The invention relates to brazing together thermostructural composite materials, and in particular ceramic matrix composite (CMC) materials. CMC materials are typically constituted by a porous substrate, such as a porous fiber substrate, densified by a ceramic matrix. The fibers of the substrate may be carbon fibers or ceramic fibers. The matrix is a refractory ceramic such as, for example, a refractory carbide, nitride, boride, or oxide. CMC materials, such as C/SiC (carbon fiber reinforcement and silicon carbide matrix) composite, for example, are remarkable for their mechanical properties that make them suitable for constituting structural elements, and for their ability to retain these properties at high temperatures.
When making structures out of ceramic matrix composite materials, it is common to build them up from independent elements of CMC material that are assembled together by brazing. Nevertheless, brazing ceramic matrix composite materials is technically difficult. These materials present a high degree of surface roughness and they include oxide phases. A brazed joint can be made only providing the oxide phases are eliminated. For this purpose, it is general practice to use brazing alloys or compositions based on silicon that require heat treatment at temperatures higher than 1200° C. Nevertheless, at such temperatures and above, eliminating the oxide phases present in the material leads to gaseous species being formed.
Those results can be improved, in particular by careful control over pauses during the temperature rise so as to implement an oxygen-removal pause prior to reaching the brazing temperature. An anti-wetting agent may also be used to “force” the passage of the brazing composition in the joint.
Furthermore, those brazing techniques do not enable the thickness of the brazed joint to be controlled. Even with docking planes that have been lapped, the thickness of the resulting brazed joint can vary because of lack of uniformity in the distribution of the brazing composition during the heat treatment. Such variations in brazed joint thickness are further accentuated when the docking planes present irregularities (thicknesses e1 and e2 in
An object of the invention is to provide a method enabling parts to be assembled together by brazing without the drawbacks mentioned above, in particular enabling the gaseous species produced during heat treatment to be removed and also enabling the thickness of the brazed joint and the contact between said joint and the brazed surfaces to be controlled.
This object is achieved with a method in which, in accordance with the invention, a pad is interposed between the two surfaces of the parts that are to be joined together, said pad being formed by a refractory fiber texture, and being at least in part in contact with a brazing composition, and heat treatment is performed to liquefy the brazing composition so as to cause the molten brazing composition to be distributed by capillarity over the entire brazing area between the two parts covered by the pad.
Thus, the pores in the fiber texture of the pad serve to bring the brazing composition by capillarity over the entire surface covered by the pad, while simultaneously facilitating removal of the gaseous species produced during the rise in temperature.
In addition, using such a pad makes it possible to control the final thickness of the brazed joint. By selecting the thickness of the pad, it is possible to control the final thickness of the brazed joint in a manner that is reproducible and accurate. Because of its flexibility, the pad also makes it possible to control contact with surfaces for brazing together even when such surfaces present irregularities. This provides continuous contact between the brazed joint and the brazed surfaces, enabling a connection to be obtained between the parts that is uniform and of good quality.
The pad may be constituted by a texture comprising carbon fibers or carbon-precursor fibers or ceramic fibers, where the ceramic may be silicon carbide (SiC).
In an aspect of the invention, the brazing composition is placed in contact with at least a portion of the pad outside the zone where the parts for brazing are docked together. During the rise in temperature, the molten composition is transported by capillarity between the surfaces of the parts for brazing over the entire area covered by the pad.
The pad may be cut to the shapes and sizes of the surfaces of the parts for brazing together. It is easily handled and can be matched to any shape of parts for brazing together. Thus, the zone over which it is desired to form a brazed joint can easily be defined in advance as the zone covered by the pad. It is then possible to make brazed joints that are strong on surfaces of all types, and to do so in a manner that is accurate and reproducible.
Other characteristics and advantages of the invention appear from the following description of particular implementations of the invention, given as non-limiting examples, with reference to the accompanying drawings, in which:
The method of the present invention for assembling parts together by brazing applies to parts made of any thermostructural ceramic matrix composite (CMC) material, i.e. any material constituted by reinforcement of refractory fibers (carbon fibers or ceramic fibers) densified by a ceramic matrix that is also refractory, such as C/SiC, SiC/SiC, C/C—SiC materials, etc. The method also applies to other types of material that are liable to give off gaseous species during brazing, such as C/C materials or monolithic ceramics.
With reference to
As shown in
Optionally (step S2), an anti-wetting agent may be disposed on those zones of the parts that are not to be brazed (e.g. faces and edge faces that are not covered by the pad) so as to control the brazing flux, constraining it to wet only the pad covering those zones of the parts that are to be brazed. The anti-wetting agent used may be constituted, for example, by boron nitride (BN) packaged in the form of an aerosol, so-called “Stop-off” products such as the anti-wetting agent Stopyt® sold by the supplier Wesgo Metals or the Nicrobraz® products distributed by the supplier Wall Colmonoy Limited.
The following step (step S3) consists in placing a brazing composition 40 in contact with one (or more) portions of the pad 30 projecting beyond the docking plane between the two parts. By way of example, the brazing composition can be constituted by silicon compositions or silicon-based compositions such as those described in patent applications EP 0 806 402 or U.S. Pat. No. 5,975,407, silicon plus metallic silicide alloys, silicon plus optionally alloyed germanium, and metallic compositions known under the trade names Cusil-ABA®, Ticusil®, Incusil®, or Brasic®. The brazing composition is selected in particular as a function of its compatibility with the material of the parts, i.e. it is preferable to choose a composition that does not react with the material or that reacts therewith in controlled manner.
Thereafter, the temperature is raised until the brazing composition 40 becomes liquid, whereupon it is sucked by capillarity into the pad 30 and becomes distributed over the entire brazing area between the two parts covered by the pad (step S4). The gaseous species produced during the heat treatment are removed through the pores of the pad, thereby preventing pockets of gas forming within the brazed joint. The brazing front that advances through the pad pushes back the gaseous species that flow through the pores of the pad to the end of the pad where they are exhausted to the outside.
As shown very diagrammatically in
Furthermore, the use of such a pad makes it possible to guarantee some minimum thickness for the brazed joint, even when the docking planes present irregularities. As can be seen in
Because of its flexibility, the pad matches the shape of the surface roughnesses, thus making it possible to control contact with the surfaces to be brazed together and to form a continuous brazed joint over the brazed-together surfaces in their entirety.
The use of a pad in accordance with the invention also presents the advantage of forming a diffusion medium for the brazing composition that adapts easily to parts of any shape. The pad is deformable and easy to cut out. Consequently, it can be cut to the dimensions and the shapes of the surfaces that are to be brazed together, and it can comply with the three-dimensional shape of the parts (non-planar parts).
Each of the panels 110 and 120 presents grooves or recesses 111a, 111b, 111c, and 121a, 121b, 121c for constituting flow channels for a fluid for cooling the structure. The recesses 111a-111c and 121a-121c respectively in the panels 110 and 120 define two independent brazing surfaces per panel (110a and 110b for panel 110 and 120a and 120b for panel 120).
In accordance with the present invention, a dry pad 130 is inserted between the surfaces of the panels that are to be joined together to form the fluid flow circuit. As shown in
As shown in
As shown in
The brazing method of the present invention is particularly well adapted to assembling together parts presenting shapes that are complex and/or non-uniform. As shown in
Number | Date | Country | Kind |
---|---|---|---|
0406892 | Jun 2004 | FR | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/FR2005/001566 | 6/22/2005 | WO | 00 | 11/5/2007 |