The invention relates to a method for producing annular metallic sealing elements.
A sealing element has been disclosed by EP 1 306 589 A2, containing a first metallic layer comprising an oxide dispersion-strengthened alloy and a second metallic layer comprising a solid solution-hardened alloy, or a precipitation-hardened nickel-based alloy, or an oxide dispersion-strengthened alloy. As seen in a radial sectional view, the seal has a bellows-like structure. From a process engineering point of view, first and second pieces of the layers are cut out, with the two layers being formed to obtain first and second rings. The rings thus obtained are placed inside each other concentrically, and the material composite thus obtained is subsequently shaped to produce the end contour of a sealing element. Given the multiple work steps, this kind of shape-forming is considered to be complex and costly.
DE 10 2007 038 713 A1 discloses a method for producing regionally reinforced hollow profiled sections from a metal, in particular steel or a steel alloy. A blank, together with a plurality of metal reinforcement elements disposed on the blank, are formed so as to obtain a hollow profiled section, by employing a roll-forming technique or by way of U-O forming, wherein the reinforcement elements disposed on the blank are positively connected to the formed blanks following the forming operation.
Today, metallic sealing elements are often die-cut from sheet metals so as to obtain these elements and are brought into the final shapes thereof in a multiple work steps. The use of sheet metals results in much loss of material during die-cutting of the base sealing body, and thus the material costs are very high.
It is the object of the invention to produce sealing elements that can improve both the sealing properties and the resilience properties in the operational stage, using the lowest possible amount of material.
The sealing elements thus produced should be suitable for specific applications, notably in the area of vehicle drive systems.
This object is achieved by a method for producing annular metallic sealing elements by bringing at least two sheet metal strips or foil strips having predefinable thicknesses, lengths, and widths into operative connection with each other in the manner of a tailored blank or patchwork, and subsequently winding this composite to obtain a tube, wherein the mutually facing end regions of the tubular multilayer composite are connected to each other non-positively or positively or by bonding, or combinations thereof, notably by thermal action such as by welding or soldering, and either dividing the tube into individual ring elements, which are subsequently formed using mechanical shape-forming to obtain the respective sealing element, or forming the entire tube and dividing the tube thus profiled into ring elements to obtain individual sealing elements.
This object is likewise achieved by a method for producing annular metallic sealing elements by generating tubes or tube segments having various external dimensions from sheet metal strips or foil strips having predefinable thicknesses, lengths, and widths, placing the tubes or tube segments inside each other to obtain a multilayer composite designed in the manner of tailored tubes, wherein the mutually facing end regions of the tubular multilayer composite are connected to each other non-positively or positively or by bonding, or combinations thereof, notably by thermal action such as by welding or soldering, and either dividing the multilayer composite into individual ring elements, which are subsequently formed using mechanical shape-forming to obtain the respective sealing element, or forming the entire tube and dividing the tube thus profiled into ring elements to obtain individual sealing elements.
The term ‘tailored blank’ is considered by a person skilled in the art to mean sheet metals or foils that are composed, for example, of various material grades and/or thicknesses. This prefabricated semi-finished product subsequently undergoes a mechanical forming operation.
The term ‘patchwork’ is considered by a person skilled in the art to mean sheet metals or foils that are placed onto other smaller sheet metals or foils in the manner of patches and connected to the first sheet metals or foils.
The term ‘tailored tubes’ is considered by a person skilled in the art to mean tubular components that are formed by sheet metals or foils and are connected to each other.
The connection of the sheet metals, or the tubes, or the mutually opposing end regions of the wound sheet metals can be effected by all bonding, non-positive or positive connecting methods known in the art, or combinations thereof.
Fields of application for sealing elements produced by a method according to the invention include gaskets in the area of a turbocharger, or flat gaskets or flange gaskets, notably in the exhaust tract of a motor vehicle. Moreover, the gaskets thus generated can be employed as housing seals, for example in the transmission housing of a vehicle.
Possible starting materials are either thin sheet metal strips or foil strips (10 μm to 200 μm), or combinations with thicker sheet metal strips or foil strips (200 μm to 1,000 μm), of which the respective material composite is composed, either in the form of a sheet metal or a tube.
Given the various lengths, widths or thicknesses of the sheet metal strips or foil strips employed a leaf spring-like layered structure (patchwork) can, for example, be implemented. This is associated with the following advantages:
Such layer systems can be produced from materials that do not result in any undesirable effects, such as varying thermal expansions or thermoelectric effects, for example.
Depending on the field of use of the sealing element, identical or different materials are employed. Suitable materials include cold rolled strips, spring steels, nickel-based alloys, bainitic materials, or the like.
The sheet metal strips or foil strips employed can be coated as needed in some regions or over the entire surface.
The subject matter of the invention is shown in the drawings based on an exemplary embodiment and is described as follows. In the drawings:
The tubes, or tube segments, generated in accordance with
Suitable methods for this purpose include forming methods, such as hydroforming, rubber pad forming, or the use of upsetting presses. A person skilled in the art will select a suitable method, depending on the application.
Number | Date | Country | Kind |
---|---|---|---|
10 2009 022 391.6 | May 2009 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/DE2010/000565 | 5/20/2010 | WO | 00 | 11/22/2011 |