The drawings accompanying and forming part of this specification are included to depict certain aspects of the invention. The invention may be better understood by reference to one or more of these drawings in combination with the description presented herein. It should be noted that the features illustrated in the drawings are not necessarily drawn to scale.
The following detailed description of the invention refers to the accompanying drawings. The description includes exemplary embodiments, not excluding other embodiments, and changes may be made to the embodiments described without departing from the spirit and scope of the invention. The following detailed description does not limit the invention. Instead, the scope of the invention is defined by the appended claims.
The method disclosed in the present invention is applicable to any multiple access technique that uses some type of frequency division for multiple access channelization. This includes frequency division multiple access (FDMA), time division multiple access (TDMA), multi-carrier code division multiple access (MC-CDMA), orthogonal frequency division multiplex multiple access (OFDM-MA), and any combination of the aforementioned techniques. These multiple access techniques are deployed in conjunction with a frequency division duplex (FDD) or time division duplex (TDD) system, either in a synchronized or an unsynchronized mode.
In an FDMA and OFDM-MA system, each sub-channel is assigned to a single user. In a TDMA system, multiple users share a sub-channel but each of the users is assigned different time slots. In an MC-CDMA system, multiple users share a sub-channel but each of the users uses different orthogonal codes. In an OFDM-MA system, the sub-channels could overlap with each other while in other systems such as TDMA and MC-CDMA, there is no overlap of sub-channels.
The frequencies of the sub-carriers that form one sub-channel are not contiguous. The sub-carriers are selected based on a predetermined permutation. In other words, the sub-carriers in one sub-channel are logically adjacent to each other but not necessarily physically adjacent to each other. One example of a predetermined permutation is Partial Usage Subchannelizaton (PUSC) in IEEE802.16e standard.
The method disclosed in the present invention has two constituents: segregated channel allocation and null-steering beamforming. The segregated channel allocation technique divides a cell into segments and significantly reduces multi-cell interference and yet at the same time maintains high spectrum usage efficiency. For example, in a cell with six segregated segments, the segregated channel allocation technique achieves the same level of interference reduction as in a cell with a frequency re-use factor of 6 while the spectrum usage efficiency with a frequency re-use factor of 1 is still maintained. The null-steering beamforming method creates an antenna beam pattern that enhances the desired signal and suppresses the interference signal. In addition, the efficiency of the method is not limited by the spreading gain of the system, but rather, it complements a pseudorandom noise offset method.
In either case, the BTS plans a frequency usage assignment for each segment of the cell, with each segment assigned a channel with a different frequency. The channels are assigned in such a way that the probability of having the channels at the cell boundaries assigned the same frequencies is minimized.
In step 210, a BTS learns the location of an MS in its cell by receiving its location information explicitly from the MS or by detecting the location based on a receiving signal from the MS. Then the BTS instructs the MS to use a frequency of the channel assigned to the segment according to segment information in step 220.
Dividing the cell into multiple segments reduces inter-cell interferences. To further reduce that, the BTS employs a null-steering beamforming method with an adaptive antenna array in step 230. Desired signals are sent to the MS in the segment via an appropriate channel.
In step 330, the BTS assigns a unique group of sub-carriers to each of the segments as a primary channel for the segment. For each segment, the primary channels of its adjacent neighboring segments are considered as its secondary channels, and the primary channels of the next adjacent segments as its tertiary channels, and so on.
For example, in a 6-segment segregation scheme as shown in
With the segments in the cell being determined, the BTS detects the location of the MS and subsequently a segment where the MS is located in step 340. The BTS can determine the location of the MS in several ways.
One way to determine the location of an MS is to have a different access channel for each segment. For a BTS equipped with multiple antennas, it can have each antenna point to a different segment in a cell. However, for a BTS equipped with an adaptive antenna array, it can use a beamforming method to create antenna beam patterns with each antenna beam pattern pointing to one segment. The access channels of all the segments in the cell can differ in any of the physical attributes of a communication channel, such as the carrier frequency, phase, magnitude, and pseudorandom noise (PN) offset.
When an MS enters a wireless communications network, it scans and acquires an access channel. The MS sends the BTS an acknowledgement (ACK) message including the information it has acquired via the access channel. By comparing the access channel information received from the MS with the access channel planning map, the BTS determines the segment where the MS is located.
Another way to determine the location of an MS is to use antennas that have different receiving patterns for each segment in the cell. The BTS identifies the antenna that receives the signal with the highest signal strength, which is the desired signal, and it subsequently determines the segment where the MS is located.
Yet another way to determine the location of an MS is to compute the direction of arrival (DOA) of the uplink signal. A BTS equipped with multiple antennas is able to compute the DOA of the receiving signals from a MS, based on the magnitudes and phases of the signals received from different antennas. Using the DOA information, the BTS determines the segment where the MS is located.
In step 410, the BTS determines the spatial signatures of both the desired signals and the interference signals. The MSs in the neighboring cells transmit uplink signals with orthogonal coding sequences. The BTS not only receives the uplink signals from the MSs in its own cell but also those from the MSs in the neighboring cells. Based on the received uplink signals, the BTS determines the spatial signatures of the desired signals.
In step 420, the BTS determines what the potential multi-cell interference sources are. When the BTS detects an uplink sounding signal from an MS in a neighboring cell, it compares the signal strength of this signal with a predetermined threshold. If the signal strength is larger than the predetermined threshold, the MS is identified as one potential multi-cell interference source.
If the BTS detects more than one uplink sounding signal from one or more neighboring cells, the signal strength of all the uplink sounding signals from the neighboring cells are compared with a predetermined threshold. If the signal strength is larger than the predetermined threshold, the MSs with the strongest uplink sounding signals are identified as the potential multi-cell interference sources. The spatial signatures of the interference signals are calculated from the receiving signals of the potential multi-cell interference sources.
In step 430, the BTS determines the active multi-cell interference sources. The BTS exchanges uplink sounding signal allocation information with all the other BTSs in every transmission cycle. The BTS determines whether an MS is an active multi-cell interference source based on the uplink sounding signal allocation information sent by the other BTSs.
The covariance matrix of the interference signals is calculated based on the following equation:
where RI,k is the covariance matrix of one interference source k.
In step 440, the BTS computes a null-steering beamforming weighting vector by finding the eigenvector corresponding to the largest eigenvalue of the following eigenvalue problem: (RI+σn2I)RS·{right arrow over (w)}=λ{right arrow over (w)}, where RI is the covariance matrix of the interference; σn2 is the covariance of the background noise; I is an identity matrix; and RS is the covariance matrix of the desired signals.
The above illustration provides many different embodiments or embodiments for implementing different features of the invention. Specific embodiments of components and processes are described to help clarify the invention. These are, of course, merely embodiments and are not intended to limit the invention from that described in the claims.
Although the invention is illustrated and described herein as embodied in one or more specific examples, it is nevertheless not intended to be limited to the details shown, since various modifications and structural changes may be made therein without departing from the spirit of the invention and within the scope and range of equivalents of the claims. Accordingly, it is appropriate that the appended claims be construed broadly and in a manner consistent with the scope of the invention, as set forth in the following claims.
The present application claims the benefit of U.S. Provisional Application Ser. 60/847,182, which was filed on Sep. 26, 2006.
Number | Date | Country | |
---|---|---|---|
60847182 | Sep 2006 | US |