This is a national stage application filed under 35 USC 371 based on International Application No. PCT/FI2011/050813 filed Sep. 21, 2011, and claims priority under 35 USC 119 of Finnish Patent Application No. 20105987 filed Sep. 24, 2010.
The invention relates to a method defined in the preamble of claim 1. The invention further relates to the sintering equipment defined in the preamble of Claim 7.
In the continuous sintering of mineral material, a layer of material is formed on a conveyor base in a sintering furnace, the layer being called herein a material bed. The material bed is conveyed by the conveyor base through the process zones of the sintering furnace, which have different temperatures. During the conveyance, gas is conducted through the conveyor base and the material bed when the material bed travels through the process zones.
From a last cooling zone, gas is recycled in a circulation gas duct to a drying zone that constitutes the first process zone. In the drying, the energy of the gas is used for heating the material bed and evaporating water. The gas cools and moistens, when it conveys heat to the evaporation. Exhaust gas conveys moisture away from the material bed. Because of the water transport, it is essential for the balance of the entire furnace that the gas flow through the bed remains constant.
The balance of materials and energy of the well-known sintering furnace is fairly complex due to three separate gas circulation processes from the cooling zones back to the drying, heating, and sintering zones. The process control is based on fixing the process parameters in the entire process, starting from raw material etc., to maintain the balance. The principle of controlling the sintering furnace is not to adjust individual zones at fixed points only, but to balance the temperatures in individual zones to acceptable ranges, so that the profile in the furnace remains in balance.
In prior art solutions, in practice, the drying temperature in the drying zone is controlled by regulating the volume flow of the gas flow that is conducted through the material bed, so that part of the hot gas flow of the circulation gas duct is conducted as a by-pass flow past the material bed and into an exhaust air blower. The regulation is carried out by a control valve that is arranged in the bypass gas duct, which when open, increases the flow and decreases the temperature, and when closed, decreases the flow and increases the temperature in the drying zone.
One problem with the existing system is that, in particular, if and when the change in the position of the control valve is great, it also influences the gas flow through the material bed in the drying zone and, thus, the process itself and the balance of the furnace.
An original and effective principle is to adjust the control valve manually because of the long response times of the control and because of the problem mentioned above. In practice, users have changed the adjustment of the control valve to be automatic, against the instructions. A problem with the automatic use is that it causes variations in the quality of the process and the product. If and when the control valve tries to keep the drying zone temperature at one standard value, the control valve easily fluctuates from side to side. At the same time, it also influences the gas flow through the material bed.
The object of the invention is to eliminate the disadvantages mentioned above.
In particular, the object of the invention is to disclose a method—sintering equipment, by means of which the balance of the sintering furnace is easy to maintain.
Another object of the invention is to disclose a method and equipment, wherein the blower that sucks gas from the drying section through the material bed, and a cleaning device, such as a gas scrubber, can be smaller than before. Also the circulation gas duct that conducts gas from the last cooling zone to the drying zone can be smaller than before.
The method according to the invention is characterized in what is disclosed in claim 1. The equipment according to the invention is characterized in what is disclosed in claim 7.
According to the invention, in the method, part of the gas flow that is conducted to the drying zone in the circulation gas duct is removed as an exhaust gas flow through an exhaust gas duct, and the volume flow of the exhaust gas flow is regulated to control the temperature of the gas flow travelling through the material bed in the drying zone.
According to the invention, the equipment includes an exhaust gas duct, which is connected to the circulation gas duct that conducts gas from the last cooling zone to the drying zone, to remove part of the gas flow that is conducted in the circulation gas duct as an exhaust gas flow. The equipment further includes an exhaust gas blower, which is arranged in the exhaust gas duct to produce the exhaust gas flow. In addition, the equipment includes a regulating device to regulate the blowing power of the exhaust gas blower to regulate the volume flow of the exhaust gas flow to control the temperature of the gas flow that travels through the material bed in the drying zone.
By means of the invention, the temperature of the drying zone of the sintering furnace is easy to control by regulating the volume flow of the gas that is removed, before the material bed, from the circulation gas duct, which conducts gas from the last cooling zone to the drying zone, by a separate variable-speed exhaust gas blower. Thus the existing blower below the drying zone regulates the gas flow rate through the material bed, and the separate exhaust gas blower controls the temperature of the drying gas. The temperature control can be automated.
In an embodiment of the method, the volume flow of the gas flow that is conducted through the material bed in the drying zone is regulated by conducting part of the gas flow of the circulation gas duct as a by-pass gas flow past the material bed. The volume flow of the by-pass gas flow is set to an essentially constant volume.
Correspondingly, in an embodiment of the equipment, the equipment includes a by-pass gas duct for conducting gas from the circulation gas duct, which conducts gas from the last cooling zone to the drying zone, past the material bed to the exhaust gas duct of the drying zone, and a control valve to regulate the volume flow of the by-pass gas flow in the by-pass gas duct. This by-pass gas duct and control valve that possibly exist in the equipment and are known as such can be left to control the temperature of the exhaust gas in the drying zone to 100° C. to dry the exhaust gas, if necessary, under cold conditions. This, however, does not influence the gas flow through the bed.
In an embodiment of the method, the exhaust gas flow is produced by the exhaust gas blower in the exhaust gas duct, and the volume flow of the exhaust gas flow is regulated by controlling the rotation speed of the exhaust gas blower.
In an embodiment of the method, essentially almost half of the volume flow of the circulation gas duct is removed as the exhaust gas flow.
In an embodiment of the method, dust particles are removed from the exhaust gas flow and the purified exhaust gas flow is conducted into the atmosphere.
In an embodiment of the method, the exhaust gas flow is purified by a cleaning device, such as a gas scrubber.
In an embodiment of the equipment, the equipment includes a cleaning device, such as a gas scrubber, for purifying the exhaust gas flow.
In the following, the invention is described in detail by means of an exemplary embodiment and with reference to the appended drawing, wherein the FIGURE presents schematically an embodiment of the sintering equipment, according to the invention.
The equipment includes a strand sintering furnace S, which comprises a number of sequential process zones I-VII, different temperature conditions prevailing in each one of them when the sintering furnace is running.
The zones include a drying zone I, where the temperature is about 500° C. and where the material is dried, that is, water is removed from the material; a heating zone II for heating the dried material, where the temperature of the material is increased to about 1150° C.; a sintering zone III, where the temperature is about 1350° C. and where the material is sintered; and a balancing zone IV. After the balancing zone IV, there are three sequential cooling zones V, VI, VI, where the sintered material is gradually cooled, so that when leaving the furnace, its temperature is about 400° C.
The belt conveyor 1, which conveys the material bed 2 through the zones mentioned above, is a perforated steel belt, where the perforation allows the gas to pass through. The invention, however, is also useful in connection with a sintering furnace of the so-called moving grate type.
The mineral material to be sintered can be, for example, in a pelletized or some other granular form.
The sintering furnace S functions so that fresh material is fed so as to form a material bed 2 with a thickness of several dozens of centimeters, on top of a steel belt 1 at the forward end of the furnace S (left in the FIGURE). The belt conveyor 1 travels as an endless loop around a creasing roll 25 and a drive roll 24. Above the belt conveyor 8, there are three overhead circulation gas ducts 3, 6, 7, which conduct gas from the cooling zones V, VI, VII to the drying, heating, and sintering zones I, II, III on top of the material bed. Each circulation gas duct 6 and 7 contains a burner (not shown) for heating the gas. Lower exhaust gas ducts 8, 9, 10 that are below the belt conveyor 1 conduct, enhanced by blowers 14, 15, 16, the gas which is conducted through the material bed 2 and the belt conveyor 1, away from the drying, heating, and sintering zones I, II, III. Lower inlet gas channels 11, 12, 13 conduct gas from below the belt conveyor 1 to the cooling zones V, VI, and VII. The movement of gas in the inlet gas channels 11, 12, and 13 is caused by blowers 17, 18, and 19, respectively.
The equipment further includes a by-pass channel 20, through which gas can be conducted from the circulation gas duct 3, which conducts the gas from the last cooling zone VII to the drying zone I, past the material bed 2 and into the exhaust gas duct 8 of the drying zone. The volume flow of the by-pass gas flow is regulated in the by-pass gas channel 20 by adjusting the control valve 21.
The equipment further includes an exhaust gas duct 4, which is connected to the circulation gas duct 3 that conducts gas from the last cooling zone VII to the drying zone I, so that part of the gas flow that is conducted in the circulation gas duct 3 can be removed as an exhaust gas flow B. An exhaust gas blower 5 produces an exhaust gas flow in the exhaust gas duct 4, and a regulating device 22 can regulate the blowing power of the exhaust gas blower 5. By regulating the blowing power, the volume flow of the exhaust gas flow B is regulated to control the gas flow travelling through the material bed in the drying zone and, through that, the temperature of the drying gas that is conducted through the material bed in the drying zone. The blowing power is regulated by regulating the rotation speed of the driving motor M of the exhaust gas blower 5 by a VSD unit (VSD=Variable Speed Drive).
The equipment also includes a cleaning device 23, such as a gas scrubber, to purify the exhaust gas flow B before it is conducted into the atmosphere.
When using the sintering equipment, the volume flow of the gas flow that is conducted through the material bed 2 in the drying zone I is regulated by conducting part of the gas flow of the circulation gas duct 3 as a by-pass flow A past the material bed, and the volume flow of the by-pass gas flow A is set at an essentially standard volume. At the same time, part of the gas flow that is conducted in the circulation gas duct 3 to the drying zone I is removed as the exhaust gas flow B through the exhaust gas duct 4, and the volume flow of the exhaust gas flow B is regulated to control the temperature of the gas flow travelling through the material bed in the drying zone.
The invention is not limited to the application examples described above only, but many modifications are possible within the inventive idea defined by the claims.
Number | Date | Country | Kind |
---|---|---|---|
20105987 | Sep 2010 | FI | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/FI2011/050813 | 9/21/2011 | WO | 00 | 1/31/2013 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2012/038602 | 3/29/2012 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3245778 | Ban | Apr 1966 | A |
3305226 | Ziegler et al. | Feb 1967 | A |
3849115 | Ban | Nov 1974 | A |
3871631 | Biewinga | Mar 1975 | A |
4082542 | George | Apr 1978 | A |
4317676 | Souma et al. | Mar 1982 | A |
4410355 | Feichtner et al. | Oct 1983 | A |
4689007 | Kilian | Aug 1987 | A |
5649823 | Tutt | Jul 1997 | A |
8726537 | Palander | May 2014 | B2 |
20030165789 | Niemela et al. | Sep 2003 | A1 |
20110143291 | Clements | Jun 2011 | A1 |
Number | Date | Country |
---|---|---|
101376921 | Mar 2009 | CN |
119940 | May 2009 | FI |
53054102 | May 1978 | JP |
8260062 | Oct 1996 | JP |
9209049 | Aug 1997 | JP |
05830 | Dec 1977 | OA |
970062 | Oct 1982 | SU |
1323835 | Jul 1987 | SU |
2009030809 | Mar 2009 | WO |
Entry |
---|
International Search Report PCT/FI2011/050813, completed Nov. 25, 2011, mailed Dec. 1, 2011, 4 pages. |
Number | Date | Country | |
---|---|---|---|
20130130186 A1 | May 2013 | US |