This application claims the benefit of Korea Patent Application No. 10-2014-0119357 filed on Sep. 05, 2014, which is incorporated herein by reference for all purposes as if fully set forth herein.
1. Field of the Invention
Embodiments of the invention relate to an organic light emitting display and more particularly to a method for sensing degradation of an organic element of an organic light emitting display.
2. Discussion of the Related Art
An active matrix organic light emitting display includes an organic light emitting diode (hereinafter, referred to as “organic element”) capable of emitting light by itself and has advantages of a fast response time, a high light emitting efficiency, a high luminance, a wide viewing angle, and the like.
The organic element serving as a self-emitting element includes an anode electrode, a cathode electrode, and an organic compound layer formed between the anode electrode and the cathode electrode. The organic compound layer includes a hole injection layer HIL, a hole transport layer HTL, an emission layer EML, an electron transport layer ETL, and an electron injection layer EIL. When a driving voltage is applied to the anode electrode and the cathode electrode, holes passing through the hole transport layer HTL and electrons passing through the electron transport layer ETL move to the emission layer EML and form excitons. As a result, the emission layer EML generates visible light.
The organic light emitting display arranges subpixels including the organic element in a matrix form and adjusts a luminance of the subpixels depending on grayscale of video data. Each subpixel includes a driving thin film transistor (TFT), which controls a driving current flowing in the organic element depending on a gate-to-source voltage Vgs between a gate electrode and a source electrode of the driving TFT. A display grayscale (i.e., a display luminance) is adjusted by a light emission amount of the organic element that is proportional to a magnitude of the driving current.
The organic element generally has a degradation characteristic of an increase in an operating point voltage (i.e., a threshold voltage) of the organic element and a reduction in an emission efficiency as an emission time of the organic element passes. Because an accumulated value of currents applied to the organic element of each subpixel is proportional to an accumulated value of gray levels represented in each subpixel, the organic elements of the subpixels may have different degradation degrees. A degradation deviation between the organic elements of the subpixels results in a luminance deviation, and an image sticking phenomenon may be generated by an increase in the luminance deviation.
A related art compensation method for sensing the degradation of the organic element and modulating video data based on a sensing value using an external circuit is known to compensate for the degradation deviation of the organic element. The related art compensation method connects a current source to each subpixel through a sensing line and applies a sensing current from the current source to the organic element. Then, the related art compensation method decides a degradation degree of the organic element based on an anode voltage of the organic element sensed through the sensing line.
However, the related art compensation method has the following problems.
Firstly, the sensing current applied to each organic element has to be uniformly set, so as to accurately sense the degradation of the organic element. For this, the current sources have to be respectively connected to the sensing lines. In this instance, because the number of necessary current sources increases, the manufacturing cost and a circuit design area of the organic light emitting display increase. Furthermore, it is very difficult to uniformly set the sensing currents applied from all of the current sources, and thus it is very difficult to increase the sensing accuracy.
Secondly, the sensing lines may be formed by an independent sensing line structure or a shared sensing line structure depending on a connection structure.
In the independent sensing line structure, the plurality of subpixels disposed on the same horizontal line may be respectively connected to the plurality of sensing lines. Hence, the organic elements may be individually operated, and the degradation degree of each organic element may be directly sensed. However, because one sensing line is assigned to each subpixel, an aperture ratio decreases. Hence, a current density of the organic element increases during when driving the organic element. As a result, a degradation speed of the organic element in the related art organic light emitting display having the independent sensing line structure increases, and life span of the related art organic light emitting display decreases.
In the shared sensing line structure, a plurality of unit pixels disposed on the same horizontal line may be respectively connected to the plurality of sensing lines, and subpixels constituting each unit pixel may share the same sensing line with one another. In the related art organic light emitting display having the shared sensing line structure, because the organic elements cannot individually operate during the degradation sensing (namely, because the organic elements of each unit pixel simultaneously operate), the degradation degree of each organic element cannot be accurately sensed.
Embodiments of the invention provide a method for sensing degradation of an organic light emitting display capable of increasing the sensing accuracy when degradation of an organic element is sensed.
In one aspect, there is a method for sensing degradation of an organic light emitting display including a plurality of subpixels each including an organic element and a driving thin film transistor (TFT) controlling an emission amount of the organic element and a sensing unit connected to at least one of the plurality of subpixels through a sensing line, the method comprising during an initialization period, applying a sensing data voltage to a gate node of the driving TFT and applying an initialization voltage to a source node of the driving TFT to turn on the driving TFT, during a boosting period after the initialization period, floating the gate node and the source node of the driving TFT and applying a drain-to-source current of the driving TFT to the organic element to turn on the organic element, during a sensing period after the boosting period, again applying the initialization voltage to the source node of the driving TFT, the again applying of the initialization voltage setting a gate-to-source voltage of the driving TFT to be indicative of a degradation degree of the organic element, and charging a line capacitor of the sensing line with the drain-to-source current of the driving TFT that is controlled by the set gate-to-source voltage, and during a sampling period after the sending period, outputting a voltage stored in the line capacitor as a sensing voltage.
The method further comprises a writing period between the boosting period and the sensing period. During the writing period, the sensing data voltage is again applied to the gate node of the driving TFT and causes the gate-to-source voltage of the driving TFT to be preset to be indicative of the degradation degree of the organic element.
In one embodiment, a method of operation in an organic light emitting display comprising a subpixel including an organic element and a driving thin film transistor (TFT) controlling current through the organic element is disclosed. The method comprises applying a sensing data voltage to a gate node of the driving TFT and applying an initialization voltage to a source node of the driving TFT to turn on the driving TFT; after applying the sensing data voltage and initialization voltage, floating the gate node and the source node of the driving TFT, a source voltage at the source node increasing to at least a turn-on voltage of the organic element while the gate node and the source node are floated; and after floating the gate node and the source node of the driving TFT, again applying the initialization voltage to the source node of the driving TFT while the gate node is floated, the gate-to-source voltage set to be indicative of a degradation degree of the organic element as a result of again applying the initialization voltage to the source node of the driving TFT.
The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and together with the description serve to explain the principles of the invention. In the drawings:
Reference will now be made in detail to embodiments of the invention, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts. It will be paid attention that detailed description of known arts will be omitted if it is determined that the arts can mislead the embodiments of the invention.
Configuration of an organic light emitting display, to which a degradation sensing method of the organic light emitting display according to an exemplary embodiment of the invention is applied, is described with reference to
As shown in
The display panel 10 includes a plurality of data lines 14A, a plurality of sensing lines 14B, a plurality of gate lines 15 crossing the data lines 14A and the sensing lines 14B, and subpixels P respectively arranged at crossings of the data, sensing, and gate lines 14A, 14B, and 15 in a matrix form. The gate lines 15 include a plurality of first gate lines 15A, to which a scan control signal SCAN (refer to
As shown in
In an independent sensing line structure, as shown in
In a shared sensing line structure, as shown in
Each subpixel P receives a high potential driving voltage EVDD and a low potential driving voltage EVSS from a power generator (not shown). Each subpixel P according to the embodiment of the invention may include an organic element, a driving thin film transistor (TFT), first and second switch TFTs, and a storage capacitor for the external compensation. The TFTs constituting the subpixel P may be implemented as a p-type transistor or an n-type transistor. Further, semiconductor layers of the TFTs constituting the subpixel P may contain amorphous silicon, polycrystalline silicon, or oxide.
Each subpixel P may operate differently in a normal drive mode for implementing a display image and a sensing drive mode for obtaining a sensing value. The sensing drive mode may be performed for a predetermined period of time in a power-on process or may be performed in vertical blank periods during the normal drive mode. Further, the sensing drive mode may be performed for a predetermined period of time in a power-off process.
The sensing drive mode may include a first sensing drive mode for sensing a threshold voltage deviation and a mobility deviation of the driving TFT and a second sensing drive mode for sensing degradation of the organic element. The degradation sensing method of the organic light emitting display according to the embodiment of the invention includes only the second sensing drive mode on the assumption that the threshold voltage deviation and the mobility deviation of the driving TFT have already been compensated for.
The sensing drive mode may be configured as one operation of the data driving circuit 12 and the gate driving circuit 13 under the control of the timing controller 11. The timing controller 11 performs an operation for obtaining compensation data for the degradation compensation based on the sensing result and performs an operation for modulating digital video data for the normal drive mode using the compensation data.
The data driving circuit 12 includes at least one data driver integrated circuit (IC) SDIC. The data driver IC SDIC includes a plurality of digital-to-analog converters (DACs) 121 respectively connected to the data lines 14A, a plurality of sensing units 122 (or SU#1 to SU#k) connected to the sensing lines 14B, a multiplexer (MUX) 123 selectively connecting the sensing units 122 to an analog-to-digital converter (ADC), and a shift register 124 which generates a selection control signal and selectively turns on switches SS1 to SSk of the multiplexer 123.
In the normal drive mode, the DACs 121 of the data driver IC SDIC convert digital video data RGB into an image display data voltage in response to a data control signal DDC supplied from the timing controller 11 and supply the image display data voltage to the data lines 14A. In the sensing drive mode, the DACs 121 of the data driver IC SDIC may generate a sensing data voltage Vdata_SEN (or a black level display data voltage Vdata_black) in response to the data control signal DDC supplied from the timing controller 11 and may supply the sensing data voltage Vdata_SEN (or the black level display data voltage Vdata_black) to the data lines 14A.
The sensing units SU#1 to SU#k of the data driver IC SDIC may be respectively connected to the sensing lines 14B. The number of sensing lines 14B and the number of sensing units SU#1 to SU#k in the shared sensing line structure shown in
Because the degradation sensing method of the organic light emitting display according to the embodiment of the invention applies a turn-on current to the organic element using the driving TFT instead of separate current sources, the sensing units SU#1 to SU#k according to the embodiment of the invention do not need to have the current sources used in the related art. Hence, the embodiment of the invention may reduce manufacturing costs and the circuit design area. Further, because the embodiment of the invention may adopt a voltage setting method, which is able to be more easily controlled than a current setting method, the sensing accuracy may increase.
As described in this specification, the degradation sensing method of the organic light emitting display according to the embodiment of the invention adopts the voltage setting method. Therefore, even if the shared sensing line structure is adopted, the subpixels can be individually controlled and degradation of an organic element of a desired subpixel can be accurately sensed. For example, as shown in
The ADC of the data driver IC SDIC converts a sensing voltage input through the multiplexer 123 into a digital sensing value SD and transmits the digital sensing value SD to the timing controller 11.
In the sensing drive mode, the gate driving circuit 13 generates a scan control signal based on a gate control signal GDC and then may supply the scan control signal to the first gate lines 15A line by line in sequential manner. In the sensing drive mode, the gate driving circuit 13 generates a sensing control signal based on the gate control signal GDC and then may supply the sensing control signal to the second gate lines 15B line by line in sequential manner.
The timing controller 11 generates the data control signal DDC for controlling operation timing of the data driving circuit 12 and the gate control signal GDC for controlling operation timing of the gate driving circuit 13 based on timing signals, such as a vertical sync signal Vsync, a horizontal sync signal Hsync, a data enable signal DE, and a dot clock DCLK. The timing controller 11 may separate the normal drive mode from the sensing drive mode based on a predetermined reference signal (for example, a driving power enable signal, the vertical sync signal Vsync, the data enable signal DE, etc.) and may generate the data control signal DDC and the gate control signal GDC in conformity with the normal drive mode and the sensing drive mode. Further, the timing controller 11 may further generate related switching control signals CON (including signals PRE and SAM of
In the sensing drive mode, the timing controller 11 may transmit digital data corresponding to the sensing data voltage Vdata_SEN to the data driving circuit 12. In the embodiment disclosed herein, it is preferable, but not required, that the sensing data voltage Vdata_SEN applied to each subpixel is set differently depending on an amount of the threshold voltage deviation and an amount of the mobility deviation of the driving TFT included in the corresponding subpixel. Because the embodiment of the invention sets the sensing data voltage Vdata_SEN to be applied to the corresponding subpixel after previously considering the amount of the threshold voltage deviation and the amount of the mobility deviation of the driving TFT included in the corresponding subpixel, the embodiment of the invention may greatly suppress a distortion of the sensing data voltage Vdata_SEN resulting from the deviation amounts. Hence, the sensing accuracy may further increase.
In the sensing drive mode, the timing controller 11 may calculate compensation data capable of compensating for the degradation of the organic element of each subpixel P based on the digital sensing value SD transmitted from the data driving circuit 12 and may store the compensation data in the memory 16. In the normal drive mode, the timing controller 11 may modulate the digital video data RGB for the image display based on the compensation data stored in the memory 16 and then may transmit the modulated digital video data RGB to the data driving circuit 12.
As shown in
The organic element OLED includes an anode electrode connected to a source node Ns, a cathode electrode connected to an input terminal of the low potential driving voltage EVSS, and an organic compound layer positioned between the anode electrode and the cathode electrode.
The driving TFT DT controls an amount of a current input to the organic element OLED depending on a gate-to-source voltage Vgs of the driving TFT DT. The driving TFT DT includes a gate electrode connected to a gate node Ng, a drain electrode connected to an input terminal of the high potential driving voltage EVDD, and a source electrode connected to the source node Ns. The storage capacitor Cst is connected between the gate node Ng and the source node Ns. The first switch TFT ST1 applies a data voltage Vdata (including the sensing data voltage Vdata_SEN or the black level display data voltage Vdata_black) on the data line 14A to the gate node Ng in response to the scan control signal SCAN. The first switch TFT ST1 includes a gate electrode connected to the first gate line 15A, a drain electrode connected to the data line 14A, and a source electrode connected to the gate node Ng. The second switch TFT ST2 turns on the flow of a current between the source node Ns and the sensing line 14B in response to the sensing control signal SEN. The second switch TFT ST2 includes a gate electrode connected to the second gate line 15B, a drain electrode connected to the sensing line 14B, and a source electrode connected to the source node Ns.
Each sensing unit SU may include an initialization switch SW1, a sampling switch SW2, and a sample and hold unit S/H.
The initialization switch SW1 is turned on in response to an initialization control signal PRE and turns on the flow of a current between an input terminal of the initialization voltage Vpre and the sensing line 14B. The sampling switch SW2 is turned on in response to a sampling control signal SAM and connects the sensing line 14B to the sample and hold unit S/H. When the sampling switch SW2 is turned on, the sample and hold unit S/H samples and holds a voltage (as the sensing voltage) stored in a line capacitor LCa of the sensing line 14B and then transmits the voltage to the ADC. In the embodiment disclosed herein, the line capacitor LCa may be replaced by a parasitic capacitor existing in the sensing line 14B.
Hereinafter, a method for sensing the degradation of the organic light emitting display according to the embodiment of the invention is described in detail based on the above-described configuration of the organic light emitting display.
As shown in
In the initialization step S10, the degradation sensing method according to the embodiment of the invention applies the sensing data voltage Vdata_SEN to the gate node Ng of the driving TFT DT and applies the initialization voltage Vpre to the source node Ns of the driving TFT DT, thereby turning on the driving TFT DT.
When a plurality of subpixels constituting the same unit pixel share one sensing line 14B with one another as shown in
In the boosting step S20, the degradation sensing method according to the embodiment of the invention floats the gate node Ng and the source node Ns of the driving TFT DT and applies a drain-to-source current Ids of the driving TFT DT to the organic element OLED, thereby turning on the organic element OLED.
In the sensing step S30, the degradation sensing method according to the embodiment of the invention again applies the initialization voltage Vpre to the source node Ns of the driving TFT DT, which sets the gate-to-source voltage Vgs of the driving TFT DT depending on a degradation degree of the organic element OLED, and stores the drain-to-source current Ids of the driving TFT DT in the line capacitor LCa of the sensing line 14B. The level of the drain-to-source current Ids is controlled by the set gate-to-source voltage Vgs.
In the sampling step S40, the degradation sensing method according to the embodiment of the invention outputs a voltage stored in the line capacitor LCa as a sensing voltage Vsen.
As shown in
In the initialization period Tint, the scan control signal SCAN, the sensing control signal SEN, and the initialization control signal PRE are applied at an on-level, and the sampling control signal SAM is applied at an off-level. As a result, as shown in
In the boosting period Tbst, only the initialization control signal PRE is applied at the on-level, and the scan control signal SCAN, the sensing control signal SEN, and the sampling control signal SAM are applied at the off-level. As a result, as shown in
In the boosting period Tbst, the scan control signal SCAN and the sensing control signal SEN may be simultaneously applied at the off-level. However, as shown in
In the sensing period Tsen, the sensing control signal SEN is applied at the on-level, and the initialization control signal PRE is maintained at the on-level for a predetermined period of time and then is inverted to the off-level. Further, the scan control signal SCAN and the sampling control signal SAM are applied at the off-level. As a result, as shown in
Because the source node Ns of the driving TFT DT again receives the initialization voltage Vpre and then is floated, the voltage of the source node Ns is reduced. In this instance, the voltage of the gate node Ng is also reduced because of a coupling influence of the storage capacitor Cst. A reduction in the voltage of the gate node Ng may vary depending on the degradation degree of the organic element OLED. In other words, the change in degradation of the organic element OLED is reflected by a voltage difference (=5V-4.5V, for example) of the gate node Ng before and after the degradation, and the voltage difference of the gate node Ng also results in a difference of the gate-to-source voltage Vgs of the driving TFT DT. Hence, a current flowing in the sensing line 14B varies depending on the degradation degree of the organic element OLED. The current is stored in the line capacitor LCa of the sensing line 14B. When the current flowing in the sensing line 14B decreases in proportion to the degradation degree of the organic element OLED, the voltage stored in the line capacitor LCa decreases. Generally speaking, lower degrees of OLED degradation cause an increase in current flowing in the sensing line 14B, and an increase in a charge slope of the charge stored in the line capacitor LCa. On the contrary, higher degrees of OLED degradation cause a decrease in current flowing in the sensing line 14B, and a decrease in the charge slope of the charge stored in the line capacitor LCa.
In the sampling period Tsam, only the sampling control signal SAM is applied at the on-level, and the scan control signal SCAN, the sensing control signal SEN, the initialization control signal PRE are applied at the off-level. As a result, as shown in
As shown in
The degradation sensing method of
In the writing step S25, the degradation sensing method according to the embodiment of the invention again applies the sensing data voltage Vdata_SEN to the gate node Ng of the driving TFT DT, which presets the gate-to-source voltage Vgs of the driving TFT DT depending on the degradation degree of the organic element OLED such that the gate-to-source voltage Vgs is indicative of the degradation degree of the OLED. In the writing step S25, the degradation degree of the organic element OLED is more easily converted into the gate-to-source voltage Vgs of the driving TFT DT by presetting the gate-to-source voltage Vgs of the driving TFT DT depending on the degradation degree of the organic element OLED before the sensing step S30 for setting the gate-to-source voltage Vgs of the driving TFT DT depending on the degradation degree of the organic element OLED. This results in an increase in the sensing accuracy when sensing the degradation of the organic element OLED.
As shown in
Since the operation of the subpixel and the operation of the sensing unit in the initialization period Tint, the boosting period Tbst, the sensing period Tsen, and the sampling period Tsam are substantially the same as those of
In the writing period Twrt, the scan control signal SCAN and the initialization control signal PRE are applied at the on-level, and the sensing control signal SEN and the sampling control signal SAM are applied at the off-level. As a result, as shown in
As can be seen from
Because the degradation sensing method according to the embodiment of the invention adopts a voltage setting method (for changing the gate-to-source voltage Vgs of the driving TFT DT depending on the degradation degree of the organic element OLED), which is able to be more easily controlled than an existing current setting method, the sensing accuracy increases, and the circuit design area and the manufacturing cost are reduced by removing unnecessary current sources.
When the degradation of the organic element OLED is sensed using the degradation sensing method according to the embodiment of the invention, a degradation trend of the organic element OLED can be confirmed. Namely, as driving time passes, the degradation degree of the organic element OLED may be represented by the graph shown in
As shown in
As can be seen from the modification examples shown in
As described above, the degradation sensing method according to the embodiment of the invention changes the gate-to-source voltage of the driving TFT depending on the degradation degree of the organic element and detects changes in the current obtained based on changes in the gate-to-source voltage of the driving TFT as the sensing voltage. Because the degradation sensing method according to the embodiment of the invention adopts the voltage setting method, which is able to be more easily controlled than the existing current setting method, sensing accuracy increases, and the circuit design area and the manufacturing cost are reduced by removing the unnecessary current sources.
Furthermore, because the degradation sensing method according to the embodiment of the invention adopts the voltage setting method, the subpixels can be individually controlled and the degradation of an organic element of a desired subpixel can be accurately sensed even if the sensing line sharing structure is applied. The shared sensing line structure is also advantageous in increasing the aperture ratio of the display panel.
Although embodiments have been described with reference to a number of illustrative embodiments thereof, it should be understood that numerous other modifications and embodiments can be devised by those skilled in the art that will fall within the scope of the principles of this disclosure. More particularly, various variations and modifications are possible in the component parts and/or arrangements of the subject combination arrangement within the scope of the disclosure, the drawings and the appended claims. In addition to variations and modifications in the component parts and/or arrangements, alternative uses will also be apparent to those skilled in the art.
Number | Date | Country | Kind |
---|---|---|---|
10-2014-0119357 | Sep 2014 | KR | national |
Number | Name | Date | Kind |
---|---|---|---|
7834556 | Yamamoto | Nov 2010 | B2 |
8525758 | Sugimoto | Sep 2013 | B2 |
9125249 | Kim | Sep 2015 | B2 |
20080150846 | Chung | Jun 2008 | A1 |
20080224965 | Kim | Sep 2008 | A1 |
20090027310 | Kim | Jan 2009 | A1 |
20090051628 | Kwon | Feb 2009 | A1 |
20100321422 | Ishiguro | Dec 2010 | A1 |
20110122119 | Bae | May 2011 | A1 |
20110193855 | Han | Aug 2011 | A1 |
20110227505 | Park | Sep 2011 | A1 |
20110285691 | Takasugi | Nov 2011 | A1 |
20130141316 | Lee | Jun 2013 | A1 |
20130162617 | Yoon | Jun 2013 | A1 |
20140062331 | Nam | Mar 2014 | A1 |
20150138253 | Kimura | May 2015 | A1 |
20150294623 | Toyomura | Oct 2015 | A1 |
Number | Date | Country |
---|---|---|
10-2013-0024744 | Mar 2013 | KR |
10-2013-0053660 | May 2013 | KR |
Entry |
---|
Korean Office Action, Korean Application No. 10-2014-0119357, Jun. 20, 2015, 5 pages (with concise explanation of relevance). |
Number | Date | Country | |
---|---|---|---|
20160071445 A1 | Mar 2016 | US |