Method for programming foot pedal settings and controlling performance through foot pedal variation

Information

  • Patent Grant
  • 10349925
  • Patent Number
    10,349,925
  • Date Filed
    Friday, November 6, 2009
    14 years ago
  • Date Issued
    Tuesday, July 16, 2019
    5 years ago
Abstract
The present invention pertains to programming a foot pedal and switches located therewith that is used with a medical device and/or medical device system. A user may select any switch or directional movement available on the foot pedal for programming by activating the switch and/or moving a treadle located on the foot pedal or by selecting a foot pedal feature on a display. The programming options available for the selected switch or directional movement are displayed on the display screen. Using the foot pedal, the display screen, voice command or combinations thereof, the user can navigate through different options to select one or more options and confirm the chosen option(s) for the particular switch or directional movement. The control and feel of the movement of the treadle and/or switch provides the user with the ability to program custom settings that suit the user's foot position(s) and/or particular style of surgery.
Description
TECHNICAL FIELD OF THE INVENTION

The present invention relates generally to medical apparatuses; more particularly, to foot-operated controls for surgical apparatuses. Numerous types of apparatuses include as part of the apparatus, a hand-held medical implement or tool. Operation of the tool requires control of various operating settings or functions.


BACKGROUND OF THE INVENTION

Ophthalmic surgical apparatuses such as a phacoemulsification apparatus typically include operating controls for regulating settings or functions of the apparatus. Such phacoemulsification apparatus is particularly directed for surgically removing the natural, crystalline lenses from cataractic eyes prior to the insertion of an artificial intraocular lens.


Such apparatus typically includes a control cabinet, power supply, one or more pumps as well as associated electronic hardware for operating a multifunction handheld surgical implement in order to sonically emulsify eye tissue, irrigate the eye with a saline solution, and aspirate the emulsified lens from the eye.


In view of the handheld instrumentation necessary for a phacoemulsification procedure, foot controls are frequently provided in order to facilitate use of the handpiece by delegating other control functions to the foot pedal device.


Any number of foot pedal device systems have been utilized which included a variety of pneumatic and electrical actuators to control the ophthalmic surgical apparatus.


Improved foot pedal control systems, such as that described in U.S. Pat. No. 4,983,901 provide for a virtually unlimited number of control variations and modes for operating phacoemulsification apparatuses. Additional single linear and dual linear foot pedal patents include U.S. Pat. Nos. 5,268,624; 5,342,293; 6,260,434; 6,360,630; 6,452,120; 6,452,123; and 6,674,030.


However, despite the output from such foot pedals in regulating or controlling the apparatus, the pedal must be user friendly in order to provide a surgeon comfort and reliability in its use so as not to initiate disruption of the surgeon's concentration when performing surgery.


As may be expected, there are many types of foot pedals, but no common way to program the settings that are available for each type. Currently there are static graphical screens that when a user presses a button on the display screen they are presented with menus to select different options to be programmed into the foot pedal; however, until the present invention there was no interface between the footpedal and the display screen to assist in setting the appropriate options for the user.


Thus, it is desirable to have a unified interface for achieving an intuitive way of programming any type of foot pedal attached to a system, wherein the interface is graphical in nature and can receive feedback from the foot pedal and display the information in real time on a display screen. The present invention fulfills that need.


Additionally, there is a need to immediately access multiple pre-programmed memory settings during a surgical procedure. For example, during a phacoemulsification procedure, the surgeon may need or want to switch between multiple pre-programmed memory settings to address issues arising during surgery, such as different lens densities, different situations, and/or different portion of the surgery, e.g. initiation of emulsification vs. cleaning/polishing the capsule. Prior to the present invention, the surgery had to be halted until the surgeon or user could complete the change. Thus, it is desirable to have a mechanism for accessing multiple pre-programmed memory settings and the present invention fulfills that need.


SUMMARY OF THE INVENTION

The present invention pertains to a method for programming one or more foot pedal settings, comprising: (1) selecting a switch or a directional movement of a treadle located on a foot pedal; (2) displaying one or more programming options for the selected switch or directional movement of the treadle on a display; (3) toggling through the one or more programming options, wherein the toggling is performed by moving the treadle; and (4) selecting one of the programming options available for the selected switch or directional movement of the treadle. The selecting may be performed by one selected from the group consisting of clicking an icon on the display, pressing a switch on the foot pedal, moving the treadle, voicing a command, and combinations thereof. The one or more programming options is selected from the group consisting of irrigation, aspiration, ultrasonic power, vitrectomy, bottle height, pump speed, pump type, flow rate, and vacuum level. The present invention also pertains to selecting a second switch or second directional movement of the treadle and deactivating or locking the second switch or second directional movement.


The present invention also pertains to a method for programming surgical settings for a foot pedal, comprising: (1) selecting a directional movement of a treadle located on the foot pedal, wherein the directional movement of the treadle is selected from the group consisting of pitch and yaw and wherein the selecting of the directional movement is performed by moving the treadle; (2) displaying one or more surgical settings for the selected directional movement on a display; and (3) selecting one or more surgical settings, wherein the selecting of the one or more surgical settings is performed by one selected from the group consisting of the foot pedal, the display, a voice command, and combinations thereof. The present invention further comprises moving the foot pedal in the selected directional movement by depressing the treadle or yawing the treadle; placing the treadle in a first starting location for a first selected surgical setting; confirming the first starting location; placing the treadle in a first ending location for the first selected surgical setting; and confirming the first ending location, wherein the confirming is performed by one selected from the group consisting of clicking an icon on the display, pressing a switch on the foot pedal, moving the treadle, voicing a command and combinations thereof. Additional starting and ending locations for other settings may also be selected and programmed.


The present invention also pertains to a method of using a foot pedal to select multiple pre-programmed settings, comprising selecting a direction of movement of a treadle of the foot pedal, wherein the direction is selected from the group consisting of pitch and yaw; and moving the treadle in the selected direction to one or more selected from the group consisting of: a first location, wherein the first location is a first pre-programmed setting; a second location, wherein the second location is a second pre-programmed setting; and a third location, wherein the third location is a third pre-programmed setting.


The present invention also pertains to a method for selecting pre-programmed memory settings for a surgical procedure using a foot pedal, comprising moving a treadle of the foot pedal to a first location within a directional axis selected from the group consisting of pitch and yaw, wherein the first location activates a first pre-programmed memory setting; and moving the treadle within a plane of the first location to activate one or more control settings of the first pre-programmed memory setting. The method further comprises moving the treadle of the foot pedal to a second location within the directional axis, wherein the second location activates a second pre-programmed memory setting; and moving the treadle within a plane of the second location to activate one or more control settings of the second pre-programmed memory setting. Additionally, the method further comprising moving the treadle of the foot pedal to a third location within the directional axis, wherein the third location activates a third pre-programmed memory setting; and moving the treadle within a plane of the third location to activate one or more control settings of the third pre-programmed memory setting.


The present invention also pertains to a foot pedal, comprising a treadle, wherein the treadle is capable of moving in at least one direction selected from the group consisting of pitch and yaw, and wherein at least one of the directional movements of the treadle is capable of acting as a switch. Additionally, the present invention pertains to a method of programming a linear foot pedal, comprising selecting a directional movement of a treadle of the linear foot pedal, wherein the directional movement is selected from the group consisting of pitch and yaw; and programming the selected directional movement to function as a switch.





BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is best understood with reference to the following detailed description of the invention and the drawings in which:



FIG. 1 illustrates an exemplary phacoemulsification/vitrectomy system in a functional block diagram;



FIG. 2 is a schematic of a foot pedal showing features of the foot pedal;



FIG. 3A illustrates graphical examples of foot pedal movement and ultrasonic power levels;



FIG. 3B illustrates graphical examples of foot pedal movement and aspiration levels;



FIG. 3C illustrates graphical examples of foot pedal movement and ultrasonic power levels;



FIG. 3D is a profile view of a foot pedal showing the movement of a treadle in a pitch direction;



FIG. 4 is a schematic of a foot pedal showing the movement of a treadle in a yaw direction;



FIG. 5 is a schematic of a foot pedal showing an embodiment having pre-programmed memory settings (zones) in a yaw direction; and



FIG. 6 is a profile view of a foot pedal showing an embodiment having pre-programmed memory settings (zones) in a pitch direction.





DETAILED DESCRIPTION OF THE INVENTION

Reference will now be made in detail to embodiments of the invention, examples of which are illustrated in the accompanying drawings. While the invention will be described in conjunction with the embodiments, it will be understood that they are not intended to limit the invention to those embodiments. On the contrary, the invention is intended to cover alternatives, modifications, and equivalents, which may be included within the spirit and scope of the invention as defined by the appended claims.


The present invention may be used with any foot pedal known in the art for use with medical apparatuses, including dual linear foot pedals and single linear foot pedals.



FIG. 1 illustrates an exemplary phacoemulsification/vitrectomy system 100 in a functional block diagram to show the components and interfaces for a safety critical medical instrument system that may be employed in accordance with an aspect of the present invention. A serial communication cable 103 connects GUI host 101 and instrument host 102 module for the purposes of controlling the surgical instrument host 102 by the GUI host 101. GUI host 101 and instrument host 102, as well as any other component of system 100, may be connected wirelessly. Instrument host 102 may be considered a computational device in the arrangement shown, but other arrangements are possible. Foot pedal 104 and instrument host 102 may provide control and feedback by exchanging data between foot pedal 104 and the instrument host 102, between software subsystems within instrument host 102, between instrument host 102 and subsystems external to the instrument host 102 and/or GUI host 101, or between subsystems external to instrument host 102 and/or GUI host 101. Instrument host 102 may include various programs and functionality, including but not limited to applications functioning to conduct an ophthalmic surgical procedure.


A switch module associated with foot pedal 104 may transmit control signals relating internal physical and virtual switch position information as input to the instrument host 102 over serial communications cable 105 (although foot pedal 104 may be connected wirelessly). Instrument host 102 may provide a database file system for storing configuration parameter values, programs, and other data saved in a storage device (not shown). In addition, the database file system may be realized on the GUI host 101 or any other subsystem (not shown) that could accommodate such a file system.


The phacoemulsification/vitrectomy system 100 has a handpiece 110 that includes a needle and electrical means, typically a piezoelectric crystal, for ultrasonically vibrating the needle. The instrument host 102 supplies power on line 111 to a phacoemulsification/vitrectomy handpiece 110. An irrigation fluid source 112 can be fluidly coupled to handpiece 110 through line 113. The irrigation fluid and ultrasonic power are applied by handpiece 110 to an eye, or affected area or region, indicated diagrammatically by block 114. Alternatively, the irrigation source may be routed to eye 114 through a separate pathway independent of the handpiece. Aspiration is provided to eye 114 by a pump(s) (not shown), such as a peristaltic pump and/or a vacuum pump, via the instrument host 102, through lines 115 and 116.


As shown in FIG. 2, foot pedal 104 may comprise a treadle 108 and one or more switches (e.g. left switch 124 and right switch 125). Treadle 108 may move in a pitch direction and in a yaw direction. The directional movement of treadle 108 may control various programming/surgical settings selected by a user.


According to an embodiment, the present invention pertains to programming a foot pedal and switches located therewith that is used with a medical device and/or medical device system. A user may select any switch or directional movement (pitch (up and down in a vertical plane) or yaw (rotation of a treadle from left to right and vice versa (side to side) in a horizontal plane)) available on the foot pedal for programming by activating the switch and/or moving a treadle located on the foot pedal or by selecting a foot pedal feature on a display screen. The user may also select a foot pedal feature by voice commands. The user's selection tells an instrument host or controller which switch or directional movement has been selected and the programming options available for the selected switch or directional movement are displayed on the display screen. Using the foot pedal, the display screen, and/or voice command, the user can navigate through different options/settings to select one or more options, such as by toggling through a list of options, preferably using the foot pedal and/or the display screen. The user may confirm the chosen option(s)/setting(s) for the particular switch or directional movement by engaging the foot pedal, clicking on the display screen, using a voice command or any combination thereof to write into the memory of the medical device system the option(s)/setting(s). The speed of the yaw or pitch movement (e.g. a quick tap of the treadle) may also be used to set or confirm a programming setting, feature selection, and/or any other selection. The control and feel of the depression and/or movement of the treadle and/or switch provides the user with the ability to program custom settings that suit the user's foot position(s), comfort, and/or particular style of surgery. The user may also set the sensitivity and/or how the movement of the treadle responds with respect to the programming settings and/or parameters thereof, e.g. the proportional response between the movement of the treadle and the level of ultrasonic power.


With linear foot pedals known in the art, the user can set the three available positions of the treadle movement using the display screen, but not until the present invention could the settings be made using both the foot pedal and the display screen. The term “display” or “display screen” as used herein shall mean a graphical user interface (GUI), a screen, a monitor, touch screen, or any other device known in the art for displaying a visual picture or representation. The three traditional positions (“position” as used herein shall mean a range of travel (movement) for a particular setting, e.g. irrigation) of the treadle in phacoemulsification include position 1 for irrigation; position 2 for irrigation and aspiration; and position 3 for irrigation, aspiration, and ultrasonic power.


When the foot pedal is in a resting position, there are no pumps running or ultrasonic power being exerted. Position 1 allows for irrigation of fluid to the eye from an irrigation source. The travel of the treadle within the first position may control the flow rate of fluid into the eye. Position 2 activates one or more pumps that are capable of increasing flow of fluid into and through the eye, aspirate fluid and lens material from the eye, and/or venting towards the eye to relieve pressure build up in the medical device system. The travel within position 2 may be programmed to control how the one or more pumps operate. For example, as the user continues to travel farther within a position, the aspiration rate may increase, the pump rate may increase, or the vacuum pressure may increase. Position 3 activates the ultrasound energy, which is used to help emulsify and/or break up the lens material. The travel within position 3 may be programmed to control, inter alia, how much power is exerted on the lens material, how the power is exerted (e.g. burst, pulse, etc.), and the length of time the power is on (duty cycle). With the present invention the user may move the treadle to various locations within the available degree of movement to set where each option begins and ends, as well as the type of control occurring within each beginning and ending, e.g., percent power distribution, type of pulses, vacuum level distribution, etc. The user may also set within a selected range of movement of the treadle how the particular programming setting will perform. For example, the ultrasonic power may increase linearly as the foot pedal is depressed or the power may increase at a set increment until a particular degree of travel of the treadle has been reached and then increments may become smaller or larger depending upon the user's preference. See FIGS. 3A and 3B which shows graphical examples of how a parameter/programming setting may react as the foot pedal is moved in a yaw or pitch direction.


For a dual linear foot pedal, the user may program the pitch directional movement and/or the yaw directional movement to correspond to one or more settings. To program a directional movement, the user selects either the pitch or the yaw directional movement of the treadle of the foot pedal by indicating the selection on a display screen, by moving the treadle in the selected directional movement, by activating a switch on the foot pedal itself, by voice command, or combinations thereof. Once the user has made a selection, the display screen will show all of the available programming settings for the selected directional movement. The available programming settings include, but are not limited to, irrigation and rate thereof, aspiration and rate thereof, choice of pump and control thereof, vacuum and control thereof, ultrasonic power and control thereof, and combinations thereof. Additional programming settings include use of a combination of pumps or switching between pumps; controlling the linear relationship between movement (travel of the treadle) and the programming setting; proportional relationship between movement and control of a programming setting (e.g. 5 mm (or 2°)=100 mmHg vs. 10 mm (or 4°)=100 mmHg or 5 mm (or 2°)=10 Hz vs. 10 mm (or 4°)=100 Hz); and/or panel movement (constant rate within a particular zone or degree of movement of the treadle) of the programming settings. By depressing the foot pedal or yawing the foot pedal to the left and/or right, the user can coordinate the feel of the foot pedal and its degree of depression or yaw to a particular program setting. Once a first designated location is reached, the user may indicate (confirm) the choice on the display screen or write in (save setting(s) in memory) the particular setting by any other mechanism described herein or known in the art, such as voice command and/or tap switch, and continue moving the foot pedal to a second designated location. Once the second designated location is reached, the user may indicate the choice. The user may continue until all of the desired and/or allowed settings for the directional movement of the foot pedal are set. If the user should exceed a set maximum amount of travel of the foot pedal for a particular setting, the instrument host or controller will indicate such maximum has been met and will prevent the user from setting a designated location outside the permitted range. When the dual linear foot pedal is used as described herein, it allows a user to control the functions, modes, and/or settings, simultaneously by using pitch, yaw, and combinations thereof.


According to an embodiment, upon attachment of a foot pedal to a medical device system, the interface of the system will recognize the type of foot pedal and the features of the foot pedal. A foot pedal may be attached to the medical device system by any mechanism known in the art, including, but not limited to, a wire connection and a wireless connection, e.g. Bluetooth® or IR. A display screen of the medical device system may present the user with a picture or representation of the foot pedal detected. The picture or representation may show all the switches and directional movements available for programming the attached foot pedal.


To program the setting(s) for a right heel switch, the user may push the right heel switch, select the right heel switch on the display screen, or use a voice command. Activating the right heel switch results in the available programming settings for the right heel switch to be displayed on the display screen. The user may select the desired programming settings from the available options by clicking on the screen or may scroll through the available options by moving the treadle of the foot pedal and selecting the setting by clicking on the screen to write that setting to the right heel switch, or use a voice command. Once the desired setting is selected any additional options available to the user for the right heel switch will be shown on the display screen. Again, following the technique used to make the first selection for the right heel switch, the user may continue programming his desired settings for that switch or any other feature of the foot pedal.


Any options available for a particular medical device system may be employed with the present invention. For example, with a phacoemulsification system the available settings may include, but are not limited to, irrigation, aspiration, vacuum level, flow rate, pump type (flow based and/or vacuum based), pump speed, ultrasonic power (type and duration, e.g. burst, pulse, duty cycle, etc.) bottle height adjustment, linear control of settings, proportional control of settings, panel control of settings, and type (or “shape”) of response as illustrated in FIGS. 3A and 3B. The user may program the starting point and ending point in the pitch direction for a first program setting, such as irrigation, by depressing the treadle to the desired starting point and clicking on the screen to write in that setting. The user may also desire the first starting point be the resting state of the treadle, i.e. before any movement of the treadle. The user continues depressing the treadle from the first starting point to a first ending point and again writes in the setting. The user may continue programming additional starting and ending points in the pitch direction for other desired settings using the treadle.


The interface provides feedback to the user should the selected starting and ending points fall outside preset thresholds to ensure all the desired settings for the pitch direction of the treadle will fit within the degree of movement permitted by the foot pedal.


Other mechanisms for setting and/or programming a particular setting may be employed with the present invention, including, but not limited to, clicking on an icon on a display screen using a mouse or touch screen, depressing a button/switch on a foot pedal, voice activated commands and/or combinations thereof.



FIG. 2 is a schematic of foot pedal 104 that may be used with the present invention. Foot pedal 104 comprises treadle 108, left switch 124, and right switch 125. FIG. 3D is a profile view of foot pedal 104. In FIG. 3D, location A 10 may indicate a starting point in the pitch direction of treadle 108 for a first setting. Location B 20 may indicate the ending point in the pitch direction for the first setting. Location C 30 may indicate the starting point in the pitch direction for a second setting and location D 40 may indicate the ending point of the second setting. Location E 50 may indicate the starting point in the pitch direction for a third setting and location F 60 may indicate the ending point of the third setting. Location B 20 and location C 30 may be located at substantially the same point, but the interface can prevent location C 30 from occurring before location B 20. The interface may also prevent a large degree of movement from location A 10 to location B 20 for the first setting and a large degree of movement from location C 30 to location D 40 to prevent inadequate or no degree of movement for the third setting (location E 50 to location F 60). Also, in FIG. 3D location B20 to location C30 or any other locations within the degree of movement of the treadle may be a dead zone or gap where no programming settings occur. This may be programmed by the user as a safety feature and/or based on personal preferences.


If a degree of movement from a starting location to an ending location exceeds a preset threshold, the user will be notified by, but not limited to, a visual indication on the display screen and/or an audible sound/voice emitted from the medical device system.



FIG. 4 illustrates another example of an embodiment of the present invention. The yaw directional movement of treadle 108 of foot pedal 104 may be programmed to a user's preferences based upon the available programming settings for the yaw directional movement. The user may begin programming the yaw directional movement of treadle 108 by clicking on the feature displayed on the display screen, by moving treadle 108 to the left, arrow 130, and/or to the right, arrow 140, and/or using a voice command. The available programming settings will be displayed to the user on the display screen. The user may program the yaw directional movement of treadle 108 to be a switch, such that movement from location X 150 (the resting location shown in FIG. 4) to any of the following locations results in an on/off setting: location Y 160, to location Z 170, to any location between location X 150 and location Y 160, or to any place between location X 150 and location Z 170. For example, moving treadle 108 from location X 150 to location Y 160 causes a balanced saline solution (BSS) bottle to move in an upward direction (not shown) and may be stopped by moving treadle 108 from location Y 160 back to location X 150. The BSS bottle may be moved in a downward direction by moving treadle 108 from location X 150 to location Z 170.


Additional option settings may be employed and are envisioned by the present invention. For example, moving treadle 108 toward or to location Y 160 from location X 150 may start the movement of the BSS bottle in a selected direction and movement from location X 150 back towards or to location Y 160 stops the movement of the BSS bottle. The degree of movement in the yaw and/or pitch direction to activate a switch function may be set to the user's preference, e.g. 15° movement from the starting location.


The yaw directional movement of treadle 108 may be programmed as a linear control, such that movement from location X 150 toward location Y 160 activates a selected setting, which adjusts as treadle 108 moves closer to location Y 160. For example, yaw directional movement 130 may be programmed to control aspiration. The user may program yaw directional movement 130 such that the closer treadle 108 moves towards location Y 160 and away from location X 150, the more the pump turns and/or vacuum increases causing the rate of aspiration to increase. For example, see FIG. 3B.


The left directional yaw movement may also be programmed to act as a switch, while the right directional yaw movement may have a linear function, and vice versa. For example, movement of treadle 108 to the left may turn on the aspiration and movement of treadle 108 to the right may control the level of aspiration such that as treadle 108 moves farther to the right the aspiration rate increases. In another embodiment, the left (or right yaw) may be a switch that changes the surgical mode on the fly to allow the user more control over the procedure. Any programmable features may be incorporated with the present invention in any directional movement, location within the directional movement, switch, or combination thereof.


Using the foot pedal as described herein, the user may also set the amount of vacuum, ultrasonic power, etc. at different degrees of movement for pitch and/or yaw and whether there is a dead zone between starting and ending locations for a particular setting and/or pre-programmed memory setting. For example, a user may set 0° to 10° directional movement for a first setting and 11° to 13° directional movement as a dead zone, wherein a second setting may begin at 14° directional movement (0° represents the treadle in its resting (neutral) location). It is also envisioned that one direction of the yaw (left or right) may be a linear control and a switch depending upon how far the treadle travels in the particular yaw direction. For example, the user may have linear control over ultrasonic power up to 50% of the available travel of the treadle in one direction and passing the 50% threshold in the same direction results in a switch that turns the power up to a maximum power level set by the user (e.g. see FIG. 3C) or results in a faster increase in power as the treadle is moved (e.g. see FIG. 3A). It is also envisioned that the yaw movement can be an extension of the linear control of the pitch and vice versa, or to provide a power or vacuum boost.


The foot pedal may also be programmed such that yawing to the left turns on a peristaltic pump and yawing to the right turns on a venturi pump, and vice versa. Further, movement in the pitch direction in either yaw direction may control the flow level of the pump and/or vacuum level of the pump. The foot pedal may also be programmed such that the movement of the treadle in the left yaw direction controls longitudinal movement of a phaco needle and the movement of the treadle in the right yaw direction controls traverse movement of a phaco needle, and vice versa. The pitch directional movement may also be programmed for these settings.


According to an embodiment, multiple pre-programmed memory settings may be accessed using the foot pedal. For example, a pre-programmed memory setting may comprise one or more modes that a user may switch to or cycle through, e.g. each mode may have a particular maximum vacuum and/or maximum ultrasonic power, which the user can change by changing modes. A user may pre-program multiple surgery settings based upon different surgical techniques or situations encountered during surgery, such as, but not limited to, the density of the lens, intraoperative exigencies, and different parts of the procedure, such as sectioning, chopping, and/or polishing. Typically, for a user to switch between pre-programmed memory settings, the user must stop the surgical procedure and change to the desired pre-programmed memory setting or change the type of pump the user would like to use (e.g. venturi to peristaltic). However, with the present invention the user may change from a first pre-programmed memory setting to a second pre-programmed memory setting by activating the foot pedal.


For example, referring to FIG. 5, foot pedal 104 has been divided into three distinct yaw zones, zone A 210, zone B 220, and zone C 230 (the zones may be of any size and may be set by the user). Zone A 210 (the resting location for treadle 108) controls one of three pre-programmed memory settings. A first pre-programmed memory setting may be used when treadle 108 is within zone A 210. Moving treadle 108 in a pitch direction of zone A 210, provides control over the programmed settings that make up the pre-programmed memory setting for zone A 210. Moving treadle 108 from zone A 210 to zone B 220 activates a second pre-programmed memory setting and moving treadle 108 in a pitch direction within zone B 210 controls the programmed settings that make up the second pre-programmed memory setting. Finally, a third pre-programmed memory setting may be used when treadle 108 is within zone C 230. Moving treadle 108 to zone C 230 activates a third pre-programmed memory setting and moving treadle 108 in a pitch direction within zone C 230 controls the programmed settings that make up the third pre-programmed setting. All of the pre-programmed memory settings and program settings within the pre-programmed memory settings may be set by the methods disclosed herein. Multiple pre-programmed memory settings may be set in the pitch direction as depicted in FIG. 6 (A 310, B 320, and C 330) and moving treadle 108 in a yaw direction controls the programmed settings for the each of the pre-programmed memory settings. Any number of pre-programmed memory settings may be employed and are envisioned with the present invention.


Other embodiments are envisioned with the present invention and include, but are not limited to: the yaw directional movement as a switch and the pitch directional movement a linear control or vice versa; partial switch and partial linear control for the yaw directional movement and/or pitch directional movement; linear control for both yaw and pitch; fixed panel control in the pitch and/or yaw directional movement or portion thereof; one or more switches programmed for particular features, e.g. a first pump, a second pump, irrigation, coupled with linear control using the yaw and/or pitch to adjust the control of the particular feature programmed and selected; and combinations thereof.


Another embodiment envisioned with the present invention is incorporating a locking feature on the treadle. The locking feature may be a latch or any other locking mechanism or device known in the art for preventing movement of the treadle in the pitch or yaw direction. The locking feature would allow for a user to select one directional movement for activation of various surgery settings and/or parameters as discussed above and deactivate the other directional movement. By locking or deactivating a directional movement of the treadle, the treadle will not move in the deactivated direction and/or no settings and/or parameters will be programmed for the deactivated directional movement. For example, if a user prefers to control various surgery settings and/or parameters using the pitch directional movement only, he may lock and/or deactivate the yaw directional movement.


All references cited herein are hereby incorporated by reference in their entirety including any references cited therein.


Although the present invention has been described in terms of specific embodiments, changes and modifications can be carried out without departing from the scope of the invention which is intended to be limited only by the scope of the claims.

Claims
  • 1. A method for programming and operating according to one or more foot pedal settings, comprising: displaying a plurality of pre-programmed setting selections for a directional movement of a treadle of the foot pedal on a display, wherein the plurality of pre-programmed setting selections is selected from the group consisting of irrigation, aspiration, ultrasonic power, vitrectomy, bottle height, pump speed, pump type, flow rate, and vacuum level;toggling through pre-programmed setting selections displayed on the display using the foot pedal in order to select from one of the plurality of pre-programmed setting selections;selecting one of the pre-programmed setting selections displayed on the display to represent the directional movement of the treadle;positioning the treadle in a starting location for a selected surgical setting and confirming the starting location and positioning the treadle in an ending location for the selected surgical setting and confirming the ending location, wherein confirming comprises performing one selected from the group consisting of clicking an icon on the display, pressing a switch on the foot pedal, moving the treadle, voicing a command, and combinations thereof;repeating said toggling, selecting, and positioning to establish any additional surgical settings corresponding to directional movements of the treadle; andsubsequently operating the foot pedal in accordance with the one or more foot pedal settings within a portion of a surgical procedure.
  • 2. The method of claim 1, wherein the selecting is performed by one selected from the group consisting of clicking an icon on the display, pressing a switch on the foot pedal, moving the treadle, voicing a command, and combinations thereof.
  • 3. The method of claim 1, wherein the foot pedal is used in a phacoemulsification system.
  • 4. The method of claim 1, further comprising setting a type of control for the selected pre-programmed setting selections, wherein the type of control comprises one or more selected from the group consisting of linear control, panel control, proportional control, and switch control with respect to the directional movement of the treadle.
  • 5. The method of claim 4, wherein the setting is performed by one selected from the group consisting of clicking an icon on the display, pressing a switch on the foot pedal, moving the treadle, voicing a command, and combinations thereof.
  • 6. The method of claim 1, further comprising selecting a second switch or a second directional movement of the treadle and deactivating or locking the second switch or the second directional movement of the treadle.
  • 7. A method for programming and operating a foot pedal according to surgical settings, comprising: displaying a plurality of pre-programmed surgical setting selections for a selected directional movement on a display, wherein the plurality of pre-programmed surgical setting selections is selected from the group consisting of irrigation, aspiration, ultrasonic power, vitrectomy, bottle height, pump speed, pump type, flow rate, and vacuum level;selecting a surgical setting;positioning the treadle in a starting location for the surgical setting and confirming the starting location and positioning the treadle in an ending location for the surgical setting and confirming the ending location; andsubsequently operating the foot pedal in accordance with the surgical setting within a portion of a surgical procedure;wherein positioning the treadle and selecting the surgical setting comprises toggling through pre-programmed surgical setting selections displayed on the display using the foot pedal and selecting the surgical setting from the pre-programmed surgical setting selections displayed on the displaywherein the confirming is performed by one selected from the group consisting of clicking an icon on the display, pressing a switch on the foot pedal, moving the treadle, voicing a command, and combinations thereof.
  • 8. The method of claim 7, further comprising: placing the treadle in a second starting location for a second selected surgical setting;confirming the second starting location;placing the treadle in a second ending location for the second selected surgical setting; andconfirming the second ending location.
  • 9. The method of claim 8, further comprising: placing the treadle in a third starting location for a third selected surgical setting;confirming the third starting location;placing the treadle in a third ending location for the third selected surgical setting; andconfirming the third ending location.
  • 10. The method of claim 7, wherein the selecting of one or more surgical settings is performed using the foot pedal.
  • 11. The method of claim 7, wherein the confirming is performed using the display.
  • 12. The method of claim 7, wherein the surgical settings are for an ophthalmic surgical procedure.
  • 13. The method of claim 12, wherein the ophthalmic surgical procedure is phacoemulsification.
  • 14. The method of claim 7, further comprising setting a type of control associated with the surgical setting, wherein the type of control comprises one selected from the group consisting of linear control, panel control, proportional control, and switch control with respect to the directional movement of the treadle.
  • 15. The method of claim 14, wherein the setting is performed by one selected from the group consisting of clicking an icon on the display, pressing a switch on the foot pedal, moving the treadle, voicing a command, and combinations thereof.
  • 16. The method of claim 7, further comprising deactivating or locking a non-selected directional movement of the treadle.
  • 17. A method of using a foot pedal to select from among multiple pre-programmed settings and operate according to selected settings, comprising: selecting an operational setting by moving the treadle in a selected direction to one or more selected from the group consisting of:a first location, wherein the first location is a first pre-programmed setting; anda second location, wherein the second location is a second pre-programmed setting;positioning the treadle at the first location for the first pre-programmed setting and confirming the first location as the starting location of the first pre-programmed setting and positioning the treadle at the second location for the second pre-programmed setting and confirming the second location as the starting location of the second pre-programmed setting, wherein confirming is performed by one selected from the group consisting of clicking an icon on the display, pressing a switch on the foot pedal, moving the treadle, voicing a command, and combinations thereof, andsubsequently operating the foot pedal in accordance with the operational settings within a portion of a surgical procedure;wherein the first pre-programmed setting and the second pre-programmed setting are established by a user toggling through pre-programmed surgical settings displayed to the user on a display using the foot pedal and selecting displayed pre-programmed surgical settings applicable to the first location and second location, respectively, to initially establish a first mode and a second mode.
  • 18. The method of claim 17, wherein the pre-programmed settings comprise one or more modes selected by the user, and wherein the modes are selected from the group consisting of irrigation, aspiration, ultrasonic power, vitrectomy, bottle height, pump speed, pump type, flow rate, and vacuum level.
  • 19. The method of claim 18, further comprising setting a type of control for the one or more modes, wherein the type of control comprises one or more selected from the group consisting of linear control, panel control, proportional control, and switch control with respect to the directional movement of the treadle.
  • 20. The method of claim 19, wherein the setting is performed by one selected from the group consisting of clicking an icon on a display, pressing a switch on the foot pedal, moving the treadle, voicing a command, and combinations thereof.
  • 21. The method of claim 17, wherein the foot pedal is used in a phacoemulsification system.
  • 22. A method for selecting pre-programmed memory settings for and operating in a surgical procedure using a foot pedal, comprising: moving a treadle of the foot pedal to a first location within a directional axis, wherein the first location selects a first pre-programmed memory setting to be used in a portion of the surgical procedure;moving the treadle to a first perpendicular axis location within a plane perpendicular to the directional axis of the first location to establish one or more control settings of the first pre-programmed memory setting;wherein moving the treadle comprises positioning the treadle at a first position for one control setting and confirming the first position as the starting position for the first pre-programmed setting and positioning the treadle at a second position for another control setting and confirming the second position as the starting position of the another control setting, wherein confirming is performed by one selected from the group consisting of clicking an icon on the display, pressing a switch on the foot pedal, moving the treadle, voicing a command, and combinations thereof; andsubsequently operating the foot pedal in accordance with the pre-programmed memory settings within the portion of the surgical procedure;wherein the first pre-programmed memory setting is established by a user toggling through multiple pre-programmed surgical settings displayed to the user on a display using the foot pedal.
  • 23. The method of claim 22, further comprising: moving the treadle of the foot pedal to a second location within the directional axis, wherein the second location selects a second pre-programmed memory setting; andmoving the treadle within a plane perpendicular to the directional axis of the second location to establish one or more control settings of the second pre-programmed memory setting.
  • 24. The method of claim 23, further comprising: moving the treadle of the foot pedal to a third location within the directional axis, wherein the third location selects a third pre-programmed memory setting; andmoving the treadle within a plane perpendicular to the directional axis of the third location to establish one or more control settings of the third pre-programmed memory setting.
  • 25. The method of claim 22, wherein the surgical procedure is an ophthalmic surgical procedure.
  • 26. The method of claim 25, wherein the ophthalmic surgical procedure is phacoemulsification.
  • 27. The method of claim 22, wherein the one or more control settings is selected from the group consisting of irrigation, aspiration, ultrasonic power, vitrectomy, bottle height, pump speed, pump type, flow rate, and vacuum level.
  • 28. The method of claim 27, further comprising setting a type of control for the selected one or more control settings, wherein the type of control comprises one or more selected from the group consisting of linear control, panel control, proportional control, and switch control with respect to the directional movement of the treadle.
  • 29. The method of claim 28, wherein the setting is performed by one selected from the group consisting of clicking an icon on a display, pressing a switch on the foot pedal, moving the treadle, voicing a command, and combinations thereof.
  • 30. A foot pedal comprising: a treadle, wherein the treadle is capable of moving in a first direction selected from the group consisting of pitch and yaw;wherein movement of the treadle in a plane perpendicular to the first direction establishes a mode by a user toggling through a plurality of available modes displayed to the user on a display using the foot pedal, the user selecting one displayed available mode and positioning the treadle in a first position for one control setting and confirming the first position as the starting position for the one control setting and positioning the treadle at a second position for a second control setting and confirming the second position as the starting position of the second control setting wherein confirming is performed by one selected from the group consisting of clicking an icon on the display, pressing a switch on the foot pedal, moving the treadle, voicing a command, and combinations thereof, and an operator subsequently operating the foot pedal in accordance with the selected one displayed available mode within a portion of a surgical procedure.
  • 31. The foot pedal of claim 30, wherein at least one of the directional movements of the treadle is capable of acting as a linear control.
  • 32. The foot pedal of claim 30 wherein the foot pedal is used with a phacoemulsification system.
  • 33. A method of programming a linear foot pedal, comprising: programming a selected directional movement of a treadle of the linear foot pedal using the linear foot pedal by positioning a treadle of the foot pedal at a first position for one operational setting and confirming the first position as the starting position of the one operational setting and positioning the treadle at a second position for another operational setting and confirming the second position as the starting position of the another operational setting, wherein confirming comprises one selected from the group consisting of clicking an icon on the display, pressing a switch on the foot pedal, moving the treadle, voicing a command, and combinations thereof, andprogramming movement in a perpendicular direction to the selected directional movement to function as a mode using the linear foot pedal; andsubsequently operating the linear foot pedal in accordance with the operational settings within a portion of a surgical procedure;wherein programming the selected directional movement further comprises a user toggling through candidate surgical settings displayed on a display using the foot pedal and selecting one displayed surgical setting.
  • 34. The method of claim 33, wherein the foot pedal is used with a phacoemulsification system.
US Referenced Citations (284)
Number Name Date Kind
1848024 Owen Mar 1932 A
2123781 Huber Jul 1938 A
2990616 Balamuth et al. Jul 1961 A
3076904 Klesattel et al. Feb 1963 A
3116697 Theodore Jan 1964 A
3439680 Thomas, Jr. Apr 1969 A
3526219 Balamuth Sep 1970 A
3781142 Zweig Dec 1973 A
3857387 Shock Dec 1974 A
4017828 Watanabe et al. Apr 1977 A
4037491 Newbold Jul 1977 A
4189286 Murry et al. Feb 1980 A
4193004 Lobdell et al. Mar 1980 A
4247784 Henry Jan 1981 A
4276023 Phillips et al. Jun 1981 A
4537561 Xanthopoulos Aug 1985 A
4564342 Weber et al. Jan 1986 A
4590934 Malis et al. May 1986 A
4662829 Nehring May 1987 A
4665621 Ackerman et al. May 1987 A
4706687 Rogers et al. Nov 1987 A
4757814 Wang et al. Jul 1988 A
4758220 Sundblom et al. Jul 1988 A
4772263 Dorman et al. Sep 1988 A
4773897 Scheller et al. Sep 1988 A
4818186 Pastrone et al. Apr 1989 A
4837857 Scheller et al. Jun 1989 A
4920336 Meijer Apr 1990 A
4921477 Davis May 1990 A
4933843 Scheller et al. Jun 1990 A
4941518 Williams et al. Jul 1990 A
4954960 Lo et al. Sep 1990 A
4961424 Kubota et al. Oct 1990 A
4965417 Massie Oct 1990 A
4983901 Lehmer Jan 1991 A
4998972 Chin et al. Mar 1991 A
5006110 Garrison et al. Apr 1991 A
5020535 Parker et al. Jun 1991 A
5026387 Thomas Jun 1991 A
5032939 Mihara et al. Jul 1991 A
5039973 Carballo Aug 1991 A
5091656 Gahn Feb 1992 A
5108367 Epstein et al. Apr 1992 A
5110270 Morrick May 1992 A
5125891 Hossain et al. Jun 1992 A
5160317 Costin Nov 1992 A
5195960 Hossain et al. Mar 1993 A
5195961 Takahashi et al. Mar 1993 A
5195971 Sirhan Mar 1993 A
5230614 Zanger et al. Jul 1993 A
5242404 Conley et al. Sep 1993 A
5249121 Baum et al. Sep 1993 A
5268624 Zanger Dec 1993 A
5271379 Phan et al. Dec 1993 A
5282787 Wortrich Feb 1994 A
5323543 Steen et al. Jun 1994 A
5342293 Zanger Aug 1994 A
5350357 Kamen et al. Sep 1994 A
5351676 Putman Oct 1994 A
5388569 Kepley Feb 1995 A
5454783 Grieshaber et al. Oct 1995 A
5464391 Devale Nov 1995 A
5470211 Knott et al. Nov 1995 A
5470312 Zanger et al. Nov 1995 A
5499969 Beuchat et al. Mar 1996 A
5520652 Peterson May 1996 A
5533976 Zaleski et al. Jul 1996 A
5549461 Newland Aug 1996 A
5554894 Sepielli Sep 1996 A
5561575 Eways Oct 1996 A
5569188 Mackool Oct 1996 A
5580347 Reimels Dec 1996 A
5591127 Barwick, Jr. et al. Jan 1997 A
5653887 Wahl et al. Aug 1997 A
5657000 Ellingboe Aug 1997 A
5676530 Nazarifar Oct 1997 A
5676649 Boukhny et al. Oct 1997 A
5676650 Grieshaber et al. Oct 1997 A
5693020 Rauh Dec 1997 A
5697898 Devine Dec 1997 A
5697910 Cole et al. Dec 1997 A
5700240 Barwick, Jr. et al. Dec 1997 A
5724264 Rosenberg et al. Mar 1998 A
5728130 Ishikawa et al. Mar 1998 A
5733256 Costin Mar 1998 A
5745647 Krause Apr 1998 A
5746713 Hood et al. May 1998 A
5747824 Jung et al. May 1998 A
5777602 Schaller Jul 1998 A
5805998 Kodama Sep 1998 A
5807075 Jacobsen et al. Sep 1998 A
5810766 Barnitz et al. Sep 1998 A
5830176 Mackool Nov 1998 A
5843109 Mehta et al. Dec 1998 A
5859642 Jones Jan 1999 A
5871492 Sorensen Feb 1999 A
5879298 Drobnitzky et al. Mar 1999 A
5883615 Fago et al. Mar 1999 A
5899674 Jung et al. May 1999 A
5928257 Kablik et al. Jul 1999 A
5938655 Bisch et al. Aug 1999 A
5983749 Holtorf Nov 1999 A
6002484 Rozema et al. Dec 1999 A
6024428 Uchikata Feb 2000 A
6028387 Boukhny Feb 2000 A
6062829 Ognier May 2000 A
6077285 Boukhny Jun 2000 A
6086598 Appelbaum et al. Jul 2000 A
6109895 Ray et al. Aug 2000 A
6117126 Appelbaum et al. Sep 2000 A
6139320 Hahn Oct 2000 A
6150623 Chen Nov 2000 A
6159175 Strukel et al. Dec 2000 A
6179829 Bisch Jan 2001 B1
6200287 Keller et al. Mar 2001 B1
6219032 Rosenberg et al. Apr 2001 B1
6251113 Appelbaum et al. Jun 2001 B1
6260434 Holtorf Jul 2001 B1
6360630 Holtorf Mar 2002 B2
6368269 Lane Apr 2002 B1
6411062 Baranowski et al. Jun 2002 B1
6424124 Ichihara et al. Jul 2002 B2
6436072 Kullas et al. Aug 2002 B1
6452120 Chen Sep 2002 B1
6452123 Chen Sep 2002 B1
6491661 Boukhny et al. Dec 2002 B1
6511454 Nakao et al. Jan 2003 B1
6537445 Muller Mar 2003 B2
6595948 Suzuki et al. Jul 2003 B2
6632214 Morgan et al. Oct 2003 B2
6674030 Chen et al. Jan 2004 B2
6830555 Rockley et al. Dec 2004 B2
6852092 Kadziauskas et al. Feb 2005 B2
6862951 Peterson et al. Mar 2005 B2
6908451 Brody et al. Jun 2005 B2
6962488 Davis et al. Nov 2005 B2
6962581 Thoe Nov 2005 B2
6986753 Bui Jan 2006 B2
7011761 Muller Mar 2006 B2
7012203 Hanson et al. Mar 2006 B2
7070578 Leukanech et al. Jul 2006 B2
7073083 Litwin, Jr. et al. Jul 2006 B2
7087049 Nowlin et al. Aug 2006 B2
7103344 Menard Sep 2006 B2
7167723 Zhang Jan 2007 B2
7169123 Kadziauskas et al. Jan 2007 B2
7236766 Freeburg Jun 2007 B2
7236809 Fischedick et al. Jun 2007 B2
7242765 Hairston Jul 2007 B2
7244240 Nazarifar et al. Jul 2007 B2
7289825 Fors et al. Oct 2007 B2
7300264 Souza Nov 2007 B2
7316664 Kadziauskas et al. Jan 2008 B2
7336976 Ito Feb 2008 B2
7381917 Dacquay et al. Jun 2008 B2
7439463 Brenner et al. Oct 2008 B2
7465285 Hutchinson et al. Dec 2008 B2
7470277 Finlay et al. Dec 2008 B2
7526038 McNamara Apr 2009 B2
7591639 Kent Sep 2009 B2
7731484 Yamamoto et al. Jun 2010 B2
7776006 Childers et al. Aug 2010 B2
7811255 Boukhny et al. Oct 2010 B2
7883521 Rockley et al. Feb 2011 B2
7921017 Claus et al. Apr 2011 B2
7967777 Edwards et al. Jun 2011 B2
8070712 Muri et al. Dec 2011 B2
8075468 Min et al. Dec 2011 B2
20010023331 Kanda et al. Sep 2001 A1
20010047166 Wuchinich Nov 2001 A1
20010051788 Paukovits et al. Dec 2001 A1
20020019215 Romans Feb 2002 A1
20020019607 Bui Feb 2002 A1
20020045887 DeHoogh et al. Apr 2002 A1
20020070840 Fischer et al. Jun 2002 A1
20020098859 Murata Jul 2002 A1
20020137007 Beerstecher Sep 2002 A1
20020179462 Silvers Dec 2002 A1
20020183693 Peterson et al. Dec 2002 A1
20030028091 Simon et al. Feb 2003 A1
20030047434 Hanson et al. Mar 2003 A1
20030050619 Mooijman et al. Mar 2003 A1
20030073980 Finlay et al. Apr 2003 A1
20030083016 Evans et al. May 2003 A1
20030108429 Angelini et al. Jun 2003 A1
20030125717 Whitman Jul 2003 A1
20030224729 Arnold Dec 2003 A1
20030226091 Platenberg et al. Dec 2003 A1
20040019313 Childers et al. Jan 2004 A1
20040035242 Peterson et al. Feb 2004 A1
20040037724 Haser et al. Feb 2004 A1
20040068300 Kadziauskas et al. Apr 2004 A1
20040092922 Kadziauskas et al. May 2004 A1
20040193182 Yaguchi et al. Sep 2004 A1
20040212344 Tamura et al. Oct 2004 A1
20040215127 Kadziauskas et al. Oct 2004 A1
20040224641 Sinn Nov 2004 A1
20040253129 Sorensen et al. Dec 2004 A1
20050039567 Peterson et al. Feb 2005 A1
20050054971 Steen et al. Mar 2005 A1
20050065462 Nazarifar et al. Mar 2005 A1
20050069419 Cull et al. Mar 2005 A1
20050070859 Cull et al. Mar 2005 A1
20050070871 Lawton et al. Mar 2005 A1
20050095153 Demers et al. May 2005 A1
20050103607 Mezhinsky May 2005 A1
20050109595 Mezhinsky et al. May 2005 A1
20050118048 Traxinger Jun 2005 A1
20050119679 Rabiner et al. Jun 2005 A1
20050130098 Warner Jun 2005 A1
20050187513 Rabiner et al. Aug 2005 A1
20050197131 Ikegami Sep 2005 A1
20050209560 Boukhny et al. Sep 2005 A1
20050236936 Shiv et al. Oct 2005 A1
20050245888 Cull Nov 2005 A1
20050261628 Boukhny et al. Nov 2005 A1
20050267504 Boukhny et al. Dec 2005 A1
20060035585 Washiro Feb 2006 A1
20060036180 Boukhny et al. Feb 2006 A1
20060041220 Boukhny et al. Feb 2006 A1
20060046659 Haartsen et al. Mar 2006 A1
20060074405 Malackowski et al. Apr 2006 A1
20060078448 Holden Apr 2006 A1
20060114175 Boukhny Jun 2006 A1
20060145540 Mezhinsky Jul 2006 A1
20060219049 Horvath et al. Oct 2006 A1
20060219962 Dancs et al. Oct 2006 A1
20060224107 Claus et al. Oct 2006 A1
20060236242 Boukhny et al. Oct 2006 A1
20070016174 Millman et al. Jan 2007 A1
20070049898 Hopkins et al. Mar 2007 A1
20070060926 Escaf Mar 2007 A1
20070073214 Dacquay et al. Mar 2007 A1
20070073309 Kadziauskas et al. Mar 2007 A1
20070078379 Boukhny et al. Apr 2007 A1
20070085611 Gerry et al. Apr 2007 A1
20070107490 Artsyukhovich et al. May 2007 A1
20070231205 Williams et al. Oct 2007 A1
20070249942 Salehi et al. Oct 2007 A1
20080033342 Staggs Feb 2008 A1
20080066542 Gao Mar 2008 A1
20080067046 Dacquay et al. Mar 2008 A1
20080082040 Kubler et al. Apr 2008 A1
20080112828 Muri et al. May 2008 A1
20080114289 Muri et al. May 2008 A1
20080114290 King et al. May 2008 A1
20080114291 Muri et al. May 2008 A1
20080114300 Muri et al. May 2008 A1
20080114311 Muri et al. May 2008 A1
20080114312 Muri et al. May 2008 A1
20080114372 Edwards et al. May 2008 A1
20080114387 Hertweck May 2008 A1
20080125695 Hopkins et al. May 2008 A1
20080125697 Gao May 2008 A1
20080125698 Gerg et al. May 2008 A1
20080129695 Li Jun 2008 A1
20080146989 Zacharias Jun 2008 A1
20080243105 Horvath Oct 2008 A1
20080262476 Krause et al. Oct 2008 A1
20080281253 Injev et al. Nov 2008 A1
20080294087 Steen et al. Nov 2008 A1
20080312594 Urich et al. Dec 2008 A1
20090005712 Raney Jan 2009 A1
20090005789 Charles Jan 2009 A1
20090048607 Rockley Feb 2009 A1
20090124974 Crank et al. May 2009 A1
20090163853 Cull et al. Jun 2009 A1
20100036256 Boukhny et al. Feb 2010 A1
20100069825 Raney Mar 2010 A1
20100069828 Steen et al. Mar 2010 A1
20100152685 Goh Jun 2010 A1
20100185150 Zacharias Jul 2010 A1
20100249693 Links Sep 2010 A1
20100280435 Raney et al. Nov 2010 A1
20110092924 Wong et al. Apr 2011 A1
20110092962 Ma et al. Apr 2011 A1
20110098721 Tran et al. Apr 2011 A1
20110160646 Kadziauskas et al. Jun 2011 A1
20120065580 Gerg et al. Mar 2012 A1
20120083800 Andersohn Apr 2012 A1
20130072853 Wong et al. Mar 2013 A1
20130245543 Gerg et al. Sep 2013 A1
20130289475 Muri et al. Oct 2013 A1
20130303978 Ross Nov 2013 A1
Foreign Referenced Citations (69)
Number Date Country
2006235983 May 2007 AU
3826414 Feb 1989 DE
56019 Jul 1982 EP
424687 May 1991 EP
619993 Oct 1994 EP
1010437 Jun 2000 EP
1072285 Jan 2001 EP
1113562 Jul 2001 EP
1310267 May 2003 EP
1464310 Oct 2004 EP
1469440 Oct 2004 EP
1550406 Jul 2005 EP
1704839 Sep 2006 EP
1779879 May 2007 EP
1787606 May 2007 EP
1849443 Oct 2007 EP
1849444 Oct 2007 EP
1857128 Nov 2007 EP
1867349 Dec 2007 EP
1310267 Jan 2008 EP
1873501 Jan 2008 EP
1900347 Mar 2008 EP
1925274 May 2008 EP
1867349 Nov 2008 EP
2264369 Dec 2006 ES
2230301 Oct 1990 GB
2352887 Feb 2001 GB
2438679 Dec 2007 GB
S5724482 Feb 1982 JP
S58167333 Oct 1983 JP
2008188110 Aug 2008 JP
WO9220310 Nov 1992 WO
9315777 Aug 1993 WO
WO9317729 Sep 1993 WO
WO9324082 Dec 1993 WO
9405346 Mar 1994 WO
WO9632144 Oct 1996 WO
9737700 Oct 1997 WO
WO9818507 May 1998 WO
WO9917818 Apr 1999 WO
WO0000096 Jan 2000 WO
WO0070225 Nov 2000 WO
0122696 Mar 2001 WO
0226286 Apr 2002 WO
0228449 Apr 2002 WO
WO0234314 May 2002 WO
03102878 Dec 2003 WO
04096360 Nov 2004 WO
2004114180 Dec 2004 WO
WO05084728 Sep 2005 WO
WO05092023 Oct 2005 WO
WO05092047 Oct 2005 WO
WO06101908 Sep 2006 WO
WO06125280 Nov 2006 WO
WO2007121144 Oct 2007 WO
2007149637 Dec 2007 WO
WO2007143677 Dec 2007 WO
WO2007143797 Dec 2007 WO
WO2008030872 Mar 2008 WO
WO 2008060859 May 2008 WO
WO2008060902 May 2008 WO
WO2008060995 May 2008 WO
2009123547 Oct 2009 WO
WO2010054146 May 2010 WO
WO2010054225 May 2010 WO
2010151704 Dec 2010 WO
2012151062 Nov 2012 WO
2013142009 Sep 2013 WO
2015009945 Jan 2015 WO
Non-Patent Literature Citations (13)
Entry
Merritt R, “Wireless nets starting to link medical gear”, Published on Jan. 7, 2004, Published at Embedded.com URL: http:// embedded.com/news/ennbeddedindustry/17200577? (Year: 2004).
International Search Report for Application No. PCT/US07/083875, dated May 7, 2008, 4 pages.
International Search Report for Application No. PCT/US07/083880, dated May 30, 2008, 4 pages.
International Search Report for Application No. PCT/US07/084157, dated Apr. 1, 2008, 3 pages.
International Search Report for Application No. PCT/US07/084163, dated Apr. 2008, 3 pages.
International Search Report for Application No. PCT/US08/064240, dated Oct. 29, 2008, 3 pages.
International Search Report for Application No. PCT/US08/071704, dated Nov. 26, 2008, 3 pages.
International Search Report for Application No. PCT/US08/072974, dated Feb. 23, 2009, 2 pages.
International Search Report for Application No. PCT/US2009/052473, dated Nov. 2009, 3 pages.
“Phacoemulsification. Oct. 12, 2006. Wikipedia.com. Jun. 19, 2009 <http://en.wikipedia.org/wiki/Phacoemulsification>,”, 2 pages.
Boyd, “Preparing for the Transition” in: The Art and the Science of Cataract Surgery, Chapter 7, 2001, pp. 93-133.
Definition of “Parameter”, Retrieved from the Internet: URL: http://dictionary.reference.com/browse/parameter, Retrieved on Aug. 9, 2016.
English Human Translation of JP57024482 from Feb. 9, 1982.
Related Publications (1)
Number Date Country
20110092887 A1 Apr 2011 US
Provisional Applications (1)
Number Date Country
61112517 Nov 2008 US