHQLYGINIPSDKRIRPQVSEGFFSQDGPNVQFEELYTFGGLDV





EIIPQIERSQLREKALGHYKDIAKRLNNINKTIPSSWISNIDKYKKIFSEKYNFDKD





NTGNEVVNIDKENSLYSDLTNVMSEVVYSSQYNVKNRTHYFSRHYLPVFANIL





DDNIYTIRDGFNLTNKGFNIENSGQNIERNPALQKLSSESVVDLFTKVCLRLTKN





SRDDSTCIKVKNNRLPYVADKDSISQEIFENKIITDETNVQNYSDKFSLDESILDG





QVPINPEIVDPLLPNVNMEPLNLPGEEIVFYDDITKYVDYLNSYYYLESQKLSNN





VENITLTTSVEEALGYSNKIYTFLPSLAEKVNKGVQAGLFLNWANEVVEDFTTN





IMKKDTLDKISDVSVIIPYIGPALNIGNSALRGNFNQAFATAGVAFLLEGFPEFTI





PALGVFTFYSSIQEREKIIKTIENCLEQRVKRWKDSYQWMVSNWLSRITTQFNHI





NYQMYDSLSYQADAIKAKIDLEYKKYSGSDKENIKSQVENLKNSLDVKISEAM





NNINKFIRECSVTYLFKNMLPKVIDELNKFDLRTKTELINLIDSHNIILVGEVDRL





KAKVNESFENTMPFNIFSYTNNSLLKDIINEYFNSINDSKILSLQNKKNALVDTS





GYNAEVRVGDNVQLNTIYTNDFKLSSSGDKIIVNLNNNILYSAIYENSSVSFWIK





ISKDLTNSHNEYTIINSIEQNSGWKLCIRNGNIEWILQDVNRKYKSLIFDYSESLS





HTGYTNKWFFVTITNNIMGYMKLYINGELKQSQKIEDLDEVKLDKTIVFGIDEN





IDENQMLWIRDFNIFSKELSNEDINIVYEGQILRNVIKDYWGNPLKFDTEYYIIND





NYIDRYIAPESNVLVLVQYPDRSKLYTGNPITIKSVSDKNPYSRILNGDNIILHML





YNSRKYMIIRDTDTIYATQGGECSQNCVYALKLQSNLGNYGIGIFSIKNIVSKNK





YCSQIFSSFRENTMLLADIYKPWRFSFKNAYTPVAVTNYETKLLSTSSFWKFISR





DPGWVE.





BoNT/E1, accession number WP_003372387, amino acid sequence.


SEQ ID NO: 5



MPKINSFNYNDPVNDRTILYIKPGGCQEFYKSFNIMKNIWIIPERNVIGTTPQDFH






PPTSLKNGDSSYYDPNYLQSDEEKDRFLKIVTKIFNRINNNLSGGILLEELSKANP





YLGNDNTPDNQFHIGDASAVEIKFSNGSQDILLPNVIIMGAEPDLFETNSSNISLR





NNYMPSNHGFGSIAIVTFSPEYSFRFNDNSMNEFIQDPALTLMHELIHSLHGLYG





AKGITTKYTITQKQNPLITNIRGTNIEEFLTFGGTDLNIITSAQSNDIYTNLLADYK





KIASKLSKVQVSNPLLNPYKDVFEAKYGLDKDASGIYSVNINKFNDIFKKLYSFT





EFDLATKFQVKCRQTYIGQYKYFKLSNLLNDSIYNISEGYNINNLKVNFRGQNA





NLNPRIITPITGRGLVKKIIRFCKNIVSVKGIRKSICIEINNGELFFVASENSYNDDN





INTPKEIDDTVTSNNNYENDLDQVILNFNSESAPGLSDEKLNLTIQNDAYIPKYD





SNGTSDIEQHDVNELNVFFYLDAQKVPEGENNVNLTSSIDTALLEQPKIYTFFSS





EFINNVNKPVQAALFVSWIQQVLVDFTTEANQKSTVDKIADISIVVPYIGLALNI





GNEAQKGNFKDALELLGAGILLEFEPELLIPTILVFTIKSFLGSSDNKNKVIKAIN





NALKERDEKWKEVYSFIVSNWMTKINTQFNKRKEQMYQALQNQVNAIKTIIES





KYNSYTLEEKNELTNKYDIKQIENELNQKVSIAMNNIDRFLTESSISYLMKLINE





VKINKLREYDENVKTYLLNYIIQHGSILGESQQELNSMVTDTLNNSIPFKLSSYT





DDKILISYFNKFFKRIKSSSVLNMRYKNDKYVDTSGYDSNININGDVYKYPTNK





NQFGIYNDKLSEVNISQNDYIIYDNKYKNFSISFWVRIPNYDNKIVNVNNEYTIIN





CMRDNNSGWKVSLNHNEIIWTLQDNAGINQKLAFNYGNANGISDYINKWIFVT





ITNDRLGDSKLYINGNLIDQKSILNLGNIHVSDNILFKIVNCSYTRYIGIRYFNIFD





KELDETEIQTLYSNEPNTNILKDFWGNYLLYDKEYYLLNVLKPNNFIDRRKDST





LSINNIRSTILLANRLYSGIKVKIQRVNNSSTNDNLVRKNDQVYINFVASKTHLFP





LYADTATTNKEKTIKISSSGNRFNQVVVMNSVGNNCTMNFKNNNGNNIGLLGF





KADTVVASTWYYTHMRDHTNSNGCFWNFISEEHGWQEK.





BoNT/F1, accession number Q57236, amino acid sequence.


SEQ ID NO: 6



MPVVINSFNYNDPVNDDTILYMQIPYEEKSKKYYKAFEIMRNVWIIPERNTIGTD






PSDFDPPASLENGSSAYYDPNYLTTDAEKDRYLKTTIKLFKRINSNPAGEVLLQE





ISYAKPYLGNEHTPINEFHPVTRTTSVNIKSSTNVKSSIILNLLVLGAGPDIFENSS





YPVRKLMDSGGVYDPSNDGFGSINIVTFSPEYEYTFNDISGGYNSSTESFIADPAI





SLAHELIHALHGLYGARGVTYKETIKVKQAPLMIAEKPIRLEEFLTFGGQDLNII





TSAMKEKIYNNLLANYEKIATRLSRVNSAPPEYDINEYKDYFQWKYGLDKNAD





GSYTVNENKFNEIYKKLYSFTEIDLANKFKVKCRNTYFIKYGFLKVPNLLDDDI





YTVSEGFNIGNLAVNNRGQNIKLNPKIIDSIPDKGLVEKIVKFCKSVIPRKGTKAP





PRLCIRVNNRELFFVASESSYNENDINTPKEIDDTTNLNNNYRNNLDEVILDYNS





ETIPQISNQTLNTLVQDDSYVPRYDSNGTSEIEEHNVVDLNVFFYLHAQKVPEG





ETNISLTSSIDTALSEESQVYTFFSSEFINTINKPVHAALFISWINQVIRDFTTEATQ





KSTFDKIADISLVVPYVGLALNIGNEVQKENFKEAFELLGAGILLEFVPELLIPTIL





VFTIKSFIGSSENKNKIIKAINNSLMERETKWKEIYSWIVSNWLTRINTQFNKRKE





QMYQALQNQVDAIKTVIEYKYNNYTSDERNRLESEYNINNIREELNKKVSLAM





ENIERFITESSIFYLMKLINEAKVSKLREYDEGVKEYLLDYISEHRSILGNSVQEL





NDLVTSTLNNSIPFELSSYTNDKILILYFNKLYKKIKDNSILDMRYENNKFIDISG





YGSNISINGDVYIYSTNRNQFGIYSSKPSEVNIAQNNDIIYNGRYQNFSISFWVRIP





KYFNKVNLNNEYTIIDCIRNNNSGWKISLNYNKIIWTLQDTAGNNQKLVFNYTQ





MISISDYINKWIFVTITNNRLGNSRIYINGNLIDEKSISNLGDIHVSDNILFKIVGCN





DTRYVGIRYFKVFDTELGKTEIETLYSDEPDPSILKDFWGNYLLYNKRYYLLNL





LRTDKSITQNSNFLNINQQRGVYQKPNIFSNTRLYTGVEVIIRKNGSTDISNTDNF





VRKNDLAYINVVDRDVEYRLYADISIAKPEKIIKLIRTSNSNNSLGQIIVMDSIGN





NCTMNFQNNNGGNIGLLGFHSNNLVASSWYYNNIRKNTSSNGCFWSFISKEHG





WQEN.





BoNT/G, accession number WP_039635782, amino acid sequence.


SEQ ID NO: 7



MPVNIKNFNYNDPINNDDIIMMEPFNDPGPGTYYKAFRIIDRIWIVPERFTYGFQ






PDQFNASTGVFSKDVYEYYDPTYLKTDAEKDKFLKTMIKLFNRINSKPSGQRLL





DMIVDAIPYLGNASTPPDKFAANVANVSINKKIIQPGAEDQIKGLMTNLIIFGPGP





VLSDNFTDSMIMNGHSPISEGFGARMMIRFCPSCLNVFNNVQENKDTSIFSRRA





YFADPALTLMHELIHVLHGLYGIKISNLPITPNTKEFFMQHSDPVQAEELYTFGG





HDPSVISPSTDMNIYNKALQNFQDIANRLNIVSSAQGSGIDISLYKQIYKNKYDF





VEDPNGKYSVDKDKFDKLYKALMFGFTETNLAGEYGIKTRYSYFSEYLPPIKTE





KLLDNTIYTQNEGFNIASKNLKTEFNGQNKAVNKEAYEEISLEHLVIYRIAMCK





PVMYKNTGKSEQCIIVNNEDLFFIANKDSFSKDLAKAETIAYNTQNNTIENNFSI





DQLILDNDLSSGIDLPNENTEPFTNFDDIDIPVYIKQSALKKIFVDGDSLFEYLHA





QTFPSNIENLQLTNSLNDALRNNNKVYTFFSTNLVEKANTVVGASLFVNWVKG





VIDDFTSESTQKSTIDKVSDVSIIIPYIGPALNVGNETAKENFKNAFEIGGAAILME





FIPELIVPIVGFFTLESYVGNKGHIIMTISNALKKRDQKWTDMYGLIVSQWLSTV





NTQFYTIKERMYNALNNQSQAIEKIIEDQYNRYSEEDKMNINIDFNDIDFKLNQS





INLAINNIDDFINQCSISYLMNRMIPLAVKKLKDFDDNLKRDLLEYIDTNELYLL





DEVNILKSKVNRHLKDSIPFDLSLYTKDTILIQVFNNYISNISSNAILSLSYRGGRL





IDSSGYGATMNVGSDVIFNDIGNGQFKLNNSENSNITAHQSKFVVYDSMFDNFS





INFWVRTPKYNNNDIQTYLQNEYTIISCIKNDSGWKVSIKGNRIIWTLIDVNAKS





KSIFFEYSIKDNISDYINKWFSITITNDRLGNANIYINGSLKKSEKILNLDRINSSND





IDFKLINCTDTTKFVWIKDFNIFGRELNATEVSSLYWIQSSTNTLKDFWGNPLRY





DTQYYLFNQGMQNIYIKYFSKASMGETAPRTNFNNAAINYQNLYLGLRFIIKKA





SNSRNINNDNIVREGDYIYLNIDNISDESYRVYVLVNSKEIQTQLFLAPINDDPTF





YDVLQIKKYYEKTTYNCQILCEKDTKTFGLFGIGKFVKDYGYVWDTYDNYFCI





SQWYLRRISENINKLRLGCNWQFIPVDEGWTE.





TeNT, accession number P04958, amino acid sequence.


SEQ ID NO: 8



MPITINNFRYSDPVNNDTIIMMEPPYCKGLDIYYKAFKITDRIWIVPERYEFGTKP






EDFNPPSSLIEGASEYYDPNYLRTDSDKDRFLQTMVKLFNRIKNNVAGEALLDK





IINAIPYLGNSYSLLDKFDTNSNSVSFNLLEQDPSGATTKSAMLTNLIIFGPGPVL





NKNEVRGIVLRVDNKNYFPCRDGFGSIMQMAFCPEYVPTFDNVIENITSLTIGKS





KYFQDPALLLMHELIHVLHGLYGMQVSSHEIIPSKQEIYMQHTYPISAEELFTFG





GQDANLISIDIKNDLYEKTLNDYKAIANKLSQVTSCNDPNIDIDSYKQIYQQKYQ





FDKDSNGQYIVNEDKFQILYNSIMYGFTEIELGKKFNIKTRLSYFSMNHDPVKIP





NLLDDTIYNDTEGFNIESKDLKSEYKGQNMRVNTNAFRNVDGSGLVSKLIGLC





KKIIPPTNIRENLYNRTASLTDLGGELCIKIKNEDLTFIAEKNSFSEEPFQDEIVSY





NTKNKPLNFNYSLDKIIVDYNLQSKITLPNDRTTPVTKGIPYAPEYKSNAASTIEI





HNIDDNTIYQYLYAQKSPTTLQRITMTNSVDDALINSTKIYSYFPSVISKVNQGA





QGILFLQWVRDIIDDFTNESSQKTTIDKISDVSTIVPYIGPALNIVKQGYEGNFIGA





LETTGVVLLLEYIPEITLPVIAALSIAESSTQKEKIIKTIDNFLEKRYEKWIEVYKL





VKAKWLGTVNTQFQKRSYQMYRSLEYQVDAIKKIIDYEYKIYSGPDKEQIADEI





NNLKNKLEEKANKAMININIFMRESSRSFLVNQMINEAKKQLLEFDTQSKNILM





QYIKANSKFIGITELKKLESKINKVFSTPIPFSYSKNLDCWVDNEEDIDVILKKSTI





LNLDINNDIISDISGFNSSVITYPDAQLVPGINGKAIHLVNNESSEVIVHKAMDIE





YNDMFNNFTVSFWLRVPKVSASHLEQYGTNEYSIISSMKKHSLSIGSGWSVSLK





GNNLIWTLKDSAGEVRQITFRDLPDKFNAYLANKWVFITITNDRLSSANLYING





VLMGSAEITGLGAIREDNNITLKLDRCNNNNQYVSIDKFRIFCKALNPKEIEKLY





TSYLSITFLRDFWGNPLRYDTEYYLIPVASSSKDVQLKNITDYMYLTNAPSYTN





GKLNIYYRRLYNGLKFIIKRYTPNNEIDSFVKSGDFIKLYVSYNNNEHIVGYPKD





GNAFNNLDRILRVGYNAPGIPLYKKMEAVKLRDLKTYSVQLKLYDDKNASLG





LVGTHNGQIGNDPNRDILIASNWYFNHLKDKILGCDWYFVPTDEGWTND.





BoNT/A1, DNA.


SEQ ID NO: 9










ATGCCATTTG TTAATAAACA ATTTAATTAT AAAGATCCTG TAAATGGTGT TGATATTGCT
60






TATATAAAAA TTCCAAATGC AGGACAAATG CAACCAGTAA AAGCTTTTAA AATTCATAAT
120





AAAATATGGG TTATTCCAGA AAGAGATACA TTTACAAATC CTGAAGAAGG AGATTTAAAT
180





CCACCACCAG AAGCAAAACA AGTTCCAGTT TCATATTATG ATTCAACATA TTTAAGTACA
240





GATAATGAAA AAGATAATTA TTTAAAGGGA GTTACAAAAT TATTTGAGAG AATTTATTCA
300





ACTGATCTTG GAAGAATGTT GTTAACATCA ATAGTAAGGG GAATACCATT TTGGGGTGGA
360





AGTACAATAG ATACAGAATT AAAAGTTATT GATACTAATT GTATTAATGT GATACAACCA
420





GATGGTAGTT ATAGATCAGA AGAACTTAAT CTAGTAATAA TAGGACCCTC AGCTGATATT
480





ATACAGTTTG AATGTAAAAG CTTTGGACAT GAAGTTTTGA ATCTTACGCG AAATGGTTAT
540





GGCTCTACTC AATACATTAG ATTTAGCCCA GATTTTACAT TTGGTTTTGA GGAGTCACTT
600





GAAGTTGATA CAAATCCTCT TTTAGGTGCA GGCAAATTTG CTACAGATCC AGCAGTAACA
660





TTAGCACATG AACTTATACA TGCTGGACAT AGATTATATG GAATAGCAAT TAATCCAAAT
720





AGGGTTTTTA AAGTAAATAC TAATGCCTAT TATGAAATGA GTGGGTTAGA AGTAAGCTTT
780





GAGGAACTTA GAACATTTGG GGGACATGAT GCAAAGTTTA TAGATAGTTT ACAGGAAAAC
840





GAATTTCGTC TATATTATTA TAATAAGTTT AAAGATATAG CAAGTACACT TAATAAAGCT
900





AAATCAATAG TAGGTACTAC TGCTTCATTA CAGTATATGA AAAATGTTTT TAAAGAGAAA
960





TATCTCCTAT CTGAAGATAC ATCTGGAAAA TTTTCGGTAG ATAAATTAAA ATTTGATAAG
1020





TTATACAAAA TGTTAACAGA GATTTACACA GAGGATAATT TTGTTAAGTT TTTTAAAGTA
1080





CTTAACAGAA AAACATATTT GAATTTTGAT AAAGCCGTAT TTAAGATAAA TATAGTACCT
1140





AAGGTAAATT ACACAATATA TGATGGATTT AATTTAAGAA ATACAAATTT AGCAGCAAAC
1200





TTTAATGGTC AAAATACAGA AATTAATAAT ATGAATTTTA CTAAACTAAA AAATTTTACT
1260





GGATTGTTTG AATTTTATAA GTTGCTATGT GTAAGAGGGA TAATAACTTC TAAAACTAAA
1320





TCATTAGATA AAGGATACAA TAAGGCATTA AATGATTTAT GTATCAAAGT TAATAATTGG
1380





GACTTGTTTT TTAGTCCTTC AGAAGATAAT TTTACTAATG ATCTAAATAA AGGAGAAGAA
1440





ATTACATCTG ATACTAATAT AGAAGCAGCA GAAGAAAATA TTAGTTTAGA TTTAATACAA
1500





CAATATTATT TAACCTTTAA TTTTGATAAT GAACCTGAAA ATATTTCAAT AGAAAATCTT
1560





TCAAGTGACA TTATAGGCCA ATTAGAACTT ATGCCTAATA TAGAAAGATT TCCTAATGGA
1620





AAAAAGTATG AGTTAGATAA ATATACTATG TTCCATTATC TTCGTGCTCA AGAATTTGAA
1680





CATGGTAAAT CTAGGATTGC TTTAACAAAT TCTGTTAACG AAGCATTATT AAATCCTAGT
1740





CGTGTTTATA CATTTTTTTC TTCAGACTAT GTAAAGAAAG TTAATAAAGC TACGGAGGCA
1800





GCTATGTTTT TAGGCTGGGT AGAACAATTA GTATATGATT TTACCGATGA AACTAGCGAA
1860





GTAAGTACTA CGGATAAAAT TGCGGATATA ACTATAATTA TTCCATATAT AGGACCTGCT
1920





TTAAATATAG GTAATATGTT ATATAAAGAT GATTTTGTAG GTGCTTTAAT ATTTTCAGGA
1980





GCTGTTATTC TGTTAGAATT TATACCAGAG ATTGCAATAC CTGTATTAGG TACTTTTGCA
2040





CTTGTATCAT ATATTGCGAA TAAGGTTCTA ACCGTTCAAA CAATAGATAA TGCTTTAAGT
2100





AAAAGAAATG AAAAATGGGA TGAGGTCTAT AAATATATAG TAACAAATTG GTTAGCAAAG
2160





GTTAATACAC AGATTGATCT AATAAGAAAA AAAATGAAAG AAGCTTTAGA AAATCAAGCA
2220





GAAGCAACAA AGGCTATAAT AAACTATCAG TATAATCAAT ATACTGAGGA AGAGAAAAAT
2280





AATATTAATT TTAATATTGA TGATTTAAGT TCGAAACTTA ATGAGTCTAT AAATAAAGCT
2340





ATGATTAATA TAAATAAATT TTTGAATCAA TGCTCTGTTT CATATTTAAT GAATTCTATG
2400





ATCCCTTATG GTGTTAAACG GTTAGAAGAT TTTGATGCTA GTCTTAAAGA TGCATTATTA
2460





AAGTATATAT ATGATAATAG AGGAACTTTA ATTGGTCAAG TAGATAGATT AAAAGATAAA
2520





GTTAATAATA CACTTAGTAC AGATATACCT TTTCAGCTTT CCAAATACGT AGATAATCAA
2580





AGATTATTAT CTACATTTAC TGAATATATT AAGAATATTA TTAATACTTC TATATTGAAT
2640





TTAAGATATG AAAGTAATCA TTTAATAGAC TTATCTAGGT ATGCATCAAA AATAAATATT
2700





GGTAGTAAAG TAAATTTTGA TCCAATAGAT AAAAATCAAA TTCAATTATT TAATTTAGAA
2760





AGTAGTAAAA TTGAGGTAAT TTTAAAAAAT GCTATTGTAT ATAATAGTAT GTATGAAAAT
2820





TTTAGTACTA GCTTTTGGAT AAGAATTCCT AAGTATTTTA ACAGTATAAG TCTAAATAAT
2880





GAATATACAA TAATAAATTG TATGGAAAAT AATTCAGGAT GGAAAGTATC ACTTAATTAT
2940





GGTGAAATAA TCTGGACTTT ACAGGATACT CAGGAAATAA AACAAAGAGT AGTTTTTAAA
3000





TACAGTCAAA TGATTAATAT ATCAGATTAT ATAAACAGAT GGATTTTTGT AACTATCACT
3060





AATAATAGAT TAAATAACTC TAAAATTTAT ATAAATGGAA GATTAATAGA TCAAAAACCA
3120





ATTTCAAATT TAGGTAATAT TCATGCTAGT AATAATATAA TGTTTAAATT AGATGGTTGT
3180





AGAGATACAC ATAGATATAT TTGGATAAAA TATTTTAATC TTTTTGATAA GGAATTAAAT
3240





GAAAAAGAAA TCAAAGATTT ATATGATAAT CAATCAAATT CAGGTATTTT AAAAGACTTT
3300





TGGGGTGATT ATTTACAATA TGATAAACCA TACTATATGT TAAATTTATA TGATCCAAAT
3360





AAATATGTCG ATGTAAATAA TGTAGGTATT AGAGGTTATA TGTATCTTAA AGGGCCTAGA
3420





GGTAGCGTAA TGACTACAAA CATTTATTTA AATTCAAGTT TGTATAGGGG GACAAAATTT
3480





ATTATAAAAA AATATGCTTC TGGAAATAAA GATAATATTG TTAGAAATAA TGATCGTGTA
3540





TATATTAATG TAGTAGTTAA AAATAAAGAA TATAGGTTAG CTACTAATGC ATCACAGGCA
3600





GGCGTAGAAA AAATACTAAG TGCATTAGAA ATACCTGATG TAGGAAATCT AAGTCAAGTA
3660





GTAGTAATGA AGTCAAAAAA TGATCAAGGA ATAACAAATA AATGCAAAAT GAATTTACAA
3720





GATAATAATG GGAATGATAT AGGCTTTATA GGATTTCATC AGTTTAATAA TATAGCTAAA
3780





CTAGTAGCAA GTAATTGGTA TAATAGACAA ATAGAAAGAT CTAGTAGGAC TTTGGGTTGC
3840





TCATGGGAAT TTATTCCTGT AGATGATGGA TGGGGAGAAA GGCCACTGTA A.
3891











BoNVB1, DNA.



SEQ ID NO: 10










ATGCCAGTTA CAATAAATAA TTTTAATTAT AATGATCCTA TTGATAATAA TAATATTATT
60






ATGATGGAGC CTCCATTTGC GAGAGGTACG GGGAGATATT ATAAAGCTTT TAAAATCACA
120





GATCGTATTT GGATAATACC GGAAAGATAT ACTTTTGGAT ATAAACCTGA GGATTTTAAT
180





AAAAGTTCCG GTATTTTTAA TAGAGATGTT TGTGAATATT ATGATCCAGA TTACTTAAAT
240





ACTAATGATA AAAAGAATAT ATTTTTACAA ACAATGATCA AGTTATTTAA TAGAATCAAA
300





TCAAAACCAT TGGGTGAAAA GTTATTAGAG ATGATTATAA ATGGTATACC TTATCTTGGA
360





GATAGACGTG TTCCACTCGA AGAGTTTAAC ACAAACATTG CTAGTGTAAC TGTTAATAAA
420





TTAATCAGTA ATCCAGGAGA AGTGGAGCGA AAAAAAGGTA TTTTCGCAAA TTTAATAATA
480





TTTGGACCTG GGCCAGTTTT AAATGAAAAT GAGACTATAG ATATAGGTAT ACAAAATCAT
540





TTTGCATCAA GGGAAGGCTT CGGGGGTATA ATGCAAATGA AGTTTTGCCC AGAATATGTA
600





AGCGTATTTA ATAATGTTCA AGAAAACAAA GGCGCAAGTA TATTTAATAG ACGTGGATAT
660





TTTTCAGATC CAGCCTTGAT ATTAATGCAT GAACTTATAC ATGTTTTACA TGGATTATAT
720





GGCATTAAAG TAGATGATTT ACCAATTGTA CCAAATGAAA AAAAATTTTT TATGCAATCT
780





ACAGATGCTA TACAGGCAGA AGAACTATAT ACATTTGGAG GACAAGATCC CAGCATCATA
840





ACTCCTTCTA CGGATAAAAG TATCTATGAT AAAGTTTTGC AAAATTTTAG AGGGATAGTT
900





GATAGACTTA ACAAGGTTTT AGTTTGCATA TCAGATCCTA ACATTAATAT TAATATATAT
960





AAAAATAAAT TTAAAGATAA ATATAAATTC GTTGAAGATT CTGAGGGAAA ATATAGTATA
1020





GATGTAGAAA GTTTTGATAA ATTATATAAA AGCTTAATGT TTGGTTTTAC AGAAACTAAT
1080





ATAGCAGAAA ATTATAAAAT AAAAACTAGA GCTTCTTATT TTAGTGATTC CTTACCACCA
1140





GTAAAAATAA AAAATTTATT AGATAATGAA ATCTATACTA TAGAGGAAGG GTTTAATATA
1200





TCTGATAAAG ATATGGAAAA AGAATATAGA GGTCAGAATA AAGCTATAAA TAAACAAGCT
1260





TATGAAGAAA TTAGCAAGGA GCATTTGGCT GTATATAAGA TACAAATGTG TAAAAGTGTT
1320





AAAGCTCCAG GAATATGTAT TGATGTTGAT AATGAAGATT TGTTCTTTAT AGCTGATAAA
1380





AATAGTTTTT CAGATGATTT ATCTAAAAAC GAAAGAATAG AATATAATAC ACAGAGTAAT
1440





TATATAGAAA ATGACTTCCC TATAAATGAA TTAATTTTAG ATACTGATTT AATAAGTAAA
1500





ATAGAATTAC CAAGTGAAAA TACAGAATCA CTTACTGATT TTAATGTAGA TGTTCCAGTA
1560





TATGAAAAAC AACCCGCTAT AAAAAAAATT TTTACAGATG AAAATACCAT CTTTCAATAT
1620





TTATACTCTC AGACATTTCC TCTAGATATA AGAGATATAA GTTTAACATC TTCATTTGAT
1680





GATGCATTAT TATTTTCTAA CAAAGTTTAT TCATTTTTTT CTATGGATTA TATTAAAACT
1740





GCTAATAAAG TGGTAGAAGC AGGATTATTT GCAGGTTGGG TGAAACAGAT AGTAAATGAT
1800





TTTGTAATCG AAGCTAATAA AAGCAATACT ATGGATAAAA TTGCAGATAT ATCTCTAATT
1860





GTTCCTTATA TAGGATTAGC TTTAAATGTA GGAAATGAAA CAGCTAAAGG AAATTTTGAA
1920





AATGCTTTTG AGATTGCAGG AGCCAGTATT CTACTAGAAT TTATACCAGA ACTTTTAATA
1980





CCTGTAGTTG GAGCCTTTTT ATTAGAATCA TATATTGACA ATAAAAATAA AATTATTAAA
2040





ACAATAGATA ATGCTTTAAC TAAAAGAAAT GAAAAATGGA GTGATATGTA CGGATTAATA
2100





GTAGCGCAAT GGCTCTCAAC AGTTAATACT CAATTTTATA CAATAAAAGA GGGAATGTAT
2160





AAGGCTTTAA ATTATCAAGC ACAAGCATTG GAAGAAATAA TAAAATACAG ATATAATATA
2220





TATTCTGAAA AAGAAAAGTC AAATATTAAC ATCGATTTTA ATGATATAAA TTCTAAACTT
2280





AATGAGGGTA TTAACCAAGC TATAGATAAT ATAAATAATT TTATAAATGG ATGTTCTGTA
2340





TCATATTTAA TGAAAAAAAT GATTCCATTA GCTGTAGAAA AATTACTAGA CTTTGATAAT
2400





ACTCTCAAAA AAAATTTGTT AAATTATATA GATGAAAATA AATTATATTT GATTGGAAGT
2460





GCAGAATATG AAAAATCAAA AGTAAATAAA TACTTGAAAA CCATTATGCC GTTTGATCTT
2520





TCAATATATA CCAATGATAC AATACTAATA GAAATGTTTA ATAAATATAA TAGCGAAATT
2580





TTAAATAATA TTATCTTAAA TTTAAGATAT AAGGATAATA ATTTAATAGA TTTATCAGGA
2640





TATGGGGCAA AGGTAGAGGT ATATGATGGA GTCGAGCTTA ATGATAAAAA TCAATTTAAA
2700





TTAACTAGTT CAGCAAATAG TAAGATTAGA GTGACTCAAA ATCAGAATAT CATATTTAAT
2760





AGTGTGTTCC TTGATTTTAG CGTTAGCTTT TGGATAAGAA TACCTAAATA TAAGAATGAT
2820





GGTATACAAA ATTATATTCA TAATGAATAT ACAATAATTA ATTGTATGAA AAATAATTCG
2880





GGCTGGAAAA TATCTATTAG GGGTAATAGG ATAATATGGA CTTTAATTGA TATAAATGGA
2940





AAAACCAAAT CGGTATTTTT TGAATATAAC ATAAGAGAAG ATATATCAGA GTATATAAAT
3000





AGATGGTTTT TTGTAACTAT TACTAATAAT TTGAATAACG CTAAAATTTA TATTAATGGT
3060





AAGCTAGAAT CAAATACAGA TATTAAAGAT ATAAGAGAAG TTATTGCTAA TGGTGAAATA
3120





ATATTTAAAT TAGATGGTGA TATAGATAGA ACACAATTTA TTTGGATGAA ATATTTCAGT
3180





ATTTTTAATA CGGAATTAAG TCAATCAAAT ATTGAAGAAA GATATAAAAT TCAATCATAT
3240





AGCGAATATT TAAAAGATTT TTGGGGAAAT CCTTTAATGT ACAATAAAGA ATATTATATG
3300





TTTAATGCGG GGAATAAAAA TTCATATATT AAACTAAAGA AAGATTCACC TGTAGGTGAA
3360





ATTTTAACAC GTAGCAAATA TAATCAAAAT TCTAAATATA TAAATTATAG AGATTTATAT
3420





ATTGGAGAAA AATTTATTAT AAGAAGAAAG TCAAATTCTC AATCTATAAA TGATGATATA
3480





GTTAGAAAAG AAGATTATAT ATATCTAGAT TTTTTTAATT TAAATCAAGA GTGGAGAGTA
3540





TATACCTATA AATATTTTAA GAAAGAGGAA GAAAAATTGT TTTTAGCTCC TATAAGTGAT
3600





TCTGATGAGT TTTACAATAC TATACAAATA AAAGAATATG ATGAACAGCC AACATATAGT
3660





TGTCAGTTGC TTTTTAAAAA AGATGAAGAA AGTACTGATG AGATAGGATT GATTGGTATT
3720





CATCGTTTCT ACGAATCTGG AATTGTATTT GAAGAGTATA AAGATTATTT TTGTATAAGT
3780





AAATGGTACT TAAAAGAGGT AAAAAGGAAA CCATATAATT TAAAATTGGG ATGTAATTGG
3840





CAGTTTATTC CTAAAGATGA AGGGTGGACT GAATAA.
3876











BoNI7C1, DNA.



SEQ ID NO: 11










ATGCCAATAA CAATTAACAA CTTTAATTAT TCAGATCCTG TTGATAATAA AAATATTTTA
60






TATTTAGATA CTCATTTAAA TACACTAGCT AATGAGCCTG AAAAAGCCTT TCGCATTACA
120





GGAAATATAT GGGTAATACC TGATAGATTT TCAAGAAATT CTAATCCAAA TTTAAATAAA
180





CCTCCTCGAG TTACAAGCCC TAAAAGTGGT TATTATGATC CTAATTATTT GAGTACTGAT
240





TCTGACAAAG ATACATTTTT AAAAGAAATT ATAAAGTTAT TTAAAAGAAT TAATTCTAGA
300





GAAATAGGAG AAGAATTAAT ATATAGACTT TCGACAGATA TACCCTTTCC TGGGAATAAC
360





AATACTCCAA TTAATACTTT TGATTTTGAT GTAGATTTTA ACAGTGTTGA TGTTAAAACT
420





AGACAAGGTA ACAACTGGGT TAAAACTGGT AGCATAAATC CTAGTGTTAT AATAACTGGA
480





CCTAGAGAAA ACATTATAGA TCCAGAAACT TCTACGTTTA AATTAACTAA CAATACTTTT
540





GCGGCACAAG AAGGATTTGG TGCTTTATCA ATAATTTCAA TATCACCTAG ATTTATGCTA
600





ACATATAGTA ATGCAACTAA TGATGTAGGA GAGGGTAGAT TTTCTAAGTC TGAATTTTGC
660





ATGGATCCAA TACTAATTTT AATGCATGAA CTTAATCATG CAATGCATAA TTTATATGGA
720





ATAGCTATAC CAAATGATCA AACAATTTCA TCTGTAACTA GTAATATTTT TTATTCTCAA
780





TATAATGTGA AATTAGAGTA TGCAGAAATA TATGCATTTG GAGGTCCAAC TATAGACCTT
840





ATTCCTAAAA GTGCAAGGAA ATATTTTGAG GAAAAGGCAT TGGATTATTA TAGATCTATA
900





GCTAAAAGAC TTAATAGTAT AACTACTGCA AATCCTTCAA GCTTTAATAA ATATATAGGG
960





GAATATAAAC AGAAACTTAT TAGAAAGTAT AGATTCGTAG TAGAATCTTC AGGTGAAGTT
1020





ACAGTAAATC GTAATAAGTT TGTTGAGTTA TATAATGAAC TTACACAAAT ATTTACAGAA
1080





TTTAACTACG CTAAAATATA TAATGTACAA AATAGGAAAA TATATCTTTC AAATGTATAT
1140





ACTCCGGTTA CGGCGAATAT ATTAGACGAT AATGTTTATG ATATACAAAA TGGATTTAAT
1200





ATACCTAAAA GTAATTTAAA TGTACTATTT ATGGGTCAAA ATTTATCTCG AAATCCAGCA
1260





TTAAGAAAAG TCAATCCTGA AAATATGCTT TATTTATTTA CAAAATTTTG TCATAAAGCA
1320





ATAGATGGTA GATCATTATA TAATAAAACA TTAGATTGTA GAGAGCTTTT AGTTAAAAAT
1380





ACTGACTTAC CCTTTATAGG TGATATTAGT GATGTTAAAA CTGATATATT TTTAAGAAAA
1440





GATATTAATG AAGAAACTGA AGTTATATAC TATCCGGACA ATGTTTCAGT AGATCAAGTT
1500





ATTCTCAGTA AGAATACCTC AGAACATGGA CAACTAGATT TATTATACCC TAGTATTGAC
1560





AGTGAGAGTG AAATATTACC AGGGGAGAAT CAAGTCTTTT ATGATAATAG AACTCAAAAT
1620





GTTGATTATT TGAATTCTTA TTATTACCTA GAATCTCAAA AACTAAGTGA TAATGTTGAA
1680





GATTTTACTT TTACGAGATC AATTGAGGAG GCTTTGGATA ATAGTGCAAA AGTATATACT
1740





TACTTTCCTA CACTAGCTAA TAAAGTAAAT GCGGGTGTTC AAGGTGGTTT ATTTTTAATG
1800





TGGGCAAATG ATGTAGTTGA AGATTTTACT ACAAATATTC TAAGAAAAGA TACATTAGAT
1860





AAAATATCAG ATGTATCAGC TATTATTCCC TATATAGGAC CCGCATTAAA TATAAGTAAT
1920





TCTGTAAGAA GAGGAAATTT TACTGAAGCA TTTGCAGTTA CTGGTGTAAC TATTTTATTA
1980





GAAGCATTTC CTGAATTTAC AATACCTGCA CTTGGTGCAT TTGTGATTTA TAGTAAGGTT
2040





CAAGAAAGAA ACGAGATTAT TAAAACTATA GATAATTGTT TAGAACAAAG GATTAAGAGA
2100





TGGAAAGATT CATATGAATG GATGATGGGA ACGTGGTTAT CCAGGATTAT TACTCAATTT
2160





AATAATATAA GTTATCAAAT GTATGATTCT TTAAATTATC AGGCAGGTGC AATCAAAGCT
2220





AAAATAGATT TAGAATATAA AAAATATTCA GGAAGTGATA AAGAAAATAT AAAAAGTCAA
2280





GTTGAAAATT TAAAAAATAG TTTAGATGTA AAAATTTCGG AAGCAATGAA TAATATAAAT
2340





AAATTTATAC GAGAATGTTC CGTAACATAT TTATTTAAAA ATATGTTACC TAAAGTAATT
2400





GATGAATTAA ATGAGTTTGA TCGAAATACT AAAGCAAAAT TAATTAATCT TATAGATAGT
2460





CATAATATTA TTCTAGTTGG TGAAGTAGAT AAATTAAAAG CAAAAGTAAA TAATAGCTTT
2520





CAAAATACAA TACCCTTTAA TATTTTTTCA TATACTAATA ATTCTTTATT AAAAGATATA
2580





ATTAATGAAT ATTTCAATAA TATTAATGAT TCAAAAATTT TGAGCCTACA AAACAGAAAA
2640





AATACTTTAG TGGATACATC AGGATATAAT GCAGAAGTGA GTGAAGAAGG CGATGTTCAG
2700





CTTAATCCAA TATTTCCATT TGACTTTAAA TTAGGTAGTT CAGGGGAGGA TAGAGGTAAA
2760





GTTATAGTAA CCCAGAATGA AAATATTGTA TATAATTCTA TGTATGAAAG TTTTAGCATT
2820





AGTTTTTGGA TTAGAATAAA TAAATGGGTA AGTAATTTAC CTGGATATAC TATAATTGAT
2880





AGTGTTAAAA ATAACTCAGG TTGGAGTATA GGTATTATTA GTAATTTTTT AGTATTTACT
2940





TTAAAACAAA ATGAAGATAG TGAACAAAGT ATAAATTTTA GTTATGATAT ATCAAATAAT
3000





GCTCCTGGAT ACAATAAATG GTTTTTTGTA ACTGTTACTA ACAATATGAT GGGAAATATG
3060





AAGATTTATA TAAATGGAAA ATTAATAGAT ACTATAAAAG TTAAAGAACT AACTGGAATT
3120





AATTTTAGCA AAACTATAAC ATTTGAAATA AATAAAATTC CAGATACCGG TTTGATTACT
3180





TCAGATTCTG ATAACATCAA TATGTGGATA AGAGATTTTT ATATATTTGC TAAAGAATTA
3240





GATGGTAAAG ATATTAATAT ATTATTTAAT AGCTTGCAAT ATACTAATGT TGTAAAAGAT
3300





TATTGGGGAA ATGATTTAAG ATATAATAAA GAATATTATA TGGTTAATAT AGATTATTTA
3360





AATAGATATA TGTATGCGAA CTCACGACAA ATTGTTTTTA ATACACGTAG AAATAATAAT
3420





GACTTCAATG AAGGATATAA AATTATAATA AAAAGAATCA GAGGAAATAC AAATGATACT
3480





AGAGTACGAG GAGGAGATAT TTTATATTTT GATATGACAA TTAATAACAA AGCATATAAT
3540





TTGTTTATGA AGAATGAAAC TATGTATGCA GATAATCATA GTACTGAAGA TATATATGCT
3600





ATAGGTTTAA GAGAACAAAC AAAGGATATA AATGATAATA TTATATTTCA AATACAACCA
3660





ATGAATAATA CTTATTATTA CGCATCTCAA ATATTTAAAT CAAATTTTAA TGGAGAAAAT
3720





ATTTCTGGAA TATGTTCAAT AGGTACTTAT CGTTTTAGAC TTGGAGGTGA TTGGTATAGA
3780





CACAATTATT TGGTGCCTAC TGTGAAGCAA GGAAATTATG CTTCATTATT AGAATCAACA
3840





TCAACTCATT GGGGTTTTGT ACCTGTAAGT GAATAA.
3876











BoNT/D, DNA.



SEQ ID NO: 12










ATGACATGGC CAGTAAAAGA TTTTAATTAT AGTGATCCTG TTAATGACAA TGATATATTA
60






TATTTAAGAA TACCACAAAA TAAGTTAATT ACTACACCTG TAAAAGCTTT TATGATTACT
120





CAAAATATTT GGGTAATACC AGAAAGATTT TCATCAGATA CTAATCCAAG TTTAAGTAAA
180





CCGCCCAGAC CTACTTCAAA GTATCAAAGT TATTATGATC CTAGTTATTT ATCTACTGAT
240





GAACAAAAAG ATACATTTTT AAAAGGGATT ATAAAATTAT TTAAAAGAAT TAATGAAAGA
300





GATATAGGAA AAAAATTAAT AAATTATTTA GTAGTTGGTT CACCTTTTAT GGGAGATTCA
360





AGTACGCCTG AAGATACATT TGATTTTACA CGTCATACTA CTAATATTGC AGTTGAAAAG
420





TTTGAAAATG GTAGTTGGAA AGTAACAAAT ATTATAACAC CAAGTGTATT GATATTTGGA
480





CCACTTCCTA ATATATTAGA CTATACAGCA TCCCTTACAT TGCAAGGACA ACAATCAAAT
540





CCATCATTTG AAGGGTTTGG AACATTATCT ATACTAAAAG TAGCACCTGA ATTTTTGTTA
600





ACATTTAGTG ATGTAACATC TAATCAAAGT TCAGCTGTAT TAGGCAAATC TATATTTTGT
660





ATGGATCCAG TAATAGCTTT AATGCATGAG TTAACACATT CTTTGCATCA ATTATATGGA
720





ATAAATATAC CATCTGATAA AAGGATTCGT CCACAAGTTA GCGAGGGATT TTTCTCTCAA
780





GATGGACCCA ACGTACAATT TGAGGAATTA TATACATTTG GAGGATTAGA TGTTGAAATA
840





ATACCTCAAA TTGAAAGATC ACAATTAAGA GAAAAAGCAT TAGGTCACTA TAAAGATATA
900





GCGAAAAGAC TTAATAATAT TAATAAAACT ATTCCTTCTA GTTGGATTAG TAATATAGAT
960





AAATATAAAA AAATATTTTC TGAAAAGTAT AATTTTGATA AAGATAATAC AGGAAATTTT
1020





GTTGTAAATA TTGATAAATT CAATAGCTTA TATTCAGACT TGACTAATGT TATGTCAGAA
1080





GTTGTTTATT CTTCGCAATA TAATGTTAAA AACAGGACTC ATTATTTTTC AAGGCATTAT
1140





CTACCTGTAT TTGCAAATAT ATTAGATGAT AATATTTATA CTATAAGAGA TGGTTTTAAT
1200





TTAACAAATA AAGGTTTTAA TATAGAAAAT TCGGGTCAGA ATATAGAAAG GAATCCTGCA
1260





CTACAAAAGC TTAGTTCAGA AAGTGTAGTA GATTTATTTA CAAAAGTATG TTTAAGATTA
1320





ACAAAAAATA GTAGAGATGA TTCAACATGT ATTAAAGTTA AAAATAATAG ATTACCTTAT
1380





GTAGCTGATA AAGATAGCAT TTCACAAGAA ATATTTGAAA ATAAAATTAT TACAGATGAG
1440





ACTAATGTAC AAAATTATTC AGATAAATTT TCATTAGATG AATCTATTTT AGATGGGCAA
1500





GTTCCTATTA ATCCTGAAAT AGTAGATCCA CTATTACCCA ATGTTAATAT GGAACCTTTA
1560





AATCTTCCAG GTGAAGAAAT AGTATTTTAT GATGATATTA CTAAATATGT TGATTATTTA
1620





AATTCTTATT ATTATTTGGA ATCTCAAAAA TTAAGTAATA ATGTTGAAAA TATTACTCTT
1680





ACAACTTCAG TTGAAGAAGC ATTAGGTTAT AGCAATAAGA TATACACATT TTTACCTAGC
1740





TTAGCTGAAA AAGTGAATAA AGGTGTTCAA GCAGGTTTAT TCTTAAATTG GGCGAATGAA
1800





GTAGTTGAGG ATTTTACTAC AAATATTATG AAGAAAGATA CATTGGATAA AATATCAGAT
1860





GTATCAGTAA TAATTCCATA TATAGGACCT GCCTTAAATA TAGGAAATTC AGCATTAAGG
1920





GGAAATTTTA ATCAAGCATT TGCAACAGCT GGTGTAGCTT TTTTATTAGA GGGATTTCCA
1980





GAGTTTACTA TACCTGCACT CGGTGTATTT ACCTTTTATA GTTCTATTCA AGAAAGAGAG
2040





AAAATTATTA AAACTATAGA AAATTGTTTG GAACAAAGAG TTAAGAGATG GAAAGATTCA
2100





TATCAATGGA TGGTATCAAA TTGGTTGTCA AGAATTACTA CTCAATTTAA TCATATAAAT
2160





TATCAAATGT ATGATTCTTT AAGTTATCAG GCAGATGCAA TCAAAGCTAA AATAGATTTA
2220





GAATATAAAA AATACTCAGG AAGTGATAAA GAAAATATAA AAAGTCAAGT TGAAAATTTA
2280





AAAAATAGTT TAGATGTAAA AATTTCGGAA GCAATGAATA ATATAAATAA ATTTATACGA
2340





GAATGTTCTG TAACATACTT ATTTAAAAAT ATGCTCCCTA AAGTAATTGA CGAATTAAAT
2400





AAGTTTGATT TAAGAACTAA AACAGAATTA ATTAATCTTA TAGATAGTCA TAATATTATT
2460





CTAGTTGGTG AAGTAGATAG ATTAAAAGCA AAAGTAAATG AGAGTTTTGA AAATACAATG
2520





CCTTTTAATA TTTTTTCATA TACTAATAAT TCTTTATTAA AAGATATAAT TAATGAATAT
2580





TTCAATAGTA TTAATGATTC AAAAATTTTG AGCTTACAAA ACAAAAAAAA TGCTTTAGTG
2640





GATACATCAG GATATAATGC AGAAGTGAGG GTAGGAGATA ATGTTCAACT TAATACGATA
2700





TATACAAATG ACTTTAAATT AAGTAGTTCA GGAGATAAAA TTATAGTAAA TTTAAATAAT
2760





AATATTTTAT ATAGCGCTAT TTATGAGAAC TCTAGTGTTA GTTTTTGGAT TAAGATATCT
2820





AAAGATTTAA CTAATTCTCA TAATGAATAT ACAATAATTA ACAGTATAGA ACAAAATTCT
2880





GGGTGGAAAT TATGTATTAG GAATGGCAAT ATAGAATGGA TTTTACAAGA TGTTAATAGA
2940





AAGTATAAAA GTTTAATTTT TGATTATAGT GAATCATTAA GTCATACAGG ATATACAAAT
3000





AAATGGTTTT TTGTTACTAT AACTAATAAT ATAATGGGGT ATATGAAACT TTATATAAAT
3060





GGAGAATTAA AGCAGAGTCA AAAAATTGAA GATTTAGATG AGGTTAAGTT AGATAAAACC
3120





ATAGTATTTG GAATAGATGA GAATATAGAT GAGAATCAGA TGCTTTGGAT TAGAGATTTT
3180





AATATTTTTT CTAAAGAATT AAGTAATGAA GATATTAATA TTGTATATGA GGGACAAATA
3240





TTAAGAAATG TTATTAAAGA TTATTGGGGA AATCCTTTGA AGTTTGATAC AGAATATTAT
3300





ATTATTAATG ATAATTATAT AGATAGGTAT ATAGCACCTG AAAGTAATGT ACTTGTACTT
3360





GTTCAGTATC CAGATAGATC TAAATTATAT ACTGGAAATC CTATTACTAT TAAATCAGTA
3420





TCTGATAAGA ATCCTTATAG TAGAATTTTA AATGGAGATA ATATAATTCT TCATATGTTA
3480





TATAATAGTA GGAAATATAT GATAATAAGA GATACTGATA CAATATATGC AACACAAGGA
3540





GGAGAGTGTT CACAAAATTG TGTATATGCA TTAAAATTAC AGAGTAATTT AGGTAATTAT
3600





GGTATAGGTA TATTTAGTAT AAAAAATATT GTATCTAAAA ATAAATATTG TAGTCAAATT
3660





TTCTCTAGTT TTAGGGAAAA TACAATGCTT CTAGCAGATA TATATAAACC TTGGAGATTT
3720





TCTTTTAAAA ATGCATACAC GCCAGTTGCA GTAACTAATT ATGAAACAAA ACTATTATCA
3780





ACTTCATCTT TTTGGAAATT TATTTCTAGG GATCCAGGAT GGGTAGAGTA A.
3831











BoNT/E1, DNA.



SEQ ID NO: 13










ATGCCAAAAA TTAATAGTTT TAATTATAAT GATCCTGTTA ATGATAGAAC AATTTTATAT
60






ATTAAACCAG GCGGTTGTCA AGAATTTTAT AAATCATTTA ATATTATGAA AAATATTTGG
120





ATAATTCCAG AGAGAAATGT AATTGGTACA ACCCCCCAAG ATTTTCATCC GCCTACTTCA
180





TTAAAAAATG GAGATAGTAG TTATTATGAC CCTAATTATT TACAAAGTGA TGAAGAAAAG
240





GATAGATTTT TAAAAATAGT CACAAAAATA TTTAATAGAA TAAATAATAA TCTTTCAGGA
300





GGGATTTTAT TAGAAGAACT GTCAAAAGCT AATCCATATT TAGGGAATGA TAATACTCCA
360





GATAATCAAT TCCATATTGG TGATGCATCA GCAGTTGAGA TTAAATTCTC AAATGGTAGC
420





CAAGACATAC TATTACCTAA TGTTATTATA ATGGGAGCAG AGCCTGATTT ATTTGAAACT
480





AACAGTTCCA ATATTTCTCT AAGAAATAAT TATATGCCAA GCAATCACCG TTTTGGATCA
540





ATAGCTATAG TAACATTCTC ACCTGAATAT TCTTTTAGAT TTAATGATAA TTGTATGAAT
600





GAATTTATTC AAGATCCTGC TCTTACATTA ATGCATGAAT TAATACATTC ATTACATGGA
660





CTATATGGGG CTAAAGGGAT TACTACAAAG TATACTATAA CACAAAAACA AAATCCCCTA
720





ATAACAAATA TAAGAGGTAC AAATATTGAA GAATTCTTAA CTTTTGGAGG TACTGATTTA
780





AACATTATTA CTAGTGCTCA GTCCAATGAT ATCTATACTA ATCTTCTAGC TGATTATAAA
840





AAAATAGCGT CTAAACTTAG CAAAGTACAA GTATCTAATC CACTACTTAA TCCTTATAAA
900





GATGTTTTTG AAGCAAAGTA TGGATTAGAT AAAGATGCTA GCGGAATTTA TTCGGTAAAT
960





ATAAACAAAT TTAATGATAT TTTTAAAAAA TTATACAGCT TTACGGAATT TGATTTACGA
1020





ACTAAATTTC AAGTTAAATG TAGGCAAACT TATATTGGAC AGTATAAATA CTTCAAACTT
1080





TCAAACTTGT TAAATGATTC TATTTATAAT ATATCAGAAG GCTATAATAT AAATAATTTA
1140





AAGGTAAATT TTAGAGGACA GAATGCAAAT TTAAATCCTA GAATTATTAC ACCAATTACA
1200





GGTAGAGGAC TAGTAAAAAA AATCATTAGA TTTTGTAAAA ATATTGTTTC TGTAAAAGGC
1260





ATAAGGAAAT CAATATGTAT CGAAATAAAT AATGGTGAGT TATTTTTTGT GGCTTCCGAG
1320





AATAGTTATA ATGATGATAA TATAAATACT CCTAAAGAAA TTGACGATAC AGTAACTTCA
1380





AATAATAATT ATGAAAATGA TTTAGATCAG GTTATTTTAA ATTTTAATAG TGAATCAGCA
1440





CCTGGACTTT CAGATGAAAA ATTAAATTTA ACTATCCAAA ATGATGCTTA TATACCAAAA
1500





TATGATTCTA ATGGAACAAG TGATATAGAA CAACATGATG TTAATGAACT TAATGTATTT
1560





TTCTATTTAG ATGCACAGAA AGTGCCCGAA GGTGAAAATA ATGTCAATCT CACCTCTTCA
1620





ATTGATACAG CATTATTAGA ACAACCTAAA ATATATACAT TTTTTTCATC AGAATTTATT
1680





AATAATGTCA ATAAACCTGT GCAAGCAGCA TTATTTGTAA GCTGGATACA ACAAGTGTTA
1740





GTAGATTTTA CTACTGAAGC TAACCAAAAA AGTACTGTTG ATAAAATTGC AGATATTTCT
1800





ATAGTTGTTC CATATATAGG TCTTGCTTTA AATATAGGAA ATGAAGCACA AAAAGGAAAT
1860





TTTAAAGATG CACTTGAATT ATTAGGAGCA GGTATTTTAT TAGAATTTGA ACCCGAGCTT
1920





TTAATTCCTA CAATTTTAGT ATTCACGATA AAATCTTTTT TAGGTTCATC TGATAATAAA
1980





AATAAAGTTA TTAAAGCAAT AAATAATGCA TTGAAAGAAA GAGATGAAAA ATGGAAAGAA
2040





GTATATAGTT TTATAGTATC GAATTGGATG ACTAAAATTA ATACACAATT TAATAAAAGA
2100





AAAGAACAAA TGTATCAAGC TTTACAAAAT CAAGTAAATG CAATTAAAAC AATAATAGAA
2160





TCTAAGTATA ATAGTTATAC TTTAGAGGAA AAAAATGAGC TTACAAATAA ATATGATATT
2220





AAGCAAATAG AAAATGAACT TAATCAAAAG GTTTCTATAG CAATGAATAA TATAGACAGG
2280





TTCTTAACTG AAAGTTCTAT ATCCTATTTA ATGAAAATAA TAAATGAAGT AAAAATTAAT
2340





AAATTAAGAG AATATGATGA GAATGTCAAA ACGTATTTAT TGAATTATAT TATACAACAT
2400





GGATCAATCT TGGGAGAGAG TCAGCAAGAA CTAAATTCTA TGGTAACTGA TACCCTAAAT
2460





AATAGTATTC CTTTTAAGCT TTCTTCTTAT ACAGATGATA AAATTTTAAT TTCATATTTT
2520





AATAAATTCT TTAAGAGAAT TAAAAGTAGT TCAGTTTTAA ATATGAGATA TAAAAATGAT
2580





AAATACGTAG ATACTTCAGG ATATGATTCA AATATAAATA TTAATGGAGA TGTATATAAA
2640





TATCCAACTA ATAAAAATCA ATTTGGAATA TATAATGATA AACTTAGTGA AGTTAATATA
2700





TCTCAAAATG ATTACATTAT ATATGATAAT AAATATAAAA ATTTTAGTAT TAGTTTTTGG
2760





GTAAGAATTC CTAACTATGA TAATAAGATA GTAAATGTTA ATAATGAATA CACTATAATA
2820





AATTGTATGA GAGATAATAA TTCAGGATGG AAAGTATCTC TTAATCATAA TGAAATAATT
2880





TGGACATTCG AAGATAATCG AGGAATTAAT CAAAAATTAG CATTTAACTA TGGTAACGCA
2940





AATGGTATTT CTGATTATAT AAATAAGTGG ATTTTTGTAA CTATAACTAA TGATAGATTA
3000





GGAGATTCTA AACTTTATAT TAATGGAAAT TTAATAGATC AAAAATCAAT TTTAAATTTA
3060





GGTAATATTC ATGTTAGTGA CAATATATTA TTTAAAATAG TTAATTGTAG TTATACAAGA
3120





TATATTGGTA TTAGATATTT TAATATTTTT GATAAAGAAT TAGATGAAAC AGAAATTCAA
3180





ACTTTATATA GCAATGAACC TAATACAAAT ATTTTGAAGG ATTTTTGGGG AAATTATTTG
3240





CTTTATGACA AAGAATACTA TTTATTAAAT GTGTTAAAAC CAAATAACTT TATTGATAGG
3300





AGAAAAGATT CTACTTTAAG CATTAATAAT ATAAGAAGCA CTATTCTTTT AGCTAATAGA
3360





TTATATAGTG GAATAAAAGT TAAAATACAA AGAGTTAATA ATAGTAGTAC TAACGATAAT
3420





CTTGTTAGAA AGAATGATCA GGTATATATT AATTTTGTAG CCAGCAAAAC TCACTTATTT
3480





CCATTATATG CTGATACAGC TACCACAAAT AAAGAGAAAA CAATAAAAAT ATCATCATCT
3540





GGCAATAGAT TTAATCAAGT AGTAGTTATG AATTCAGTAG GAAATTGTAC AATGAATTTT
3600





AAAAATAATA ATGGAAATAA TATTGGGTTG TTAGGTTTCA AGGCAGATAC TGTCGTTGCT
3660





AGTACTTGGT ATTATACACA TATGAGAGAT CATACAAACA GCAATGGATG TTTTTGGAAC
3720





TTTATTTCTG AAGAACATGG ATGGCAAGAA AAATAA.
3756











BoNT/F1, DNA.



SEQ ID NO: 14










ATGCCAGTTG TAATAAATAG TTTTAATTAT AATGACCCTG TTAATGATGA TACAATTTTA
60






TACATGCAGA TACCATATGA AGAAAAAAGT AAAAAATATT ATAAAGCTTT TGAGATTATG
120





CGTAATGTTT GGATAATTCC TGAGAGAAAT ACAATAGGAA CGGATCCTAG TGATTTTGAT
180





CCACCGGCTT CATTAGAGAA CGGAAGCAGT GCTTATTATG ATCCTAATTA TTTAACCACT
240





GATGCTGAAA AAGATAGATA TTTAAAAACA ACGATAAAAT TATTTAAGAG AATTAATAGT
300





AATCCTGCAG GGGAAGTTTT GTTACAAGAA ATATCATATG CTAAACCATA TTTAGGAAAT
360





GAACACACGC CAATTAATGA ATTCCATCCA GTTACTAGAA CTACAAGTGT TAATATAAAA
420





TCATCAACTA ATGTTAAAAG TTCAATAATA TTGAATCTTC TTGTATTGGG AGCAGGACCT
480





GATATATTTG AAAATTCTTC TTACCCCGTT AGAAAACTAA TGGATTCAGG TGGAGTTTAT
540





GACCCAAGTA ATGATGGTTT TGGATCAATT AATATCGTGA CATTTTCACC TGAATATGAA
600





TATACTTTTA ATGATATTAG TGGAGGGTAT AACAGTAGTA CAGAATCATT TATTGCAGAT
660





CCTGCAATTT CACTAGCTCA TGAATTGATA CATGCACTGC ATGGATTATA CGGGGCTAGG
720





GGAGTTACTT ATAAAGAGAC TATAAAAGTA AAGCAAGCAC CTCTTATGAT AGCCGAAAAA
780





CCCATAAGGC TAGAAGAATT TTTAACCTTT GGAGGTCAGG ATTTAAATAT TATTACTAGT
840





GCTATGAAGG AAAAAATATA TAACAATCTT TTAGCTAACT ATGAAAAAAT AGCTACTAGA
900





CTTAGTAGAG TTAATAGTGC TCCTCCTGAA TATGATATTA ATGAATATAA AGATTATTTT
960





CAATGGAAGT ATGGGCTAGA TAAAAATGCT GATGGAAGTT ATACTGTAAA TGAAAATAAA
1020





TTTAATGAAA TTTATAAAAA ATTATATAGC TTTACAGAGA TTGACTTAGC AAATAAATTT
1080





AAAGTAAAAT GTAGAAATAC TTATTTTATT AAATATGGAT TTTTAAAAGT TCCAAATTTG
1140





TTAGATGATG ATATTTATAC TGTATCAGAG GGGTTTAATA TAGGTAATTT AGCAGTAAAC
1200





AATCGCGGAC AAAATATAAA GTTAAATCCT AAAATTATTG ATTCCATTCC AGATAAAGGT
1260





CTAGTGGAAA AGATCGTTAA ATTTTGTAAG AGCGTTATTC CTAGAAAAGG TACAAAGGCG
1320





CCACCGCGAC TATGCATTAG AGTAAATAAT AGGGAGTTAT TTTTTGTAGC TTCAGAAAGT
1380





AGCTATAATG AAAATGATAT TAATACACCT AAAGAAATTG ACGATACAAC AAATCTAAAT
1440





AATAATTATA GAAATAATTT AGATGAAGTT ATTTTAGATT ATAATAGTGA GACAATACCT
1500





CAAATATCAA ATCAAACATT AAATACACTT GTACAAGACG ATAGTTATGT GCCAAGATAT
1560





GATTCTAATG GAACAAGTGA AATAGAGGAA CATAATGTTG TTGACCTTAA TGTATTTTTC
1620





TATTTACATG CACAAAAAGT ACCAGAAGGT GAAACTAATA TAAGTTTAAC TTCTTCAATT
1680





GATACGGCAT TATCAGAAGA ATCGCAAGTA TATACATTCT TTTCTTCAGA GTTTATTAAT
1740





ACTATCAATA AACCTGTACA CGCAGCACTA TTTATAAGTT GGATAAATCA AGTAATAAGA
1800





GATTTTACTA CTGAAGCTAC ACAAAAAAGT ACTTTTGATA AGATTGCAGA CATATCTTTA
1860





GTTGTACCAT ATGTAGGTCT TGCTTTAAAT ATAGGTAATG AGGTACAAAA AGAAAATTTT
1920





AAGGAGGCAT TTGAATTATT AGGAGCGGGT ATTTTATTAG AATTTGTGCC AGAGCTTTTA
1980





ATTCCTACAA TTTTAGTGTT TACAATAAAA TCCTTTATAG GTTCATCTGA GAATAAAAAT
2040





AAAATCATTA AAGCAATAAA TAATTCATTA ATGGAAAGAG AAACAAAGTG GAAAGAAATA
2100





TATAGTTGGA TAGTATCAAA TTGGCTTACT AGAATTAATA CACAATTTAA TAAAAGAAAA
2160





GAACAAATGT ATCAAGCTTT GCAAAATCAA GTAGATGCAA TAAAAACAGT AATAGAATAT
2220





AAATATAATA ATTATACTTC AGATGAGAGA AATAGACTTG AATCTGAATA TAATATCAAT
2280





AATATAAGAG AAGAATTGAA CAAAAAAGTT TCTTTAGCAA TGGAAAATAT AGAGAGATTT
2340





ATAACAGAGA GTTCTATATT TTATTTAATG AAGTTAATAA ATGAAGCCAA AGTTAGTAAA
2400





TTAAGAGAAT ATGATGAAGG CGTTAAGGAA TATTTGCTAG ACTATATTTC AGAACATAGA
2460





TCAATTTTAG GAAATAGTGT ACAAGAATTA AATGATTTAG TGACTAGTAC TCTGAATAAT
2520





AGTATTCCAT TTGAACTTTC TTCATATACT AATGATAAAA TTCTAATTTT ATATTTTAAT
2580





AAATTATATA AAAAAATTAA AGATAACTCT ATTTTAGATA TGCGATATGA AAATAATAAA
2640





TTTATAGATA TCTCTGGATA TGGTTCAAAT ATAAGCATTA ATGGAGATGT ATATATTTAT
2700





TCAACAAATA GAAATCAATT TGGAATATAT AGTAGTAAGC CTAGTGAAGT TAATATAGCT
2760





CAAAATAATG ATATTATATA CAATGGTAGA TATCAAAATT TTAGTATTAG TTTCTGGGTA
2820





AGGATTCCTA AATACTTCAA TAAAGTGAAT CTTAATAATG AATATACTAT AATAGATTGT
2880





ATAAGGAATA ATAATTCAGG ATGGAAAATA TCACTTAATT ATAATAAAAT AATTTGGACT
2940





TTACAAGATA CTGCTGGAAA TAATCAAAAA CTAGTTTTTA ATTATACACA AATGATTAGT
3000





ATATCTGATT ATATAAATAA ATGGATTTTT GTAACTATTA CTAATAATAG ATTAGGCAAT
3060





TCTAGAATTT ACATCAATGG AAATTTAATA GATGAAAAAT CAATTTCGAA TTTAGGTGAT
3120





ATTCATGTTA GTGATAATAT ATTATTTAAA ATTGTTGGTT GTAATGATAC AAGATATGTT
3180





GGTATAAGAT ATTTTAAAGT TTTTGATACG GAATTAGGTA AAACAGAAAT TGAGACTTTA
3240





TATAGTGATG AGCCAGATCC AAGTATCTTA AAAGACTTTT GGGGAAATTA TTTGTTATAT
3300





AATAAAAGAT ATTATTTATT GAATTTACTA AGAACAGATA AGTCTATTAC TCAGAATTCA
3360





AACTTTCTAA ATATTAATCA ACAAAGAGGT GTTTATCAGA AACCAAATAT TTTTTCCAAC
3420





ACTAGATTAT ATACAGGAGT AGAAGTTATT ATAAGAAAAA ATGGATCTAC AGATATATCT
3480





AATACAGATA ATTTTGTTAG AAAAAATGAT CTGGCATATA TTAATGTAGT AGATCGTGAT
3540





GTAGAATATC GGCTATATGC TGATATATCA ATTGCAAAAC CAGAGAAAAT AATAAAATTA
3600





ATAAGAACAT CTAATTCAAA CAATAGCTTA GGTCAAATTA TAGTTATGGA TTCAATAGGA
3660





AATAATTGCA CAATGAATTT TCAAAACAAT AATGGGGGCA ATATAGGATT ACTAGGTTTT
3720





CATTCAAATA ATTTGGTTGC TAGTAGTTGG TATTATAACA ATATACGAAA AAATACTAGC
3780





AGTAATGGAT GCTTTTGGAG TTTTATTTCT AAAGAGCATG GATGGCAAGA AAACTAA.
3837











BoNT/G, DNA.



SEQ ID NO: 15










ATGCCAGTTA ATATAAAAAN CTTTAATTAT AATGACCCTA TTAATAATGA TGACATTATT
60






ATGATGGAAC CATTCAATGA CCCAGGGCCA GGAACATATT ATAAAGCTTT TAGGATTATA
120





GATCGTATTT GGATAGTACC AGAAAGGTTT ACTTATGGAT TTCAACCTGA CCAATTTAAT
180





GCCAGTACAG GAGTTTTTAG TAAAGATGTC TACGAATATT ACGATCCAAC TTATTTAAAA
240





ACCGATGCTG AAAAAGATAA ATTTTTAAAA ACAATGATTA AATTATTTAA TAGAATTAAT
300





TCAAAACCAT CAGGACAGAG ATTACTGGAT ATGATAGTAG ATGCTATACC TTATCTTGGA
360





AATGCATCTA CACCGCCCGA CAAATTTGCA GCAAATGTTG CAAATGTATC TATTAATAAA
420





AAAATTATCC AACCTGGAGC TGAAGATCAA ATAAAAGGTT TAATGACAAA TTTAATAATA
480





TTTGGACCAG GACCAGTTCT AAGTGATAAT TTTACTGATA GTATGATTAT GAATGGCCAT
540





TCCCCAATAT CAGAAGGATT TGGTGCAAGA ATGATGATAA GATTTTGTCC TAGTTGTTTA
600





AATGTATTTA ATAATGTTCA GGAAAATAAA GATACATCTA TATTTAGTAG ACGCGCGTAT
660





TTTGCAGATC CAGCTCTAAC GTTAATGCAT GAACTTATAC ATGTGTTACA TGGATTATAT
720





GGAATTAAGA TAAGTAATTT ACCAATTACT CCAAATACAA AAGAATTTTT CATGCAACAT
780





AGCGATCCTG TACAAGCAGA AGAACTATAT ACATTCGGAG GACATGATCC TAGTGTTATA
840





AGTCCTTCTA CGGATATGAA TATTTATAAT AAAGCGTTAC AAAATTTTCA AGATATAGCT
900





AATAGGCTTA ATATTGTTTC AAGTGCCCAA GGGAGTGGAA TTGATATTTC CTTATATAAA
960





CAAATATATA AAAATAAATA TGATTTTGTT GAAGATCCTA ATGGAAAATA TAGTGTAGAT
1020





AAGGATAAGT TTGATAAATT ATATAAGGCC TTAATGTTTG GCTTTACTGA AACTAATCTA
1080





GCTGGTGAAT ATGGAATAAA AACTAGGTAT TCTTATTTTA GTGAATATTT GCCACCGATA
1140





AAAACTGAAA AATTGTTAGA CAATACAATT TATACTCAAA ATGAAGGCTT TAACATAGCT
1200





AGTAAAAATC TCAAAACGGA ATTTAATGGT CAGAATAAGG CGGTAAATAA AGAGGCTTAT
1260





GAAGAAATCA GCCTAGAACA TCTCGTTATA TATAGAATAG CAATGTGCAA GCCTGTAATG
1320





TACAAAAATA CCGGTAAATC TGAACAGTGT ATTATTGTTA ATAATGAGGA TTTATTTTTC
1380





ATAGCTAATA AAGATAGTTT TTCAAAAGAT TTAGCTAAAG CAGAAACTAT AGCATATAAT
1440





ACACAAAATA ATACTATAGA AAATAATTTT TCTATAGATC AGTTGATTTT AGATAATGAT
1500





TTAAGCAGTG GCATAGACTT ACCAAATGAA AACACAGAAC CATTTACAAA TTTTGACGAC
1560





ATAGATATCC CTGTGTATAT TAAACAATCT GCTTTAAAAA AAATTTTTGT GGATGGAGAT
1620





AGCCTTTTTG AATATTTACA TGCTCAAACA TTTCCTTCTA ATATAGAAAA TCTACAACTA
1680





ACGAATTCAT TAAATGATGC TTTAAGAAAT AATAATAAAG TCTATACTTT TTTTTCTACA
1740





AACCTTGTTG AAAAAGCTAA TACAGTTGTA GGTGCTTCAC TTTTTGTAAA CTGGGTAAAA
1800





GGAGTAATAG ATGATTTTAC ATCTGAATCC ACACAAAAAA GTACTATAGA TAAAGTTTCA
1860





GATGTATCCA TAATTATTCC CTATATAGGA CCTGCTTTGA ATGTAGGAAA TGAAACAGCT
1920





AAAGAAAATT TTAAAAATGC TTTTGAAATA GGTGGAGCCG CTATCTTAAT GGAGTTTATT
1980





CCAGAACTTA TTGTACCTAT AGTTGGATTT TTTACATTAG AATCATATGT AGGAAATAAA
2040





GGGCATATTA TTATGACGAT ATCCAATGCT TTAAAGAAAA GGGATCAAAA ATGGACAGAT
2100





ATGTATGGTT TGATAGTATC GCAGTGGCTC TCAACGGTTA ATACTCAATT TTATACAATA
2160





AAAGAAAGAA TGTACAATGC TTTAAATAAT CAATCACAAG CAATAGAAAA AATAATAGAA
2220





GATCAATATA ATAGATATAG TGAAGAAGAT AAAATGAATA TTAACATTGA TTTTAATGAT
2280





ATAGATTTTA AACTTAATCA AAGTATAAAT TTAGCAATAA ACAATATAGA TGATTTTATA
2340





AACCAATGTT CTATATCATA TCTAATGAAT AGAATGATTC CATTAGCTGT AAAAAAGTTA
2400





AAAGACTTTG ATGATAATCT TAAGAGAGAT TTATTGGAGT ATATAGATAC AAATGAACTA
2460





TATTTACTTG ATGAAGTAAA TATTCTAAAA TCAAAAGTAA ATAGACACCT AAAAGACAGT
2520





ATACCATTTG ATCTTTCACT ATATACCAAG GACACAATTT TAATACAAGT TTTTAATAAT
2580





TATATTAGTA ATATTAGTAG TAATGCTATT TTAAGTTTAA GTTATAGAGG TGGGCGTTTA
2640





ATAGATTCAT CTGGATATGG TGCAACTATG AATGTAGGTT CAGATGTTAT CTTTAATGAT
2700





ATAGGAAATG GTCAATTTAA ATTAAATAAT TCTGAAAATA GTAATATTAC GGCACATCAA
2760





AGTAAATTCG TTGTATATGA TAGTATGTTT GATAATTTTA GCATTAACTT TTGGGTAAGG
2820





ACTCCTAAAT ATAATAATAA TGATATACAA ACTTATCTTC AAAATGAGTA TACAATAATT
2880





AGTTGTATAA AAAATGACTC AGGATGGAAA GTATCTATTA AGGGAAATAG AATAATATGG
2940





ACATTAATAG ATGTTAATGC AAAATCTAAA TCAATATTTT TCGAATATAG TATAAAAGAT
3000





AATATATCAG ATTATATAAA TAAATGGTTT TCCATAACTA TTACTAATGA TAGATTAGGT
3060





AACGCAAATA TTTATATAAA TGGAAGTTTG AAAAAAAGTG AAAAAATTTT AAACTTAGAT
3120





AGAATTAATT CTAGTAATGA TATAGACTTC AAATTAATTA ATTGTACAGA TACTACTAAA
3180





TTTGTTTGGA TTAAGGATTT TAATATTTTT GGTAGAGAAT TAAATGCTAC AGAAGTATCT
3240





TCACTATATT GGATTCAATC ATCTACAAAT ACTTTAAAAG ATTTTTGGGG GAATCCTTTA
3300





AGATACGATA CACAATACTA TCTGTTTAAT CAAGGTATGC AAAATATCTA TATAAAGTAT
3360





TTTAGTAAAG CTTCTATGGG GGAAACTGCA CCACGTACAA ACTTTAATAA TGCAGCAATA
3420





AATTATCAAA ATTTATATCT TGGTTTACGA TTTATTATAA AAAAAGCATC AAATTCTCGG
3480





AATATAAATA ATGATAATAT AGTCAGAGAA GGAGATTATA TATATCTTAA TATTGATAAT
3540





ATTTCTGATG AATCTTACAG AGTATATGTT TTGGTGAATT CTAAAGAAAT TCAAACTCAA
3600





TTATTTTTAG CACCCATAAA TGATGATCCT ACGTTCTATG ATGTACTACA AATAAAAAAA
3660





TATTATGAAA AAACAACATA TAATTGTCAG ATACTTTGCG AAAAAGATAC TAAAACATTT
3720





GGGCTGTTTG GAATTGGTAA ATTTGTTAAA GATTATGGAT ATGTTTGGGA TACCTATGAT
3780





AATTATTTTT GCATAAGTCA GTGGTATCTC AGAAGAATAT CTGAAAATAT AAATAAATTA
3840





AGGTTGGGAT GTAATTGGCA ATTCATTCCC GTGGATGAAG GATGGACAGA ATAA.
3894











TeNT, DNA.



SEQ ID NO: 16










ATGCCAATAA CCATAAATAA TTTTAGATAT AGTGATCCTG TTAATAATGA TACAATTATT
60






ATGATGGAGC CACCATACTG TAAGGGTCTA GATATCTATT ATAAGGCTTT CAAAATAACA
120





GATCGTATTT GGATAGTGCC GGAAAGGTAT GAATTTGGGA CAAAACCTGA AGATTTTAAC
180





CCACCATCTT CATTAATAGA AGGTGCATCT GAGTATTACG ATCCAAATTA TTTAAGGACT
240





GATTCTGATA AAGATAGATT TTTACAAACC ATGGTAAAAC TGTTTAACAG AATTAAAAAC
300





AATGTAGCAG GTGAAGCCTT ATTAGATAAG ATAATAAATG CCATACCTTA CCTTGGAAAT
360





TCATATTCCT TACTAGACAA GTTTGATACA AACTCTAATT CAGTATCTTT TAATTTATTA
420





GAACAAGACC CCAGTGGAGC AACTACAAAA TCAGCAATGC TGACAAATTT AATAATATTT
480





GGACCTGGGC CTGTTTTAAA TAAAAATGAG GTTAGAGGTA TTGTATTGAG GGTAGATAAT
540





AAAAATTACT TCCCATGTAG AGATGGTTTT GGCTCAATAA TGCAAATGGC ATTTTGCCCA
600





GAATATGTAC CTACCTTTGA TAATGTAATA GAAAATATTA CGTCACTCAC TATTGGCAAA
660





AGCAAATATT TTCAAGATCC AGCATTACTA TTAATGCACG AACTTATACA TGTACTACAT
720





GGTTTATACG GAATGCAGGT ATCAAGCCAT GAAATTATTC CATCCAAACA AGAAATTTAT
780





ATGCAGCATA CATATCCAAT AAGTGCTGAA GAACTATTCA CTTTTGGCGG ACAGGATGCT
840





AATCTTATAA GTATTGATAT AAAAAACGAT TTATATGAAA AAACTTTAAA TGATTATAAA
900





GCTATAGCTA ACAAACTTAG TCAAGTCACT AGCTGCAATG ATCCCAACAT TGATATTGAT
960





AGCTACAAAC AAATATATCA ACAAAAATAT CAATTCGATA AAGATAGCAA TGGACAATAT
1020





ATTGTAAATG AGGATAAATT TCAGATACTA TATAATAGCA TAATGTATGG TTTTACAGAG
1080





ATTGAATTGG GAAAAAAATT TAATATAAAA ACTAGACTTT CTTATTTTAG TATGAATCAT
1140





GACCCTGTAA AAATTCCAAA TTTATTAGAT GATACAATTT ACAATGATAC AGAAGGATTT
1200





AATATAGAAA GCAAAGATCT GAAATCTGAA TATAAAGGAC AAAATATGAG GGTAAATACA
1260





AATGCTTTTA GAAATGTTGA TGGATCAGGC CTAGTTTCAA AACTTATTGG CTTATGTAAA
1320





AAAATTATAC CACCAACAAA TATAAGAGAA AATTTATATA ATAGAACTGC ATCATTAACA
1380





GATTTAGGAG GAGAATTATG TATAAAAATT AAAAATGAAG ATTTAACTTT TATAGCTGAA
1440





AAAAATAGCT TTTCAGAAGA ACCATTTCAA GATGAAATAG TTAGTTATAA TACAAAAAAT
1500





AAACCATTAA ATTTTAATTA TTCGCTAGAT AAAATTATTG TAGATTATAA TCTACAAAGT
1560





AAAATTACAT TACCTAATGA TAGGACAACC CCAGTTACAA AAGGAATTCC ATATGCTCCA
1620





GAATATAAAA GTAATGCTGC AAGTACAATA GAAATACATA ATATTGATGA CAATACAATA
1680





TATCAATATT TGTATGCTCA AAAATCTCCT ACAACTCTAC AAAGAATAAC TATGACTAAT
1740





TCTGTTGATG ACGCATTAAT AAATTCCACC AAAATATATT CATATTTTCC ATCTGTAATC
1800





AGTAAAGTTA ACCAAGGTGC ACAAGGAATT TTATTCTTAC AGTGGGTGAG AGATATAATT
1860





GATGATTTTA CCAATGAATC TTCACAAAAA ACTACTATTG ATAAAATTTC AGATGTATCC
1920





ACTATTGTTC CTTATATAGG ACCCGCATTA AACATTGTAA AACAAGGCTA TGAGGGAAAC
1980





TTTATAGGCG CTTTAGAAAC TACCGGAGTG GTTTTATTAT TAGAATATAT TCCAGAAATT
2040





ACTTTACCAG TAATTGCAGC TTTATCTATA GCAGAAAGTA GCACACAAAA AGAAAAGATA
2100





ATAAAAACAA TAGATAACTT TTTAGAAAAA AGATATGAAA AATGGATTGA AGTATATAAA
2160





CTAGTAAAAG CAAAATGGTT AGGCACAGTT AATACGCAAT TCCAAAAAAG AAGTTATCAA
2220





ATGTATAGAT CTTTAGAATA TCAAGTAGAT GCAATAAAAA AAATAATAGA CTATGAATAT
2280





AAAATATATT CAGGACCTGA TAAGGAACAA ATTGCCGACG AAATTAATAA TCTGAAAAAC
2340





AAACTTGAAG AAAAGGCTAA TAAAGCAATG ATAAACATAA ATATATTTAT GAGGGAAAGT
2400





TCTAGATCAT TTTTAGTTAA TCAAATGATT AACGAAGCTA AAAAGCAGTT ATTAGAGTTT
2460





GATACTCAAA GCAAAAATAT TTTAATGCAG TATATAAAAG CAAATTCTAA ATTTATAGGT
2520





ATAACTGAAC TAAAAAAATT AGAATCAAAA ATAAACAAAG TTTTTTCAAC ACCAATTCCA
2580





TTTTCTTATT CTAAAAATCT GGATTGTTGG GTTGATAATG AAGAAGATAT AGATGTTATA
2640





TTAAAAAAGA GTACAATTTT AAATTTAGAT ATTAATAATG ATATTATATC AGATATATCT
2700





GGGTTTAATT CATCTGTAAT AACATATCCA GATGCTCAAT TGGTGCCCGG AATAAATGGC
2760





AAAGCAATAC ATTTAGTAAA CAATGAATCT TCTGAAGTTA TAGTGCATAA AGCTATGGAT
2820





ATTGAATATA ATGATATGTT TAATAATTTT ACCGTTAGCT TTTGGTTGAG GGTTCCTAAA
2880





GTATCTGCTA GTCATTTAGA ACAATATGGC ACAAATGAGT ATTCAATAAT TAGCTCTATG
2940





AAAAAACATA GTCTATCAAT AGGATCTGGT TGGAGTGTAT CACTTAAAGG TAATAACTTA
3000





ATATGGACTT TAAAAGATTC CGCGGGAGAA GTTAGACAAA TAACTTTTAG GGATTTACCT
3060





GATAAATTTA ATGCTTATTT AGCAAATAAA TGGGTTTTTA TAACTATTAC TAATGATAGA
3120





TTATCTTCTG CTAATTTGTA TATAAATGGA GTACTTATGG GAAGTGCAGA AATTACTGGT
3180





TTAGGAGCTA TTAGAGAGGA TAATAATATA ACATTAAAAC TAGATAGATG TAATAATAAT
3240





AATCAATACG TTTCTATTGA TAAATTTAGG ATATTTTGCA AAGCATTAAA TCCAAAAGAG
3300





ATTGAAAAAT TATACACAAG TTATTTATCT ATAACCTTTT TAAGAGACTT CTGGGGAAAC
3360





CCTTTACGAT ATGATACAGA ATATTATTTA ATACCAGTAG CTTCTAGTTC TAAAGATGTT
3420





CAATTGAAAA ATATAACAGA TTATATGTAT TTGACAAATG CGCCATCGTA TACTAACGGA
3480





AAATTGAATA TATATTATAG AAGGTTATAT AATGGACTAA AATTTATTAT AAAAAGATAT
3540





ACACCTAATA ATGAAATAGA TTCTTTTGTT AAATCAGGTG ATTTTATTAA ATTATATGTA
3600





TCATATAACA ATAATGAGCA CATTGTAGGT TATCCGAAAG ATGGAAATGC CTTTAATAAT
3660





CTTGATAGAA TTCTAAGAGT AGGTTATAAT GCCCCAGGTA TCCCTCTTTA TAAAAAAATG
3720





GAAGCAGTAA AATTGCGTGA TTTAAAAACC TATTCTGTAC AACTTAAATT ATATGATGAT
3780





AAAAATGCAT CTTTAGGACT AGTAGGTACC CATAATGGTC AAATAGGCAA CGATCCAAAT
3840





AGGGATATAT TAATTGCAAG CAACTGGTAC TTTAATCATT TAAAAGATAA AATTTTAGGA
3900





TGTGATTGGT ACTTTGTACC TACAGATGAA GGATGGACAA ATGATTAA.
3948











DNA, BoNT/A1(0) LC



SEQ ID NO: 17



ATGCCATTCGTCAACAAGCAATTCAACTACAAAGACCCAGTCAACGGCGTC






GACATCGCATACATCAAGATTCCGAACGCCGGTCAAATGCAGCCGGTTAAG





GCTTTTAAGATCCACAACAAGATTTGGGTTATCCCGGAGCGTGACACCTTCA





CGAACCCGGAAGAAGGCGATCTGAACCCGCCACCGGAAGCGAAGCAAGTC





CCTGTCAGCTACTACGATTCGACGTACCTGAGCACGGATAACGAAAAAGAT





AACTACCTGAAAGGTGTGACCAAGCTGTTCGAACGTATCTACAGCACGGAT





CTGGGTCGCATGCTGCTGACTAGCATTGTTCGCGGTATCCCGTTCTGGGGTG





GTAGCACGATTGACACCGAACTGAAGGTTATCGACACTAACTGCATTAACG





TTATTCAACCGGATGGTAGCTATCGTAGCGAAGAGCTGAATCTGGTCATCAT





TGGCCCGAGCGCAGACATTATCCAATTCGAGTGCAAGAGCTTTGGTCACGA





GGTTCTGAATCTGACCCGCAATGGCTATGGTAGCACCCAGTACATTCGTTTT





TCGCCGGATTTTACCTTCGGCTTTGAAGAGAGCCTGGAGGTTGATACCAATC





CGTTGCTGGGTGCGGGCAAATTCGCTACCGATCCGGCTGTCACGCTGGCCCA





TcAACTGATCtACGCAGGCCACCGCCTGTACGGCATTGCCATCAACCCAAAC





CGTGTGTTCAAGGTTAATACGAATGCATACTACGAGATGAGCGGCCTGGAA





GTCAGCTTCGAAGAACTGCGCACCTTCGGTGGCCATGACGCTAAATTCATTG





ACAGCTTGCAAGAGAATGAGTTCCGTCTGTACTACTATAACAAATTCAAAG





ACATTGCAAGCACGTTGAACAAGGCCAAAAGCATCGTTGGTACTACCGCGT





CGTTGCAGTATATGAAGAATGTGTTTAAAGAGAAGTACCTGCTGTCCGAGG





ATACCTCCGGCAAGTTTAGCGTTGATAAGCTGAAGTTTGACAAACTGTACA





AGATGCTGACCGAGATTTACACCGAGGACAACTTTGTGAAATTCTTCAAAG





TGTTGAATCGTAAAACCTATCTGAATTTTGACAAAGCGGTTTTCAAGATTAA





CATCGTGCCGAAGGTGAACTACACCATCTATGACGGTTTTAACCTGCGTAAC





ACCAACCTGGCGGCGAACTTTAACGGTCAGAATACGGAAATCAACAACATG





AATTTCACGAAGTTGAAGAACTTCACGGGTCTGTTCGAGTTCTATAAGCTGC





TGTGCGTGCGCGGTATCATCACCAGCAAA,





DNA, BoNT/A1(0) Activation loop


SEQ ID NO: 18



ACCAAAAGCCTGGACAAAGGCTACAACAAG,






DNA, BoNT/A1(0) HC


SEQ ID NO: 19



GCGCTGAATGACCTGTGCATTAAGGTAAACAATTGGGATCTGTTCTTTTCGC






CATCCGAAGATAATTTTACCAACGACCTGAACAAGGGTGAAGAAATCACCA





GCGATACGAATATTGAAGCAGCGGAAGAGAATATCAGCCTGGATCTGATCC





AGCAGTACTATCTGACCTTTAACTTCGACAATGAACCGGAGAACATTAGCA





TTGAGAATCTGAGCAGCGACATTATCGGTCAGCTGGAACTGATGCCGAATA





TCGAACGTTTCCCGAACGGCAAAAAGTACGAGCTGGACAAGTACACTATGT





TCCATTACCTGCGTGCACAGGAGTTTGAACACGGTAAAAGCCGTATCGCGC





TGACCAACAGCGTTAACGAGGCCCTGCTGAACCCGAGCCGTGTCTATACCTT





CTTCAGCAGCGACTATGTTAAGAAAGTGAACAAAGCCACTGAGGCCGCGAT





GTTCCTGGGCTGGGTGGAACAGCTGGTATATGACTTCACGGACGAGACGAG





CGAAGTGAGCACTACCGACAAAATTGCTGATATTACCATCATTATCCCGTAT





ATTGGTCCGGCACTGAACATTGGCAACATGCTGTACAAAGACGATTTTGTG





GGTGCCCTGATCTTCTCCGGTGCCGTGATTCTGCTGGAGTTCATTCCGGAGA





TTGCGATCCCGGTGTTGGGTACCTTCGCGCTGGTGTCCTACATCGCGAATAA





GGTTCTGACGGTTCAGACCATCGATAACGCGCTGTCGAAACGTAATGAAAA





ATGGGACGAGGTTTACAAATACATTGTTACGAATTGGCTGGCGAAAGTCAA





TACCCAGATCGACCTGATCCGTAAGAAAATGAAAGAGGCGCTGGAGAATCA





GGCGGAGGCCACCAAAGCAATTATCAACTACCAATACAACCAGTACACGGA





AGAAGAGAAGAATAACATTAACTTCAATATCGATGATTTGAGCAGCAAGCT





GAATGAATCTATCAACAAAGCGATGATCAATATCAACAAGTTTTTGAATCA





GTGTAGCGTTTCGTACCTGATGAATAGCATGATTCCGTATGGCGTCAAACGT





CTGGAGGACTTCGACGCCAGCCTGAAAGATGCGTTGCTGAAATACATTTAC





GACAATCGTGGTACGCTGATTGGCCAAGTTGACCGCTTGAAAGACAAAGTT





AACAATACCCTGAGCACCGACATCCCATTTCAACTGAGCAAGTATGTTGAT





AATCAACGTCTGTTGAGCACTTTCACCGAGTATATCAAAAACATCATCAATA





CTAGCATTCTGAACCTGCGTTACGAGAGCAATCATCTGATTGATCTGAGCCG





TTATGCAAGCAAGATCAACATCGGTAGCAAGGTCAATTTTGACCCGATCGA





TAAGAACCAGATCCAGCTGTTTAATCTGGAATCGAGCAAAATTGAGGTTAT





CCTGAAAAACGCCATTGTCTACAACTCCATGTACGAGAATTTCTCCACCAGC





TTCTGGATTCGCATCCCGAAATACTTCAACAGCATTAGCCTGAACAACGAGT





ATACTATCATCAACTGTATGGAGAACAACAGCGGTTGGAAGGTGTCTCTGA





ACTATGGTGAGATCATTTGGACCTTGCAGGACACCCAAGAGATCAAGCAGC





GCGTCGTGTTCAAGTACTCTCAAATGATCAACATTTCCGATTACATTAATCG





TTGGATCTTCGTGACCATTACGAATAACCGTCTGAATAACAGCAAGATTTAC





ATCAATGGTCGCTTGATCGATCAGAAACCGATTAGCAACCTGGGTAATATC





CACGCAAGCAACAACATTATGTTCAAATTGGACGGTTGCCGCGATACCCAT





CGTTATATCTGGATCAAGTATTTCAACCTGTTTGATAAAGAACTGAATGAGA





AGGAGATCAAAGATTTGTATGACAACCAATCTAACAGCGGCATTTTGAAGG





ACTTCTGGGGCGATTATCTGCAATACGATAAGCCGTACTATATGCTGAACCT





GTATGATCCGAACAAATATGTGGATGTCAATAATGTGGGTATTCGTGGTTAC





ATGTATTTGAAGGGTCCGCGTGGCAGCGTTATGACGACCAACATTTACCTGA





ACTCTAGCCTGTACCGTGGTACGAAATTCATCATTAAGAAATATGCCAGCG





GCAACAAAGATAACATTGTGCGTAATAACGATCGTGTCTACATCAACGTGG





TCGTGAAGAATAAAGAGTACCGTCTGGCGACCAACGCTTCGCAGGCGGGTG





TTGAGAAAATTCTGAGCGCGTTGGAGATCCCTGATGTCGGTAATCTGAGCC





AAGTCGTGGTTATGAAGAGCAAGAACGACCAGGGTATCACTAACAAGTGCA





AGATGAACCTGCAAGACAACAATGGTAACGACATCGGCTTTATTGGTTTCC





ACCAGTTCAACAATATTGCTAAACTGGTAGCGAGCAATTGGTACAATCGTC





AGATTGAGCGCAGCAGCCGTACTTTGGGCTGTAGCTGGGAGTTTATCCCGGT





CGATGATGGTTGGGGCGAACGTCCGCTGTAA,





DNA, primer


SEQ ID NO: 20



ATACACCATGGTATGCCATTCGTCAACAAGCAATT,






DNA, primer


SEQ ID NO: 21



GCTTTTGGATCCGGTTTATTTGCTGGTGATGATACCGCGC,






DNA, primer


SEQ ID NO: 22



ACAAGCATATGGCGCTGAATGACCTGTGCATTAAG,






DNA, primer


SEQ ID NO: 23



AAGCTTCTCGAGTCATTACAGCGGACGTTCGCCCC,






Claims
  • 1. A method for producing a di-chain clostridial neurotoxin, comprising separately expressing in a heterologous host cell a first gene encoding a clostridial neurotoxin light chain and a second gene encoding a clostridial neurotoxin heavy chain, wherein said first and second genes are expressed in an oxidizing environment of said host cell.
  • 2. A method according to claim 1, wherein said host cell is a prokaryote cell.
  • 3. A method according to claim 2, wherein said oxidizing environment is the cytoplasm of said host prokaryote cell.
  • 4. A method according to claim 2 or 3, wherein said prokaryote cell is a prokaryote cell in which at least one gene involved in disulphide bond formation is overexpressed by in the cytoplasm as compared to an otherwise identical wild-type cell and/or at least one gene involved in disulphide bond reduction is repressed as compared to an otherwise identical wild-type cell.
  • 5. A method according to claim 4, wherein said prokaryote cell is an E. coli cell from a strain selected from AD494, BL21trxB, Origami, Rosetta-gami and Shuffle strains.
  • 6. A method according to any one of claims 1 to 5, wherein said clostridial neurotoxin light chain is selected from a BoNT type A, type B, type C, type D, type E, type F or type G or a TeNT light chain, and wherein said clostridial neurotoxin heavy chain is selected from a BoNT type A, type B, type C, type D, type E, type F or type G or a TeNT heavy chain.
  • 7. A method according to any one of claims 1 to 6, wherein said clostridial neurotoxin light chain and said clostridial neurotoxin heavy chain are from the same BoNT serotype or subtype.
  • 8. A method according to any one of claims 1 to 6, wherein said clostridial neurotoxin light chain and said clostridial neurotoxin heavy chain are from a different BoNT serotype or subtype.
  • 9. A method according to any one of claims 1 to 8, wherein said first gene encoding a clostridial neurotoxin light chain and said second gene encoding a clostridial neurotoxin heavy chain are present on the same vector.
  • 10. A method according to any one of claims 1 to 8, wherein said first gene encoding a clostridial neurotoxin light chain and said second gene encoding a clostridial neurotoxin heavy chain are present on different vectors.
  • 11. A method according to any one of claims 1 to 10 further comprising a step of recovering said di-chain clostridial neurotoxin from said host cell.
  • 12. Cell comprising a first gene encoding a clostridial neurotoxin light chain, and a second gene encoding a clostridial neurotoxin heavy chain, wherein, wherein said first and second genes are expressed in an oxidizing environment of said cell.
  • 13. Kit comprising a. a cell comprising an oxidizing environment,b. a first gene encoding a clostridial neurotoxin light chain, andc. a second gene encoding a clostridial neurotoxin heavy chain,wherein said first and second genes are suitable for separately expressing a clostridial neurotoxin light and a heavy chain in said oxidizing environment of said cell.
  • 14. Di-chain clostridial neurotoxin obtained by the method according to any one of claims 1 to 11.
  • 15. Pharmaceutical composition comprising a di-chain clostridial neurotoxin according to claim 14.
  • 16. Use of a host cell which has an oxidative cytoplasm for producing a di-chain clostridial neurotoxin, wherein said host cell comprises a first gene encoding a clostridial neurotoxin light chain and a second gene encoding a clostridial neurotoxin heavy chain, wherein said first and second genes are expressed in the oxidative cytoplasm of said host cell.
Priority Claims (1)
Number Date Country Kind
16189221.1 Sep 2016 EP regional
PCT Information
Filing Document Filing Date Country Kind
PCT/EP2017/073030 9/13/2017 WO 00