Method for the Determination of the Formation of Endothelins for Medical Diagnostic Purposes, and Antibodies and Kits for Carrying Out Such a Method

Abstract
The invention relates to an in vitro method for detecting the formation of endothelins during serious illnesses, especially cardiovascular diseases, inflammations, sepsis and cancer, in whole blood, plasma or serum of a human patient for medical diagnosis. Using this method, relatively long-lasting peptide fragments, especially a C-terminal peptide fragment, of the processed primary prepro- or proendothelins that contain neither the actual biologically active endothelin nor its direct precursor, big endothelin, can be detected.
Description

The investigations carried out and the most significant results of the investigations are explained more exactly below, reference being made to figures. In the figures:



FIG. 1 shows a typical standard curve for the currently preferred sandwich assay with two antibodies which bind to amino acid sequences which correspond to the positions 168-181 and 200-212 of preproendothelin-1, for the determination of a C-terminal proendothelin peptide sequence in human plasma, said sandwich assay being described more exactly in the experimental section;



FIG. 2 shows a diagram which shows that, on storage of EDTA plasma samples from septic and cardiological patients at room temperature over 12 hours, no significant loss of immunoreactivity occurs in an assay according to FIG. 1;



FIG. 3
a shows the measurement of plasmas of 5 groups of human patients with different diseases/diagnoses, compared with the measurements for apparently healthy persons; the dotted line indicates the maximum value found in healthy persons (line for 100% specificity, based on healthy controls);



FIG. 3
b shows a diagram corresponding to FIG. 3a, for four further groups of patient plasmas.





The method according to the invention relates in its most general aspect to the determination of a relatively long-lived peptide fragment of proendothelin-1 which does not contain the amino acid sequences of endothelin-1 or its precursor big endothelin, in whole blood, plasma or serum samples, i.e. in the circulation of patients, for the indirect determination of the formation of endothelins, in particular of endothelin-1, in serious diseases. According to a preferred embodiment, the peptide fragment determined is a C-terminal fragment to which two antibodies bind which bind to peptides having amino acid sequences which correspond to the positions 168-181 and 200-212 of preproendothelin-1.


For the practical implementation of the invention, noncompetitive sandwich assays, for example of the type as used for the more far-reaching detailed investigations and described more exactly below, are particularly preferably provided.


Compared with competitive immunoassays, noncompetitive sandwich immunoassays (two-sided immunoassays) have a number of advantages, which include the fact that they can be better designed than solid-phase assays (heterogeneous assays), may be more rugged in terms of handling, can give measured results with a higher sensitivity and are also more suitable for automation and series measurement. Moreover, they can also provide additional information compared with competitive immunoassays which operate with only one type of antibody, in that sandwich immunoassays recognize only those molecules or peptides with which both binding sites for the antibodies used in the sandwich formation are present on the same molecule.


The antibodies which may be used may in principle be any desired suitable monoclonal and/or polyclonal antibodies, but affinity-purified polyclonal antibodies are currently preferred.


Particularly preferably, the antibodies are obtained by immunization of an animal, in particular of a sheep, with an antigen which contains a synthetic peptide sequence which corresponds to a short amino acid sequence of preproendothelin-1 and an additional cysteine residue at the N-terminus. In the following experimental section, in particular antibodies which bind to the amino acid sequences 161-181 and 200-212, and their use in an assay are described. However, in the course of the investigations, additional antibodies which accordingly bind to the positions 184-203 and 136-148 were also used. The additional results obtained with these further antibodies in measurements are discussed only globally in this Application.


In a preferred embodiment, the method is carried out as a heterogeneous sandwich immunoassay, in which one of the antibodies is immobilized on any desired solid phase, for example the walls of coated test tubes (e.g. of polystyrene; “coated tubes”; CT) or on microtiter plates, for example of polystyrene, or on particles, for example magnetic particles, while the other antibody carries a residue which represents a directly detectable label or permits selective linkage to a label and serves for detecting the sandwich structures formed. Delayed or subsequent immobilization with the use of suitable solid phases is also possible.


In principle, all marking techniques which can be used in assays of the type described may be employed, including marking with radioisotopes, enzymes, fluorescent, chemoluminescent or bioilluminescent labels and directly optically detectable color markers, such as, for example, gold atoms and dye particles, as are used, in particular for so-called point-of-care (POC) or accelerated tests for determination in whole blood samples. In the case of heterogeneous sandwich immunoassays, the two antibodies may also have parts of a detection system of the type described below in relation to homogeneous assays.


It is therefore within the scope of the present invention also to design the method according to the invention as an accelerated test.


The method according to the invention can furthermore be designed as a homogeneous method in which the sandwich complexes formed from the two antibodies and the peptide fragment to be detected remain suspended in the liquid phase. In such a case, it is preferable to mark both antibodies with parts of a detection system which permits signal generation or signal triggering when both antibodies are integrated into a single sandwich. Such techniques can be designed in particular as fluorescence amplification or fluorescence extinction assays. A particularly preferred method of this type relates to the use of detection reagents to be used in pairs, as described, for example, in U.S. Pat. No. 4,822,733, EP-B1-180 492 or EP-B1-539 477 and the prior art cited therein. They permit a measurement which selectively detects only reaction products which contain both marking components in a single immune complex, directly in the reaction mixture. The technology which is available under the brands TRACE® (Time Resolved Amplified Cryptate Emission) and KRYPTOR® and which implements the teachings of the above-mentioned application may be referred to as an example.


In the investigations by the Applicant, it was found that the determination, according to the invention, of the C-terminal peptide fragment of preproendothelin-1 gives highly interesting and relevant results. As will be shown below, this statement applies not only to the sepsis diagnosis but also to cardiac diagnosis and cancer diagnosis.


It is furthermore assumed that the assays according to the invention can also be particularly advantageously carried out as part of a so-called multiparameter diagnosis, in particular both in the area of cardiac diagnosis and in sepsis and cancer diagnosis. Further parameters determined thereby are, for example, the cardiac parameters ANP, BNP, proANP, proADM and proBNP or sepsis parameters which are selected, for example, from the group which consists of anti-ganglioside antibodies, the proteins procalcitonin, CA 125, CA 19-9, S100B, S100A proteins, LASP-1, soluble cytokeratin fragments, in particular CYFRA 21, TPS and/or soluble cytokeratin-1 fragments (sCY1F), the peptides inflammin and CHP, other peptide prohormones, glycine-N-acyltransferase (GNAT), carbamoylphosphate synthetase 1 (CPS 1) and C-reactive protein (CRP) or fragments thereof. In said multiparameter assays, it is intended to determine the measured results for a plurality of parameters simultaneously or in parallel and to evaluate them, for example, with the aid of a computer program which also uses diagnostically significant parameter correlations.


The invention is explained in more detail below by a description of the preparation of the preferred assay components, the procedure of a preferred embodiment of an assay of the sandwich type and the results of the determination of a C-terminal peptide fragment in EDTA plasmas of control persons and of sepsis, cardiac and cancer patients, obtained with the use of such an assay.


Experimental Section
A. Materials and Methods

1. Peptide Syntheses


Derived from the known amino acid sequence of human preproendothelin-1 (SEQ ID NO:1), three ranges were selected (Pos. 168-181, 184-203, 200-212). In each case supplemented by an N-terminal cysteine residue, these ranges were chemically synthesized as soluble peptides by standard methods, purified, quality-controlled by means of mass spectrometry and reversed phase HPLC and lyophilized in aliquots (JERINI AG, Berlin, Germany). The amino acid sequences of the peptides are:











Peptide PCT15
(168-181 + N-terminal



CRSSEEHLRQTRSET
cysteine)



(SEQ ID NO:4)





Peptide PCW14
(200-212 + N-terminal


CSRERYVTHNRAHW
cysteine)



(SEQ ID NO:5)





Peptide PNR20
(184-203 + N-terminal


NSVKSSFHDPKLKGKPSRER
cysteine)



(SEQ ID NO:6)






Furthermore, the following peptide was synthesized as a standard for calibrating the assays:












Standard peptide PSW44 (169-212)









(SEQ ID NO:7)











SSEEHLRQTRSETMRNSVKSSFHDPKLKGKPSRERYVTHNRAHW







2. Conjugation and Immunization


The peptides PCT15 and PCW14 were conjugated with the carrier protein KLH (keyhole limpet hemocyanine) by means of MBS (m-maleimidobenzoyl-N-hydroxysuccinimide ester) (cf. operating instructions “NHS-Esters-Maleimide Crosslinkers”, from PIERCE, Rockford, Ill., USA). Sheep were immunized with these conjugates according to the following scheme: each sheep initially received 100 μg of conjugate (stated mass based on the peptide fraction of the conjugate) and then 50 μg portions of conjugate every 4 weeks (stated mass based on the peptide fraction of the conjugate). Beginning with the fourth month after beginning of the immunization, 700 ml of blood per sheep were taken every 4 weeks and antiserum was obtained therefrom by centrifuging. Conjugations, immunizations and recovery of antisera were carried out by MicroPharm, Carmarthenshire, UK.


3. Purification of the Antibodies


The peptide-specific antibodies were prepared in a one-step method from the antisera which had been recovered beginning with the fourth month after immunization.


For this purpose, the peptides PCT15 and PCW14 were first coupled to SulfoLink Gel (cf. operating instruction “SulfoLink Kit”, from PIERCE, Rockford, Ill., USA). In each case 5 mg of peptide per 5 ml of gel were offered for coupling.


The affinity purification of peptide-specific antibodies from sheep antisera against both peptides was carried out as follows:


The peptide columns were first washed three times alternately with 10 ml each of elution buffer (50 mM citric acid, pH 2.2) and binding buffer (100 mM sodium phosphate, 0.1% Tween, pH 6.8). 100 ml of the antisera were filtered with 0.2 μm, and the column material present was added. For this purpose, the gel was quantitatively rinsed from the column with 10 ml of binding buffer. The incubation was effected overnight at room temperature with swirling. The batches were transferred quantitatively into empty columns (NAP 25, Pharmacia, emptied). The runnings were discarded. The columns were then washed protein-free with 250 ml of binding buffer (protein content of the wash eluate <0.02 A280 nm). Elution buffer was added to the washed columns, and 1 ml fractions were collected. The protein content of each fraction was determined by means of the BCA method (cf. operating instructions of PIERCE, Rockford, Ill., USA). Fractions having protein concentrations >0.8 mg/ml were pooled. After protein determination of the pools by means of the BCA method, yields of 97 mg for the anti-PCT15 antibody 0407-pAk and 60 mg for the anti-PCW14 0410-pAk antibody were obtained.


4. Marking


The anti-PCW14 0410-pAk antibody was treated as follows:


500 μl of the purified antibody were rebuffered in 1 ml of 100 mM potassium phosphate buffer (pH 8.0) according to the operating instructions over an NAP-5 gel filtration column (Pharmacia). The protein concentration determination of the antibody solution gave a value of 1.5 mg/ml.


For chemiluminescence marking of the antibody, 10 μl of MA70 acridinium-NHS-ester (1 mg/ml; from HOECHST Behring) were added to 67 μl of the antibody solution and incubated for 15 minutes at room temperature. Thereafter, 423 μl of 1 M glycine were added and incubation was effected for a further 10 minutes. Thereafter, the marking batch was rebuffered according to operating instructions over an NAP-5 gel filtration column (Pharmacia) in 1 ml of mobile phase A (50 mM potassium phosphate, 100 mM NaCl, pH 7.4) and freed from low molecular weight constituents. A gel filtration HPLC was carried out for separating off final residues of labels not bound to antibodies (column: Waters Protein Pak SW300). The sample was applied and was chromatographed at a flow rate of 1 ml/min with mobile phase A. The wavelengths 280 nm and 368 nm were measured using a flow photometer. The absorption ratio 368 nm/280 nm as a measure of the degree of marking of the antibody was 0.10 at the peak. The fractions containing monomeric antibodies (retention time 8-10 min) were collected, and were collected in 3 ml of 100 mM sodium phosphate, 150 mM NaCl, 5% bovine serum albumin, 0.1% sodium azide, pH 7.4.


5. Coupling


The anti-PCT15 antibody 0407-pAk was treated as follows:


Irradiated 5 ml polystyrene tubes (from Greiner) were coated with purified antibody as follows: the antibody was diluted to a concentration of 6.6 μg/ml in 50 mM Tris, 100 mM NaCl, pH 7.8. 300 μl of this solution were pipetted into each tube. The tubes were incubated for 20 hours at 22° C. The solution was filtered with suction. Each tube was then filled with 4.2 ml of 10 mM sodium phosphate, 2% Karion FP, 0.3% bovine serum albumin, pH 6.5. After 20 hours, the solution was filtered with suction. Finally, the tubes were dried in a vacuum drier.


B. Carrying Out and Evaluating the Immunoassay

An assay buffer of the following composition was prepared: 100 mM sodium phosphate, 150 mM NaCl, 5% bovine serum albumin (BSA), 0.1% unspecified sheep IgG, 0.1% sodium azide, pH 7.4


The above-mentioned chemically synthesized peptide (peptide PSW44) which corresponds to the positions 169-212 of preproendothelin-1 serves as standard material. This was serially diluted in horse normal serum (from SIGMA). Concentrations according to the weight of the peptide taken were ascribed to the standards thus prepared.


Measuring samples were EDTA plasmas of apparently healthy persons, of patients with sepsis and of patients with various cardiovascular diseases.


50 μl of standards or samples and 200 μl of assay buffer were pipetted into the test tubes. Incubation was effected for two hours at 22° C. with shaking. Thereafter, washing was effected 4 times with 1 ml of wash solution (0.1% Tween 20) each time per tube and the latter were allowed to drip off. 200 μl of assay buffer, containing 1 million RLU (relative light units) of the MA70-marked antibody, were then pipetted. Incubation was effected for two hours at 22° C. with shaking. Thereafter, washing was effected 4 times with 1 ml of wash solution (0.1% Tween 20) each time per tube, the latter were allowed to drip off and the chemiluminescence bound to the tube was measured in a luminometer (from BERTHOLD, LB952T; base reagents BRAHMS AG).


Using the MultiCalc software (spline fit), the concentrations of the samples were read from the standard curve.


C. Results

The analyte measurable using the sandwich immunoassay developed (antibody against the positions 168-181 and 200-212) is referred to below as C-terminal proendothelin or Ct-proendothelin. A typical standard curve for the test developed is shown in FIG. 1. By means of the test, it is also possible to determine Ct-proendothelin concentrations substantially below 50 pg/ml.


In order to examine the question as to whether problems were to be expected in a measurement of the C-terminal peptide fragment owing to insufficient stability in a sample or measuring solution, 5 sepsis plasmas were measured in each case fresh and after storage for 12 hours at room temperature. The results are summarized in FIG. 2. They show that, after storage for 12 days, the immunoreactivity was virtually unchanged at about 93% of the initially measured immunoreactivity. This stability detected is a major advantage for diagnostics from points of view relating to handling.


By means of the test, plasmas of cardiological and sepsis patients were measured. The results obtained are shown in FIGS. 3a and 3b. For all cardiological clinical pictures investigated, increased values were found compared with normal controls. Increased values were also found for patients with SIRS (systemic inflammatory response syndrome) and septic conditions. The diagnostic sensitivity (at given 100% specificity, based on healthy controls) increased with the severity of the disease: sepsis 32.3%, severe sepsis 65.5% and septic shock 75%.


When the samples were measured using a modified assay in which one of the antibodies of the above-mentioned sandwich assay was replaced by an antibody which detected the amino acids 184-203 of preproendothelin-1, substantially identical results were obtained, as expected.


On the other hand, when one of the antibodies used recognized an amino acid sequence which is localized more closely to the N-terminus of the preproendothelin (32-52 or 136-148), it was not possible to obtain measured values raised compared with healthy persons. This indicates that proendothelin as such was not present in the plasma samples measured and is not proteolytically processed only with formation of big endothelin, but that the C-terminal sequence 93-212 liberated is also further cleaved, it being necessary for at least one such cleavage point to be present in the range of the amino acids 149-167. The statement applies to the plasmas of patients with the diseases investigated. However, it cannot be ruled out that, for example, the entire C-terminal fragment 93-212 is retained in other patient groups and its selective measurement can deliver diagnostically relevant results.


List of References



  • 1. Agapitov A V, Haynes W G. Role of endothelin in cardiovascular disease. J Renin Angiotensin Aldosterone Syst 2002;3:1-15

  • 2. Arun C, Swift B, Porter K E, West K P, London N J, Hemingway D M. The role of big endothelin-1 in colorectal cancer. Int J Biol Markers 2002;17:268-74

  • 3. Asham E H, Loizidou M, Taylor I. Endothelin-1 and tumour development. Eur J Surg Oncol 1998;24:57-60

  • 4. Aubin P, Le Brun G, Moldovan F, Vilette J M, Creminon C, Dumas J, Homyrda L, Soliman H, Azizi M, and Fiet J, Sandwich-type enzyme immunoassay for big endothelin-1 in plasma: concentrations in healthy human subjects unaffected by sex or posture, Clin Chem 43:1, 64-70 (1997)

  • 5. Corder R, Vane J R. Radioimmunoassay evidence that the pressor effect of big endothelin-1 is due to local conversion to endothelin-1. Biochem Pharmacol 1995;49:375-80

  • 6. de Nucci G, Thomas R, D'Orleans-Juste P, Antunes E, Walder C, Warner T D, Vane J R. Pressor effects of circulating endothelin are limited by its removal in the pulmonary circulation and by the release of prostacyclin and endothelium-derived relaxing factor. Proc Natl Acad Sci USA 1988;85:9797-800

  • 7. Goraca A. New views on the role of endothelin (minireview). Endocr Regul 2002;36:161-7

  • 8. Haug C, Koenig W, Hoeher M, Kochs M, Hombach V, Gruenert A, and Osterhues H, Direct enzyme immunometric measurement of plasma big endothelin-1 concentrations and correlation with indicators of left ventricular function. Clin Chem 44:2 239-243 (1998)

  • 9. Haynes W G, Webb D J. Contribution of endogenous generation of endothelin-1 to basal vascular tone. Lancet 1994;344:852-4

  • 10. Hemsen A, Ahlborg G, Ottosson-Seeberger A, Lundberg J M. Metabolism of Big endothelin-1 (1-38) and (22-38) in the human circulation in relation to production of endothelin-1 (1-21). Regul Pept 1995; 55:287-97

  • 11. Hirata Y, Mitaka C, Emori T, Amaha K, Marumo F. Plasma endothelins in sepsis syndrome. Jama 1993; 270:2182

  • 12. Iskit A B, Guc O. Effects of endothelin and nitric oxide on organ injury, mesenteric ischemia, and survival in experimental models of septic shock. Acta Pharmacol Sin 2003;24:953-7

  • 13. Lerman A, Edwards B S, Hallett J W, Heublein D M, Sandberg S M, Burnett J C, Jr. Circulating and tissue endothelin immunoreactivity in advanced atherosclerosis. N Engl J Med 1991;325:997-1001

  • 14. Mathew V, Lerman A. Clinical implications of a sandwich enzyme immunoassay for big endothelin-1. Clin Chem 1997;43:9-10

  • 15. Nelson J B, Hedican S P, George D J, Reddi A H, Piantadosi S, Eisenberger M A, Simons J W. Identification of endothelin-1 in the pathophysiology of metastatic adenocarcinoma of the prostate. Nat Med 1995;1:944-9

  • 16. Pittet J F, Morel D R, Hemsen A, Gunning K, Lacroix J S, Suter P M, and Lundberg J M, Elevated Plasma Endothelin-1 Concentrations Are Associated with the Severity of Illness in Patients with Sepsis. Ann. Surg., Vol. 213, No. 3, 261-264 (1991)

  • 17. Rossi G P, Seccia T M, Albertin G, Pessina A C. Measurement of endothelin: clinical and research use. Ann Clin Biochem 2000;37 (Pt 5):608-26

  • 18. Shankar A, Loizidou M, Aliev G, Fredericks S, Holt D, Boulos P B, Burnstock G, Taylor I. Raised endothelin 1 levels in patients with colorectal liver metastases. Br J Surg 1998;85:502-6

  • 19. Sokolovsky M, Endothelins and Sarafotoxins: Receptor Heterogeneity (Minireview); Int.J.Biochem. Vol. 26, No. 3, 335-340, 1994

  • 20. Stewart D J, Kubac G, Costello K B, Cernacek P. Increased plasma endothelin-1 in the early hours of acute myocardial infarction. J Am Coll Cardiol 1991;18:38-43

  • 21. Stewart D J, Levy R D, Cernacek P, Langleben D. Increased plasma endothelin-1 in pulmonary hypertension: marker or mediator of disease? Ann Intern Med 1991;114:464-9

  • 22. Tschaikowsky K, Sagner S, Lehnert N, Kaul M, Ritter J. Endothelin in septic patients: effects on cardiovascular and renal function and its relationship to proinflammatory cytokines. Crit Care Med 2000;28:1854-60

  • 23. Voerman H J, Stehouwer C D, van Kamp G J, Strack van Schijndel R J, Groeneveld A B, Thijs L G. Plasma endothelin levels are increased during septic shock. Crit Care Med 1992;20:1097-101

  • 24. Wanecek M, Weitzberg E, Rudehill A, Oldner A. The endothelin system in septic and endotoxin shock. Eur J Pharmacol 2000;407:1-15

  • 25. Wei CM, Lerman A, Rodeheffer R J, McGregor C G, Brandt R R, Wright S, Heublein D M, Kao P C, Edwards W D, Burnett J C, Jr. Endothelin in human congestive heart failure. Circulation 1994;89:1580-6

  • 26. Weitzberg E, Lundberg J M, and Rudehill A, Elevated Plasma Levels of Endothelin in Patients With Sepsis Syndrome. Circulatory Shock 33:222-227 (1991)

  • 27. Yanagisawa M, Kurihara H, Kimura S, Tomobe Y, Kobayashi M, Mitsui Y, Yazaki Y, Goto K, Masaki T. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 1988;332:411-5


Claims
  • 1. An in vitro method for the determination of the formation of endothelins in serious diseases, in particular cardiovascular diseases, inflammations, sepsis and cancer, in whole blood, plasma or serum of a human patient for purposes of medical diagnostics, wherein the formation of endothelin-1 (SEQ ID NO:2) and big endothelin-1 (SEQ ID NO:3) is determined by determining those C-terminal fragments of preproendothelin-1 (SEQ ID NO: 1) which are recognized by antibodies which bind to peptides which correspond to peptide sequences in the range of amino acids 93 to 212 of preproendothelin-1.
  • 2. The method as claimed in claim 1, wherein the determination in biological fluid is effected with the aid of an immunoassay which operates with at least one marked antibody which specifically recognizes only the peptide fragment to be determined.
  • 3. The method as claimed in claim 2, wherein the immunoassay is a competitive immunoassay or a sandwich immunoassay.
  • 4. The method as claimed in claim 1, wherein those C-terminal fragments of preproendothelin-1 are determined which are recognized by antibodies which bind to peptides which correspond to peptide sequences in the range of the amino acids 168 to 212 (SEQ ID NO:7) of preproendothelin-1.
  • 5. The method as claimed in claim 4, wherein pairs of antibodies which bind to two different peptide sequences which are selected from peptide sequences having the amino acids 168-181, 184-203 and 200-212 of preproendothelin-1 are used for determining a C-terminal fragment having amino acids 168 to 212 of preproendothelin-1 (SEQ ID NO:7).
  • 6. The method of claim 1, wherein said method provides for the quantitative or semiquantitative determination of the peptide fragments is determined.
  • 7. The method as claimed in claim 6, wherein said determination is an immunochromatographic point-of-care test or another accelerated test.
  • 8. The method as claimed in claim 1, wherein the antibodies used for the determination are monoclonal and/or affinity-purified polyclonal antibodies.
  • 9. The method as claimed in claim 1, wherein the antibodies which are obtained by immunizing an animal with an antigen which contains a synthetic peptide which is selected from the peptides (SEQ ID NO:4), (SEQ ID NO:5) and (SEQ ID NO:6) are used.
  • 10. The method as claimed in claim 1, wherein two antibodies are used for the determination, one of which is marked and the other is bound to a solid phase or can be selectively bound to a solid phase.
  • 11. The method as claimed in claim 1, wherein two antibodies are used for the determination, both of which are present in dispersed form in the liquid reaction mixture, a first marking component which is part of a marking system based on fluorescence or chemiluminescence distinction or amplification being bound to the first antibody, and the second marking component of this marking system being bound to the second antibody so that, after binding of both antibodies to the peptide fragment to be detected, a measurable signal which permits detection of the resulting sandwich complexes in the measuring solution is generated.
  • 12. The method as claimed in claim 11, wherein the marking system comprises rare earth cryptates or chelates in combination with a fluorescent or chemiluminescent dye, in particular of the cyanine type.
  • 13. The method as claimed in claim 1, which is used for diagnosis, for determination of severity and for prognosis and for monitoring the therapy in the course of sepsis.
  • 14. The method as claimed in claim 13, which is carried out as part of a multiparameter determination, in which at least one further parameter relevant to sepsis diagnosis is determined simultaneously.
  • 15. The method as claimed in claim 14, wherein the further parameter or parameters relevant for sepsis diagnosis is or are selected from the group which consists of anti-ganglioside antibodies, the proteins calcitonin, CA 125, CA 19-9, S100B, S100A proteins, LASP-1, soluble cytokeratin fragments, in particular CYFRA 21, TPS and/or soluble cytokeratin-1 fragments (sCYIF), the peptides inflammin and CHP, fragments of the prohormones pro-ANP, pro-BNP or pro-ADM, glycine-N-acyltransferase (GNAT), carbamoylphosphate synthetase 1 (CPS 1) and C-reactive protein (CRP) or fragments thereof.
  • 16. The method as claimed in claim 1, which is used in the area of cardiac diagnostics.
  • 17. The method as claimed in claim 16, which is carried out as part of a multiparameter determination, in which further parameters relevant to cardiac diagnostics are determined simultaneously.
  • 18. The method as claimed in claim 1, which is used in the area of cancer diagnostics.
  • 19. The method as claimed in claim 18, which is carried out as part of a multiparameter determination, in which further parameters relevant to cancer diagnostics are determined simultaneously.
  • 20. An antibody which binds specifically to peptides which consist of the amino acid sequences which correspond to the amino acids 168-181, 184-203 and 200-212 of preproendothelin-1.
  • 21. The antibody as claimed in claim 20, which is an affinity-purified polyclonal antibody or monoclonal antibody.
  • 22. A kit for carrying out a method as claimed in claim 1, which comprises at least: (a) a first antibody as claimed in either of claims 20 and 21, (b) a second, different antibody as claimed in either of claims 20 and 21, one of the antibodies being marked and the other being immobilized or immobilizable, and (c) a standard peptide which has an amino acid sequence which comprises at least the amino acids 168-203 or 168-212 of preproendothelin.
  • 23. The kit as claimed in claim 22, wherein the immobilized antibody is present in immobilized form on the walls of a test tube (CT).
Priority Claims (1)
Number Date Country Kind
04003295.5 Feb 2004 EP regional
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/EP05/01359 2/10/2005 WO 00 5/23/2007