This invention relates to a method for treating a lung, and more particularly, to a method for treating a lung by applying energy to an airway wall to increase the diameter of the airway during an asthma attack.
Asthma is a serious chronic condition affecting an estimated 10 million Americans. Asthma is characterized by (i) bronchoconstriction, (ii) excessive mucus production, and (iii) inflammation and swelling of airways. These conditions cause widespread and variable airflow obstruction thereby making it difficult for the asthma sufferer to breathe. Asthma further includes acute episodes or attacks of additional airway narrowing via contraction of hyper-responsive airway smooth muscle. Other obstructive diseases such as COPD may also have a reversible component caused by one or more of the above mentioned three elements.
Asthma generally includes excessive mucus production in the bronchial tree. Usually, there is a general increase in bulk (hypertrophy) of the large bronchi and chronic inflammatory changes in the small airways. Excessive amounts of mucus are found in the airways and semisolid plugs of mucus may occlude some small bronchi. Also, the small airways are narrowed and show inflammatory changes. The reversible aspects of COPD include partial airway occlusion by excess secretions, and airway narrowing secondary to smooth muscle contraction, bronchial wall edema and inflammation of the airways.
In asthma, chronic inflammatory processes in the airway play a central role in increasing the resistance to airflow within the lungs. Many cells and cellular elements are involved in the inflammatory process, particularly mast cells, eosinophils T lymphocytes, neutrophils, epithelial cells, and even airway smooth muscle itself. The reactions of these cells result in an associated increase in the existing sensitivity and hyper-responsiveness of the airway smooth muscle cells that line the airways to the particular stimuli involved.
The chronic nature of asthma can also lead to remodeling of the airway wall (i.e., structural changes such as thickening or edema) which can further affect the function of the airway wall and influence airway hyper-responsiveness. Other physiologic changes associated with asthma include excess mucus production, and if the asthma is severe, mucus plugging, as well as ongoing epithelial denudation and repair. Epithelial denudation exposes the underlying tissue to substances that would not normally come in contact with them, further reinforcing the cycle of cellular damage and inflammatory response.
In susceptible individuals, asthma symptoms include recurrent episodes of shortness of breath (dyspnea), wheezing, chest tightness, and cough. Currently, asthma is managed by a combination of stimulus avoidance and pharmacology.
Stimulus avoidance is accomplished via systematic identification and minimization of contact with each type of stimuli. It may, however, be impractical and not always helpful to avoid all potential stimuli.
Asthma is managed pharmacologically by: (1) long term control through use of anti-inflammatories and long-acting bronchodilators and (2) short term management of acute exacerbations through use of short-acting bronchodilators. Both of these approaches require repeated and regular use of the prescribed drugs. High doses of corticosteroid anti-inflammatory drugs can have serious side effects that require careful management. In addition, some patients are resistant to steroid treatment. The difficulty involved in patient compliance with pharmacologic management and the difficulty of avoiding stimulus that triggers asthma are common barriers to successful asthma management. Thus, current management techniques are neither completely successful nor free from side effects.
In view of the foregoing, a non-pharmacological asthma treatment which does not rely on avoiding stimuli is desirable.
The invention is a method for treating lung disease and in particular, a method for treating the lung during an acute episode of reversible obstructive pulmonary disease such as an asthma attack. One embodiment of the present invention includes a method for treating asthma comprising the step of transferring energy to an airway wall of an airway in a lung such that a diameter of the airway is increased. The energy may be transferred to the airway wall prior to, during or after an asthma attack. The energy may also be transferred in an amount sufficient to temporarily or permanently increase the effective diameter of the airway. The method may be performed while the airway is open, closed or partially closed.
In another embodiment of the invention, a method for treating asthma in a lung having a constricted airway comprises transferring energy to an airway wall of the constricted airway sufficient to open the airway. The energy transferred may be in an amount sufficient to permanently or temporarily open the constricted airway. The method may be performed to open a wholly constricted airway as well as a partly constricted airway.
In yet another variation of the invention, a method for treating lung disease comprises transferring energy to an airway wall to alter the airway wall in such a manner that a resistance to airflow of the airway is decreased. The method may be performed by transferring energy to increase the caliber of the airway. The airway wall may also be altered by decreasing a thickness of the airway wall. The energy may be transferred to the airway wall during an asthma attack.
In another variation of the invention, the method comprises manipulating a distal portion of an energy delivery apparatus to a first location along the airway prior to applying the energy. The energy delivering apparatus can include a rounded tip sufficiently flexible such that when the tip encounters a closed or partially closed airway, trauma to the airway is minimized. The energy is then applied to a discrete location while the distal portion of the energy delivery apparatus is stationary. The distal portion can then be moved to a new location and the process repeated until a number of discrete locations have been treated. In an alternative, the method comprises moving the distal portion of the energy delivery apparatus from the first location and applying energy while the distal portion is being moved in the airway.
In another variation of the present invention, a method comprises transferring energy to or from an airway wall to treat a lung disease such as asthma. The method may be carried out by inserting into the airway an apparatus having a cryogenic tip or other cooling means capable of transferring energy from the tissue, resulting in a desired condition such as a larger diameter airway.
In yet another variation of the invention, a combination of the above discussed techniques are carried out such that at one time, energy is applied while the distal portion of the energy delivery device is being moved and at another time, energy is applied when the distal portion of the apparatus is stationary.
The invention will now be described in greater detail with reference to the various embodiments illustrated in the accompanying drawings wherein:
This invention relates to methods for improving airflow through the airways of a lung having reversible obstructive pulmonary disease. In accordance with the invention an airway may be treated during an acute episode of reversible obstructive pulmonary disease such as an asthma attack. The invention comprises applying or transferring energy to an airway wall to increase the diameter of the airway or otherwise reduce resistance to airflow through the airway. The energy may be transferred in an amount sufficient to temporarily or permanently increase the diameter of the airway. Notably, the method may be performed while the airway is open, closed or partially closed. The inventive method thus can “rescue” an asthma sufferer during an acute asthma episode by increasing the diameter of a constricted airway.
Various airways are shown in
Application of energy to an airway wall can also reduce inflammation in the inner lung tissue. Reducing inflammation and edema of the tissue surrounding the airway can increase the diameter of an airway. Inflammation and edema (accumulation of fluid) of the airway are chronic features of asthma. The inflammation and edema can be reduced by application of energy to stimulate wound healing and regenerate normal tissue. Healing of the epithelium or sections of the epithelium experiencing ongoing denudation and renewal allows regeneration of healthy epithelium with less associated airway inflammation. The less inflamed airway has an increased airway diameter both at a resting state and in constriction. The wound healing can also deposit collagen which improves parenchymal tethering.
Application of energy to an airway wall can also inhibit the release of inflammatory mediators in the airway wall which may serve as a stimulus for airway smooth muscle contraction. Therapy that reduces the production and release of inflammatory mediators can reduce smooth muscle contraction, inflammation of the airways, and edema. Examples of inflammatory mediators are cytokines, chemokines, and histamine. The tissues which produce and release inflammatory mediators include airway smooth muscle, epithelium, and mast cells. Thus, treatment of these structures with energy can reduce the ability of the airway structures to produce or release inflammatory mediators. The reduction in released inflammatory mediators will reduce chronic inflammation, thereby increasing the airway inner diameter, and may also reduce hyper-responsiveness of the airway smooth muscle.
Application of energy to an airway wall can also increase the airway diameter by damaging nerve tissue in the airways. This follows because a resting tone of smooth muscle is nerve regulated by release of catecholamines. Thus, by damaging or eliminating nerve tissue in the airways the resting tone of the smooth muscle is reduced, and the airway diameter is increased.
Application of energy to the airways may cause other physiological responses which result in increased diameters. It is to be understood, however, that the invention is not limited to a certain physiological response or process except where such a physiological response or process is a claim limitation in the appended claims.
As shown in
Another aspect of the present invention is to treat more than one location. Several to many locations (e.g., reference numerals 31, 34 and 38) in the airways may be treated in order to reduce asthmatic symptoms. This can be accomplished by manipulating or positioning the expandable basket at a target site in the airways, expanding the expandable basket such that the energy transfer elements (e.g., the basket legs) contact the airway wall, and then delivering energy to the airway wall. The expandable basket is preferably collapsed and moved to another location and the process is repeated. This technique for applying energy at discrete locations can be repeated as many times as necessary to treat the asthmatic symptoms.
The present invention also includes applying energy continuously along an airway as an expanded basket is moved along the airway. Specifically, the basket may be deployed, energized, and then moved along the airway continuously to continually transfer energy to or from the airway wall as the basket is moved axially along the airway. The above described methods may also be used in combination with one another.
An exemplary partial view of an energy delivering device which may be used to perform the invention is shown in
The invention may also include an atraumatic tip 200 to ensure that the invention does not injure airway tissue when it is placed into airways that are partially or completely closed. The tip may be formed of a flexible material and/or may be rounded to minimize trauma. Examples of energy delivering devices in accordance with the present invention are described in co-pending U.S. application Ser. No. 09/436,45.5 filed Nov. 8, 1999 which is hereby incorporated by reference in its entirety. Other examples of devices and methods which may be used in accordance with the present invention are found in the following U.S. Patent Applications: Ser No. 09/095,323—Methods and Apparatus for Treating Smooth Muscles in the Walls of Body Conduits; Ser. No. 09/349,715—Method of Increasing Gas Exchange of a Lung; and Ser. No. 09/296,040—Devices for Modification of Airways By Transfer of Energy. The entirety of each of the aforementioned applications is hereby incorporated by reference. Another suitable energy device is described in International patent application no PCT/US00/28745.
The energy delivery device may further comprise a temperature detecting element. Examples of temperature detecting elements include thermocouples, infrared sensors, thermistors, resistance temperature detectors (RTDs), or any other apparatus capable of detecting temperatures or changes in temperature. The temperature detecting element is preferably placed in proximity to the expandable member.
An intrinsic thermocouple junction configuration is safer than an extrinsic thermocouple junction because, in the event one of the thermocouple leads separates from a basket leg, the intrinsic thermocouple junction becomes “open” and no thermocouple signal is produced. In contrast, when an extrinsic thermocouple junction separates from a basket leg a signal continues to be produced. The signal of a detached extrinsic thermocouple junction can be misleading because although a temperature reading continues to be produced, the temperature reading does not reflect the temperature at the point where the basket leg contacts the subject tissue. Accordingly, an intrinsic thermocouple junction having two leads separately attached to a basket leg is preferred.
Various controllers may be used to carry out the invention. An example of an RF controller which may be used to carry out the invention is described in co-pending International Patent Application No. PCT (not yet assigned), entitled “CONTROL SYSTEM AND PROCESS FOR APPLICATION OF ENERGY TO AIRWAY WALLS AND OTHER MEDIUMS” filed Oct. 17, 2001 incorporated herein by reference in its entirety.
The controller and power supply is configured to deliver enough energy to produce a desired effect in the lung. The power supply should also be configured to deliver the energy for a sufficient duration such that the effect persists. This may be accomplished by a time setting which may be entered into the power supply memory by a user.
The power supply or generator may also employ a number of algorithms to adjust energy delivery, to compensate for device failures (such as thermocouple detachment), to compensate for improper use (such as poor contact of the electrodes), and to compensate for tissue inhomogeneities which can affect energy delivery such as, for example, subsurface vessels, adjacent airways, or variations in connective tissue.
The power supply can also include circuitry for monitoring parameters of energy transfer: (for example, voltage, current, power, impedance, as well as temperature from the temperature sensing element), and use this information to control the amount of energy delivered. In the case of delivering RF energy, typical frequencies of the RF energy or RF power waveform are from 300 to 1750 kHz with 300 to 500 kHz or 450 to 475 being preferred. The RF power-level generally ranges from about 0-30 W but depends upon a number of factors such as the size and number of the electrodes. The controller may also be configured to independently and, selectively apply energy to one or more of the basket leg electrodes.
A power supply may also include control modes for delivering energy safely and effectively. Energy may be delivered in open loop (power held constant) mode for a specific time duration. For example, a power setting of 8 to 30 Watts for up to 10 seconds is suitable and a power setting of 12 to 30 Watts for up to 5 seconds is preferred. For more permanent restructuring of the airways, a power setting of 8 to 15 Watts for 5 to 10 seconds is suitable. For mere temporary relief or enlargement of the airway, a power setting of 10 to 25 Watts for up to 3 seconds is suitable. With higher power settings, correspondingly lower time durations are preferred to limit collateral thermal damage.
Energy may also be delivered in temperature control mode, with output power varied to maintain a certain temperature for a specific time duration. For example, energy may be delivered for up to 20 seconds at a temperature of 55 to 80 degrees C., and more preferably, energy is delivered up to 10 seconds at a temperature in the range of 60 to 70 degrees C. For more permanent restructuring of the airways, energy is delivered for 5 to 10 seconds at a temperature in the range of 60 to 70 degrees C. For mere temporary relief or enlargement of the airway, energy is delivered for up to 5 seconds at a temperature of 55 to 80 degrees C. Additionally, the power supply may operate in impedance control mode.
The operator may start at low values of power, temperature and time, and treat until the desired effect (for example, airway diameter increasing or tissue blanching) is acutely observed, raising the power, temperature or time as needed.
Notably, the methods of the invention may be performed while the lung is experiencing natural symptoms of reversible obstructive pulmonary disease. One such example is where an individual, experiencing an asthma attack, or acute exacerbation of asthma or COPD, undergoes treatment to improve the individual's ability to breath. In such a case, the treatment provides immediate relief for (i.e., “rescues”) the patient.
All of the features disclosed in the specification (including any accompanying claims, abstract and drawings), and/or all of the steps of any method or process disclosed, may be combined in any combination, except combinations where at least some of such features and/or steps are mutually exclusive.
Each feature disclosed, in this specification (including any accompanying claims, abstract and drawings), may be replaced by alternative features serving the same, equivalent or similar purpose, unless expressly stated otherwise. Thus, unless expressly stated otherwise, each feature disclosed is one example only of a generic series of equivalent or similar features.
The invention is not restricted to the details of the foregoing embodiments. The invention extends to any novel one, or any novel combination, of the features disclosed in this specification (including any accompanying claims, abstract and drawings), or to any novel one, or any novel combination, of the steps of any method or process so disclosed.
The present application is a continuation of U.S. application Ser. No. 11/609,242, filed Dec. 11, 2006 now U.S. Pat. No. 7,921,855, which is a continuation application of U.S. application Ser. No. 11/117,905, filed Apr. 29, 2005 now U.S. Pat. No. 7,740,017, which is a continuation of U.S. application Ser. No. 09/999,851, filed Oct. 25, 2001, now U.S. Pat. No. 7,027,869, which is a continuation-in-part application of U.S. application Ser. No. 09/296,040, filed Apr. 21, 1999, now U.S. Pat. No. 6,411,852, which is a continuation-in-part application of U.S. application Ser. No. 09/095,323, filed Jun. 10, 1998 now abandoned. U.S. application Ser. No. 09/999,851 is also a continuation-in-part application of U.S. application Ser. No. 09/436,455, filed Nov. 8, 1999, now U.S. Pat. No. 7,425,212, and is a continuation-in-part application of U.S. application Ser. No. 09/535,856, filed Mar. 27, 2000, now U.S. Pat. No. 6,634,363, and is a continuation-in-part application of U.S. application Ser. No. 09/349,715, filed Jul. 8, 1999, now U.S. Pat. No. 6,488,673, which is a continuation-in-part application of U.S. application Ser. No. 09/003,750, filed Jan. 7, 1998, now U.S. Pat. No. 5,972,026. Each of the above references are incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
612724 | Hamilton | Oct 1898 | A |
1155169 | Starkweather | Sep 1915 | A |
1207479 | Bisgaard | Dec 1916 | A |
1216183 | Swingle | Feb 1917 | A |
2072346 | Smith | Mar 1937 | A |
3320957 | Sokolik | May 1967 | A |
3568659 | Karnegis | Mar 1971 | A |
3667476 | Muller | Jun 1972 | A |
3692029 | Adair | Sep 1972 | A |
3995617 | Watkins et al. | Dec 1976 | A |
4095602 | Leveen | Jun 1978 | A |
4116589 | Rishton | Sep 1978 | A |
4129129 | Amrine | Dec 1978 | A |
4154246 | LeVeen | May 1979 | A |
4461283 | Doi | Jul 1984 | A |
4502490 | Evans et al. | Mar 1985 | A |
4503855 | Maslanka | Mar 1985 | A |
4512762 | Spears | Apr 1985 | A |
4522212 | Gelinas et al. | Jun 1985 | A |
4557272 | Carr | Dec 1985 | A |
4565200 | Cosman | Jan 1986 | A |
4567882 | Heller | Feb 1986 | A |
4584998 | McGrail | Apr 1986 | A |
4612934 | Borkan | Sep 1986 | A |
4621642 | Chen | Nov 1986 | A |
4621882 | Krumme | Nov 1986 | A |
4625712 | Wampler | Dec 1986 | A |
4643186 | Rosen et al. | Feb 1987 | A |
4646737 | Hussein et al. | Mar 1987 | A |
4674497 | Ogasawara | Jun 1987 | A |
4683890 | Hewson | Aug 1987 | A |
4704121 | Moise | Nov 1987 | A |
4706688 | Don Michael et al. | Nov 1987 | A |
4709698 | Johnston et al. | Dec 1987 | A |
4739759 | Rexroth et al. | Apr 1988 | A |
4754065 | Levenson et al. | Jun 1988 | A |
4754752 | Ginsburg et al. | Jul 1988 | A |
4765959 | Fukasawa | Aug 1988 | A |
4772112 | Zider et al. | Sep 1988 | A |
4773899 | Spears | Sep 1988 | A |
4779614 | Moise | Oct 1988 | A |
4784135 | Blum et al. | Nov 1988 | A |
4790305 | Zoltan et al. | Dec 1988 | A |
4799479 | Spears | Jan 1989 | A |
4802492 | Grunstein | Feb 1989 | A |
4817586 | Wampler | Apr 1989 | A |
4825871 | Cansell | May 1989 | A |
4827935 | Geddes et al. | May 1989 | A |
4846152 | Wampler et al. | Jul 1989 | A |
4862886 | Clarke et al. | Sep 1989 | A |
4895557 | Moise et al. | Jan 1990 | A |
4906229 | Wampler | Mar 1990 | A |
4907589 | Cosman | Mar 1990 | A |
4908012 | Moise et al. | Mar 1990 | A |
4920978 | Colvin | May 1990 | A |
4944722 | Carriker et al. | Jul 1990 | A |
4955377 | Lennox et al. | Sep 1990 | A |
4967765 | Turner et al. | Nov 1990 | A |
4969865 | Hwang et al. | Nov 1990 | A |
4976709 | Sand | Dec 1990 | A |
4985014 | Orejola | Jan 1991 | A |
4991603 | Cohen et al. | Feb 1991 | A |
5009636 | Wortley et al. | Apr 1991 | A |
5009936 | Yamanaka et al. | Apr 1991 | A |
5010892 | Colvin et al. | Apr 1991 | A |
5019075 | Spears et al. | May 1991 | A |
5027829 | Larsen | Jul 1991 | A |
5030645 | Kollonitsch | Jul 1991 | A |
5036848 | Hewson | Aug 1991 | A |
5053033 | Clarke | Oct 1991 | A |
5056519 | Vince | Oct 1991 | A |
5074860 | Gregory et al. | Dec 1991 | A |
5078716 | Doll | Jan 1992 | A |
5084044 | Quint | Jan 1992 | A |
5096916 | Skupin | Mar 1992 | A |
5100388 | Behl et al. | Mar 1992 | A |
5100423 | Fearnot | Mar 1992 | A |
5103804 | Abele et al. | Apr 1992 | A |
5105826 | Smits et al. | Apr 1992 | A |
5106360 | Ishiwara et al. | Apr 1992 | A |
5107830 | Younes | Apr 1992 | A |
5114423 | Kasprzyk et al. | May 1992 | A |
5116864 | March et al. | May 1992 | A |
5117828 | Metzger et al. | Jun 1992 | A |
5135517 | McCoy | Aug 1992 | A |
5152286 | Sitko et al. | Oct 1992 | A |
5165420 | Strickland | Nov 1992 | A |
5167223 | Koros et al. | Dec 1992 | A |
5170803 | Hewson et al. | Dec 1992 | A |
5174288 | Bardy et al. | Dec 1992 | A |
5188602 | Nichols | Feb 1993 | A |
5191883 | Lennox et al. | Mar 1993 | A |
5213576 | Abiuso et al. | May 1993 | A |
5215103 | Desai | Jun 1993 | A |
5231996 | Bardy et al. | Aug 1993 | A |
5232444 | Just et al. | Aug 1993 | A |
5234456 | Silvestrini | Aug 1993 | A |
5254088 | Lundquist et al. | Oct 1993 | A |
5255678 | Deslauriers et al. | Oct 1993 | A |
5255679 | Imran | Oct 1993 | A |
5265604 | Vince | Nov 1993 | A |
5269758 | Taheri | Dec 1993 | A |
5281218 | Imran | Jan 1994 | A |
5292331 | Boneau | Mar 1994 | A |
5293869 | Edwards et al. | Mar 1994 | A |
5309910 | Edwards et al. | May 1994 | A |
5313943 | Houser et al. | May 1994 | A |
5324284 | Imran | Jun 1994 | A |
5343936 | Beatenbough et al. | Sep 1994 | A |
5345936 | Pomeranz et al. | Sep 1994 | A |
5366443 | Eggers et al. | Nov 1994 | A |
5368591 | Lennox et al. | Nov 1994 | A |
5370644 | Langberg | Dec 1994 | A |
5370679 | Atlee, III | Dec 1994 | A |
5374287 | Rubin | Dec 1994 | A |
5383917 | Desai et al. | Jan 1995 | A |
5393207 | Maher et al. | Feb 1995 | A |
5394880 | Atlee, III | Mar 1995 | A |
5396887 | Imran | Mar 1995 | A |
5400778 | Jonson et al. | Mar 1995 | A |
5400783 | Pomeranz et al. | Mar 1995 | A |
5411025 | Webster, Jr. | May 1995 | A |
5415166 | Imran | May 1995 | A |
5415656 | Tihon et al. | May 1995 | A |
5417687 | Nardella et al. | May 1995 | A |
5422362 | Vincent et al. | Jun 1995 | A |
5423744 | Gencheff et al. | Jun 1995 | A |
5423811 | Imran et al. | Jun 1995 | A |
5425023 | Haraguchi et al. | Jun 1995 | A |
5425703 | Feiring | Jun 1995 | A |
5425811 | Mashita | Jun 1995 | A |
5431696 | Atlee, III | Jul 1995 | A |
5433730 | Alt | Jul 1995 | A |
5437665 | Munro | Aug 1995 | A |
5443470 | Stern et al. | Aug 1995 | A |
5454782 | Perkins | Oct 1995 | A |
5456667 | Ham et al. | Oct 1995 | A |
5458596 | Lax et al. | Oct 1995 | A |
5465717 | Imran et al. | Nov 1995 | A |
5471982 | Edwards et al. | Dec 1995 | A |
5474530 | Passafaro et al. | Dec 1995 | A |
5478309 | Sweezer et al. | Dec 1995 | A |
5496271 | Burton et al. | Mar 1996 | A |
5496311 | Abele et al. | Mar 1996 | A |
5496312 | Klicek | Mar 1996 | A |
5500011 | Desai | Mar 1996 | A |
5505728 | Ellman et al. | Apr 1996 | A |
5505730 | Edwards | Apr 1996 | A |
5507791 | Sit'ko | Apr 1996 | A |
5509419 | Edwards et al. | Apr 1996 | A |
5522862 | Testerman et al. | Jun 1996 | A |
5531779 | Dahl et al. | Jul 1996 | A |
5540681 | Strul et al. | Jul 1996 | A |
5545161 | Imran | Aug 1996 | A |
5545193 | Fleischman et al. | Aug 1996 | A |
5547469 | Rowland et al. | Aug 1996 | A |
5549559 | Eshel | Aug 1996 | A |
5549655 | Erickson | Aug 1996 | A |
5549661 | Kordis et al. | Aug 1996 | A |
RE35330 | Malone et al. | Sep 1996 | E |
5558073 | Pomeranz et al. | Sep 1996 | A |
5562608 | Sekins et al. | Oct 1996 | A |
5571074 | Buckman, Jr. et al. | Nov 1996 | A |
5571088 | Lennox et al. | Nov 1996 | A |
5574059 | Regunathan et al. | Nov 1996 | A |
5578072 | Barone et al. | Nov 1996 | A |
5582609 | Swanson et al. | Dec 1996 | A |
5588432 | Crowley | Dec 1996 | A |
5588812 | Taylor et al. | Dec 1996 | A |
5595183 | Swanson et al. | Jan 1997 | A |
5598848 | Swanson et al. | Feb 1997 | A |
5599345 | Edwards et al. | Feb 1997 | A |
5601088 | Swanson et al. | Feb 1997 | A |
5605157 | Panescu et al. | Feb 1997 | A |
5607419 | Amplatz et al. | Mar 1997 | A |
5607462 | Imran | Mar 1997 | A |
5620438 | Amplatz et al. | Apr 1997 | A |
5623940 | Daikuzono | Apr 1997 | A |
5624439 | Edwards et al. | Apr 1997 | A |
5626618 | Ward et al. | May 1997 | A |
5630425 | Panescu et al. | May 1997 | A |
5630794 | Lax et al. | May 1997 | A |
5634471 | Fairfax et al. | Jun 1997 | A |
5641326 | Adams | Jun 1997 | A |
5647870 | Kordis et al. | Jul 1997 | A |
5660175 | Dayal | Aug 1997 | A |
5678535 | DiMarco | Oct 1997 | A |
5680860 | Imran | Oct 1997 | A |
5681280 | Rusk et al. | Oct 1997 | A |
5681308 | Edwards et al. | Oct 1997 | A |
5687723 | Avitall | Nov 1997 | A |
5688267 | Panescu et al. | Nov 1997 | A |
5693078 | Desai et al. | Dec 1997 | A |
5694934 | Edelman | Dec 1997 | A |
5695471 | Wampler | Dec 1997 | A |
5699799 | Xu et al. | Dec 1997 | A |
5702386 | Stern et al. | Dec 1997 | A |
5707218 | Maher et al. | Jan 1998 | A |
5707336 | Rubin | Jan 1998 | A |
5707352 | Sekins et al. | Jan 1998 | A |
5722401 | Pietroski et al. | Mar 1998 | A |
5722403 | McGee et al. | Mar 1998 | A |
5722416 | Swanson et al. | Mar 1998 | A |
5725525 | Kordis | Mar 1998 | A |
5727569 | Benetti et al. | Mar 1998 | A |
5728094 | Edwards | Mar 1998 | A |
5730128 | Pomeranz et al. | Mar 1998 | A |
5730704 | Avitall | Mar 1998 | A |
5730726 | Klingenstein | Mar 1998 | A |
5730741 | Horzewski et al. | Mar 1998 | A |
5735846 | Panescu et al. | Apr 1998 | A |
5740808 | Panescu et al. | Apr 1998 | A |
5741248 | Stern et al. | Apr 1998 | A |
5752518 | McGee et al. | May 1998 | A |
5755714 | Murphy-Chutorian | May 1998 | A |
5755753 | Knowlton | May 1998 | A |
5759158 | Swanson | Jun 1998 | A |
5765568 | Sweezer, Jr. et al. | Jun 1998 | A |
5769846 | Edwards et al. | Jun 1998 | A |
5772590 | Webster, Jr. | Jun 1998 | A |
5779669 | Haissaguerre et al. | Jul 1998 | A |
5779698 | Clayman et al. | Jul 1998 | A |
5782239 | Webster, Jr. | Jul 1998 | A |
5782797 | Schweich, Jr. et al. | Jul 1998 | A |
5782827 | Gough et al. | Jul 1998 | A |
5782848 | Lennox | Jul 1998 | A |
5782899 | Imran | Jul 1998 | A |
5792064 | Panescu et al. | Aug 1998 | A |
5795303 | Swanson et al. | Aug 1998 | A |
5800375 | Sweezer et al. | Sep 1998 | A |
5807306 | Shapland et al. | Sep 1998 | A |
5810757 | Sweezer, Jr. et al. | Sep 1998 | A |
5810807 | Ganz et al. | Sep 1998 | A |
5817028 | Anderson | Oct 1998 | A |
5817073 | Krespi | Oct 1998 | A |
5820554 | Davis et al. | Oct 1998 | A |
5823189 | Kordis | Oct 1998 | A |
5827277 | Edwards | Oct 1998 | A |
5833651 | Donovan et al. | Nov 1998 | A |
5836905 | Lemelson et al. | Nov 1998 | A |
5836947 | Fleischman et al. | Nov 1998 | A |
5837001 | Mackey | Nov 1998 | A |
5843075 | Taylor | Dec 1998 | A |
5843077 | Edwards | Dec 1998 | A |
5846238 | Jackson et al. | Dec 1998 | A |
5848969 | Panescu et al. | Dec 1998 | A |
5848972 | Triedman et al. | Dec 1998 | A |
5849026 | Zhou et al. | Dec 1998 | A |
5855577 | Murphy-Chutorian et al. | Jan 1999 | A |
5860974 | Abele | Jan 1999 | A |
5863291 | Schaer | Jan 1999 | A |
5865791 | Whayne et al. | Feb 1999 | A |
5868740 | LeVeen et al. | Feb 1999 | A |
5871443 | Edwards et al. | Feb 1999 | A |
5871523 | Fleischman et al. | Feb 1999 | A |
5873852 | Vigil et al. | Feb 1999 | A |
5873865 | Horzewski et al. | Feb 1999 | A |
5876340 | Tu et al. | Mar 1999 | A |
5876399 | Chia et al. | Mar 1999 | A |
5881727 | Edwards | Mar 1999 | A |
5882346 | Pomeranz et al. | Mar 1999 | A |
5891135 | Jackson et al. | Apr 1999 | A |
5891136 | McGee et al. | Apr 1999 | A |
5891138 | Tu et al. | Apr 1999 | A |
5893847 | Kordis | Apr 1999 | A |
5897554 | Chia et al. | Apr 1999 | A |
5899882 | Waksman et al. | May 1999 | A |
5904651 | Swanson et al. | May 1999 | A |
5904711 | Flom et al. | May 1999 | A |
5906636 | Casscells, III et al. | May 1999 | A |
5908445 | Whayne et al. | Jun 1999 | A |
5908446 | Imran | Jun 1999 | A |
5908839 | Levitt et al. | Jun 1999 | A |
5911218 | DiMarco | Jun 1999 | A |
5916235 | Guglielmi | Jun 1999 | A |
5919147 | Jain | Jul 1999 | A |
5919172 | Golba, Jr. | Jul 1999 | A |
5924424 | Stevens et al. | Jul 1999 | A |
5928228 | Kordis et al. | Jul 1999 | A |
5931835 | Mackey | Aug 1999 | A |
5935079 | Swanson et al. | Aug 1999 | A |
5941869 | Patterson et al. | Aug 1999 | A |
5951494 | Wang et al. | Sep 1999 | A |
5951546 | Lorentzen | Sep 1999 | A |
5954661 | Greenspon et al. | Sep 1999 | A |
5954662 | Swanson et al. | Sep 1999 | A |
5954717 | Behl et al. | Sep 1999 | A |
5957961 | Maguire et al. | Sep 1999 | A |
5964753 | Edwards | Oct 1999 | A |
5964796 | Imran | Oct 1999 | A |
5971983 | Lesh | Oct 1999 | A |
5972026 | Laufer et al. | Oct 1999 | A |
5976175 | Hirano et al. | Nov 1999 | A |
5976709 | Kageyama et al. | Nov 1999 | A |
5979456 | Magovern | Nov 1999 | A |
5980563 | Tu et al. | Nov 1999 | A |
5984917 | Fleischman et al. | Nov 1999 | A |
5984971 | Faccioli et al. | Nov 1999 | A |
5991650 | Swanson et al. | Nov 1999 | A |
5992419 | Sterzer et al. | Nov 1999 | A |
5993462 | Pomeranz et al. | Nov 1999 | A |
5997534 | Tu et al. | Dec 1999 | A |
5999855 | DiMarco | Dec 1999 | A |
6001054 | Regulla et al. | Dec 1999 | A |
6003517 | Sheffield et al. | Dec 1999 | A |
6004269 | Crowley et al. | Dec 1999 | A |
6006755 | Edwards | Dec 1999 | A |
6008211 | Robinson et al. | Dec 1999 | A |
6009877 | Edwards | Jan 2000 | A |
6010500 | Sherman et al. | Jan 2000 | A |
6014579 | Pomeranz et al. | Jan 2000 | A |
6016437 | Tu et al. | Jan 2000 | A |
6023638 | Swanson | Feb 2000 | A |
6024740 | Lesh et al. | Feb 2000 | A |
6029091 | de la Rama et al. | Feb 2000 | A |
6033397 | Laufer et al. | Mar 2000 | A |
6036687 | Laufer et al. | Mar 2000 | A |
6036689 | Tu et al. | Mar 2000 | A |
6039731 | Taylor et al. | Mar 2000 | A |
6045549 | Smethers et al. | Apr 2000 | A |
6045550 | Simpson et al. | Apr 2000 | A |
6050992 | Nichols | Apr 2000 | A |
6053172 | Hovda et al. | Apr 2000 | A |
6053909 | Shadduck | Apr 2000 | A |
6056744 | Edwards | May 2000 | A |
6056769 | Epstein et al. | May 2000 | A |
6063078 | Wittkampf | May 2000 | A |
6071280 | Edwards et al. | Jun 2000 | A |
6071281 | Burnside et al. | Jun 2000 | A |
6071282 | Fleischman | Jun 2000 | A |
6083255 | Laufer et al. | Jul 2000 | A |
6090104 | Webster, Jr. | Jul 2000 | A |
6092528 | Edwards | Jul 2000 | A |
6102886 | Lundquist et al. | Aug 2000 | A |
6106524 | Eggers et al. | Aug 2000 | A |
6123702 | Swanson et al. | Sep 2000 | A |
6123703 | Tu et al. | Sep 2000 | A |
6139527 | Laufer et al. | Oct 2000 | A |
6139571 | Fuller et al. | Oct 2000 | A |
6142993 | Whayne et al. | Nov 2000 | A |
6143013 | Samson et al. | Nov 2000 | A |
6149647 | Tu et al. | Nov 2000 | A |
6152143 | Edwards | Nov 2000 | A |
6152899 | Farley et al. | Nov 2000 | A |
6159194 | Eggers et al. | Dec 2000 | A |
6179833 | Taylor | Jan 2001 | B1 |
6183468 | Swanson et al. | Feb 2001 | B1 |
6198970 | Freed et al. | Mar 2001 | B1 |
6200311 | Danek et al. | Mar 2001 | B1 |
6200332 | Del Giglio | Mar 2001 | B1 |
6200333 | Laufer | Mar 2001 | B1 |
6210367 | Carr | Apr 2001 | B1 |
6212433 | Behl | Apr 2001 | B1 |
6214002 | Fleischman et al. | Apr 2001 | B1 |
6216043 | Swanson et al. | Apr 2001 | B1 |
6216044 | Kordis | Apr 2001 | B1 |
6217576 | Tu et al. | Apr 2001 | B1 |
6235024 | Tu | May 2001 | B1 |
6241727 | Tu et al. | Jun 2001 | B1 |
6245065 | Panescu et al. | Jun 2001 | B1 |
6254598 | Edwards et al. | Jul 2001 | B1 |
6258087 | Edwards et al. | Jul 2001 | B1 |
6264653 | Falwell | Jul 2001 | B1 |
6269813 | Fitzgerald et al. | Aug 2001 | B1 |
6270476 | Santoianni et al. | Aug 2001 | B1 |
6273907 | Laufer | Aug 2001 | B1 |
6283988 | Laufer et al. | Sep 2001 | B1 |
6283989 | Laufer et al. | Sep 2001 | B1 |
6287304 | Eggers et al. | Sep 2001 | B1 |
6296639 | Truckai et al. | Oct 2001 | B1 |
6299633 | Laufer | Oct 2001 | B1 |
6322559 | Daulton et al. | Nov 2001 | B1 |
6322584 | Ingle et al. | Nov 2001 | B2 |
6338727 | Noda et al. | Jan 2002 | B1 |
6338836 | Kuth et al. | Jan 2002 | B1 |
6346104 | Daly et al. | Feb 2002 | B2 |
6355031 | Edwards et al. | Mar 2002 | B1 |
6379352 | Reynolds et al. | Apr 2002 | B1 |
6409723 | Edwards | Jun 2002 | B1 |
6411852 | Danek et al. | Jun 2002 | B1 |
6416511 | Lesh et al. | Jul 2002 | B1 |
6416740 | Unger | Jul 2002 | B1 |
6423105 | Iijima et al. | Jul 2002 | B1 |
6425895 | Swanson et al. | Jul 2002 | B1 |
6440129 | Simpson | Aug 2002 | B1 |
6442435 | King et al. | Aug 2002 | B2 |
6458121 | Rosenstock et al. | Oct 2002 | B1 |
6460545 | Kordis | Oct 2002 | B2 |
6488673 | Laufer et al. | Dec 2002 | B1 |
6488679 | Swanson et al. | Dec 2002 | B1 |
6493589 | Medhkour et al. | Dec 2002 | B1 |
6494880 | Swanson et al. | Dec 2002 | B1 |
6496738 | Carr | Dec 2002 | B2 |
6514246 | Swanson et al. | Feb 2003 | B1 |
6526320 | Mitchell | Feb 2003 | B2 |
6529756 | Phan et al. | Mar 2003 | B1 |
6544226 | Gaiser et al. | Apr 2003 | B1 |
6544262 | Fleischman | Apr 2003 | B2 |
6547788 | Maguire et al. | Apr 2003 | B1 |
6558378 | Sherman et al. | May 2003 | B2 |
6572612 | Stewart et al. | Jun 2003 | B2 |
6575623 | Werneth | Jun 2003 | B2 |
6575969 | Rittman, III et al. | Jun 2003 | B1 |
6582427 | Goble et al. | Jun 2003 | B1 |
6582430 | Hall | Jun 2003 | B2 |
6589235 | Wong et al. | Jul 2003 | B2 |
6610054 | Edwards et al. | Aug 2003 | B1 |
6620159 | Hegde | Sep 2003 | B2 |
6626903 | McGuckin, Jr. et al. | Sep 2003 | B2 |
6634363 | Laufer et al. | Oct 2003 | B1 |
6635056 | Kadhiresan et al. | Oct 2003 | B2 |
6638273 | Farley et al. | Oct 2003 | B1 |
6640120 | Swanson et al. | Oct 2003 | B1 |
6645200 | Koblish et al. | Nov 2003 | B1 |
6652548 | Evans et al. | Nov 2003 | B2 |
6669693 | Friedman | Dec 2003 | B2 |
6673068 | Berube | Jan 2004 | B1 |
6692492 | Simpson et al. | Feb 2004 | B2 |
6699243 | West et al. | Mar 2004 | B2 |
6714822 | King et al. | Mar 2004 | B2 |
6723091 | Goble et al. | Apr 2004 | B2 |
6743197 | Edwards | Jun 2004 | B1 |
6749604 | Eggers et al. | Jun 2004 | B1 |
6749606 | Keast et al. | Jun 2004 | B2 |
6767347 | Sharkey et al. | Jul 2004 | B2 |
6770070 | Balbierz | Aug 2004 | B1 |
6802843 | Truckai et al. | Oct 2004 | B2 |
6805131 | Kordis | Oct 2004 | B2 |
6837888 | Ciarrocca et al. | Jan 2005 | B2 |
6840243 | Deem et al. | Jan 2005 | B2 |
6849073 | Hoey et al. | Feb 2005 | B2 |
6852091 | Edwards et al. | Feb 2005 | B2 |
6852110 | Roy et al. | Feb 2005 | B2 |
6866662 | Fuimaono et al. | Mar 2005 | B2 |
6881213 | Ryan et al. | Apr 2005 | B2 |
6893436 | Woodard et al. | May 2005 | B2 |
6893439 | Fleischman | May 2005 | B2 |
6895267 | Panescu et al. | May 2005 | B2 |
6904303 | Phan et al. | Jun 2005 | B2 |
6917834 | Koblish et al. | Jul 2005 | B2 |
6939346 | Kannenberg et al. | Sep 2005 | B2 |
6954977 | Maguire et al. | Oct 2005 | B2 |
7027869 | Danek et al. | Apr 2006 | B2 |
7043307 | Zelickson et al. | May 2006 | B1 |
7104987 | Biggs et al. | Sep 2006 | B2 |
7104990 | Jenkins et al. | Sep 2006 | B2 |
7118568 | Hassett et al. | Oct 2006 | B2 |
7122033 | Wood | Oct 2006 | B2 |
7131445 | Amoah | Nov 2006 | B2 |
7186251 | Malecki et al. | Mar 2007 | B2 |
7198635 | Danek et al. | Apr 2007 | B2 |
7200445 | Dalbec et al. | Apr 2007 | B1 |
7241295 | Maguire | Jul 2007 | B2 |
7255693 | Johnston et al. | Aug 2007 | B1 |
7264002 | Danek et al. | Sep 2007 | B2 |
7266414 | Cornelius et al. | Sep 2007 | B2 |
7273055 | Danek et al. | Sep 2007 | B2 |
7425212 | Danek et al. | Sep 2008 | B1 |
7542802 | Biggs et al. | Jun 2009 | B2 |
7556624 | Laufer et al. | Jul 2009 | B2 |
7594925 | Danek et al. | Sep 2009 | B2 |
7708768 | Danek et al. | May 2010 | B2 |
7740017 | Danek et al. | Jun 2010 | B2 |
7921855 | Danek et al. | Apr 2011 | B2 |
8161978 | Danek et al. | Apr 2012 | B2 |
20030050631 | Mody et al. | Mar 2003 | A1 |
20030065371 | Satake | Apr 2003 | A1 |
20030069570 | Witzel et al. | Apr 2003 | A1 |
20030187430 | Vorisek | Oct 2003 | A1 |
20030236455 | Swanson et al. | Dec 2003 | A1 |
20040153056 | Muller et al. | Aug 2004 | A1 |
20040249401 | Rabiner et al. | Dec 2004 | A1 |
20050010270 | Laufer | Jan 2005 | A1 |
20050096644 | Hall et al. | May 2005 | A1 |
20050171396 | Pankratov et al. | Aug 2005 | A1 |
20050193279 | Daners | Sep 2005 | A1 |
20050203503 | Edwards et al. | Sep 2005 | A1 |
20050240176 | Oral et al. | Oct 2005 | A1 |
20050251128 | Amoah | Nov 2005 | A1 |
20060062808 | Laufer et al. | Mar 2006 | A1 |
20060079887 | Buysse et al. | Apr 2006 | A1 |
20060089637 | Werneth et al. | Apr 2006 | A1 |
20060135953 | Kania et al. | Jun 2006 | A1 |
20060137698 | Danek et al. | Jun 2006 | A1 |
20060247617 | Danek et al. | Nov 2006 | A1 |
20060247618 | Kaplan et al. | Nov 2006 | A1 |
20060247619 | Kaplan et al. | Nov 2006 | A1 |
20060247726 | Biggs et al. | Nov 2006 | A1 |
20060247727 | Biggs et al. | Nov 2006 | A1 |
20060247746 | Danek et al. | Nov 2006 | A1 |
20060254600 | Danek et al. | Nov 2006 | A1 |
20060278243 | Danek et al. | Dec 2006 | A1 |
20060278244 | Danek et al. | Dec 2006 | A1 |
20060282071 | Utley et al. | Dec 2006 | A1 |
20070074719 | Danek et al. | Apr 2007 | A1 |
20070083194 | Kunis et al. | Apr 2007 | A1 |
20070083197 | Danek et al. | Apr 2007 | A1 |
20070100390 | Danaek et al. | May 2007 | A1 |
20070102011 | Danek et al. | May 2007 | A1 |
20070106292 | Kaplan et al. | May 2007 | A1 |
20070106296 | Laufer et al. | May 2007 | A1 |
20070106348 | Laufer | May 2007 | A1 |
20070118184 | Danek et al. | May 2007 | A1 |
20070118190 | Danek et al. | May 2007 | A1 |
20070123958 | Laufer | May 2007 | A1 |
20070123961 | Danek et al. | May 2007 | A1 |
20070129720 | Demarais et al. | Jun 2007 | A1 |
20080004596 | Yun et al. | Jan 2008 | A1 |
20080097424 | Wizeman et al. | Apr 2008 | A1 |
20080255642 | Zarins et al. | Oct 2008 | A1 |
20090018538 | Webster et al. | Jan 2009 | A1 |
20090030477 | Jarrard | Jan 2009 | A1 |
20090043301 | Jarrard et al. | Feb 2009 | A1 |
20090069797 | Danek et al. | Mar 2009 | A1 |
20090112203 | Danek et al. | Apr 2009 | A1 |
20090143705 | Danek et al. | Jun 2009 | A1 |
20090143776 | Danek et al. | Jun 2009 | A1 |
20090192505 | Askew et al. | Jul 2009 | A1 |
20090192508 | Laufer et al. | Jul 2009 | A1 |
20090306644 | Mayse et al. | Dec 2009 | A1 |
20110118725 | Mayse et al. | May 2011 | A1 |
20110152855 | Mayse et al. | Jun 2011 | A1 |
20110257647 | Mayse et al. | Oct 2011 | A1 |
Number | Date | Country |
---|---|---|
19529634 | Feb 1997 | DE |
189329 | Jun 1987 | EP |
286145 | Oct 1988 | EP |
280225 | Mar 1989 | EP |
286145 | Oct 1990 | EP |
282225 | Jun 1992 | EP |
908150 | Apr 1999 | EP |
908713 | Apr 1999 | EP |
768091 | Jul 2003 | EP |
1297795 | Aug 2005 | EP |
2659240 | Jul 1997 | FR |
2233293 | Jan 1991 | GB |
2233293 | Feb 1994 | GB |
59167707 | Sep 1984 | JP |
7289557 | Nov 1995 | JP |
9047518 | Feb 1997 | JP |
9243837 | Sep 1997 | JP |
10026709 | Jan 1998 | JP |
2053814 | Feb 1996 | RU |
2091054 | Sep 1997 | RU |
545358 | Feb 1977 | SU |
WO-8911311 | Nov 1989 | WO |
WO-9502370 | Jan 1995 | WO |
WO-9510322 | Apr 1995 | WO |
WO-9604860 | Feb 1996 | WO |
WO-9610961 | Apr 1996 | WO |
WO-9732532 | Sep 1997 | WO |
WO-9733715 | Sep 1997 | WO |
WO-9737715 | Oct 1997 | WO |
WO-9740751 | Nov 1997 | WO |
WO-9844854 | Oct 1998 | WO |
WO-9852480 | Nov 1998 | WO |
WO-9856234 | Dec 1998 | WO |
WO-9856324 | Dec 1998 | WO |
WO-9858681 | Dec 1998 | WO |
WO-9903413 | Jan 1999 | WO |
WO-9913779 | Mar 1999 | WO |
WO-9932040 | Jul 1999 | WO |
WO-9934741 | Jul 1999 | WO |
WO-9944506 | Sep 1999 | WO |
WO-9945855 | Sep 1999 | WO |
WO-9964109 | Dec 1999 | WO |
WO-0051510 | Sep 2000 | WO |
WO-0062699 | Oct 2000 | WO |
WO-0103642 | Jan 2001 | WO |
WO-0232333 | Apr 2002 | WO |
WO-0232334 | Apr 2002 | WO |
WO-2009082433 | Jul 2009 | WO |
WO-2009137819 | Nov 2009 | WO |
WO2011056684 | May 2011 | WO |
WO2011060200 | May 2011 | WO |
WO2011060201 | May 2011 | WO |
WO2011127216 | Oct 2011 | WO |
Entry |
---|
An S. S., et al., “Airway smooth muscle dynamics: a common pathway of airway obstruction in asthma,” European Respiratory Journal, 2007, 29 (5), 834-860. |
Bel, et al., ““Hot stuff”: bronchial thermoplasty for asthma,” American Journal of Respiratory and Critical Care Medicine, 2006, 173, 941-943. |
Brown R. H., et al., “Effect of bronchial thermoplasty on airway distensibility,” European Respiratory Journal, 2005, 26 (2), 277-282. |
Brown R. H., et al., “In vivo evaluation of the effectiveness of bronchial thermoplasty with computed tomography,” Journal of Applied Physiology, 2005, 98, 1603-1606. |
Chhajed P., et al., “Will there be a role for bronchoscopic radiofrequency ablation?,” J Bronchol, 2005, 12 (3), 184-186. |
Co-pending U.S. Appl. No. 09/095,323, filed Jun. 10, 1998, Inventor Laufer et al. |
Co-pending U.S. Appl. No. 09/244,173, filed Feb. 4, 1999, Inventor Laufer et al. |
Co-pending U.S. Appl. No. 12/640,644, filed Dec. 17, 2009, Inventor Jerry Jarrard. |
Co-pending U.S. Appl. No. 12/727,156, filed Mar. 18, 2010, Inventor Danek et al. |
Cox G., et al., “Asthma Control during the Year after Bronchial Thermoplasty,” The New England journal of medicine, 2007, 356 (13), 1327-1337. |
Cox G., et al., “Bronchial Thermoplasty for Asthma,” American Journal of Respiratory and Critical Care Medicine, 2006, 173, 965-969. |
Cox G., et al., “Bronchial Thermoplasty: Long-Term Follow-Up and Patient Satisfaction,” Chest, 2004, 126 (4), 822s. |
Cox G., et al., “Bronchial Thermoplasty: One-Year Update, American Thoracic Society Annual Meeting,” Am J Respir Crit Care Med, 2004, 169, A313. |
Cox G., et al., “Clinical Experience With Bronchial Thermoplasty for the Treatment of Asthma,” Chest, 2003, 124, 106S. |
Cox G., et al., “Development of a Novel Bronchoscopic Therapy for Asthma,” Journal of Allergy and Clinical Immunology, 2003, 113 (2), S33. |
Cox G., et al., “Early Clinical Experience with Bronchial Thermoplasty for the Treatment of Asthma, American Thoracic Society Annual Meeting,” 2002, 1068. |
Cox G., et al., “Impact of bronchial thermoplasty on asthma status: interim results from the AIR trial.European Respiratory Society Annual Meeting. Munich, Germany,” 2006, 1 page. |
Cox G., et al., “Radiofrequency ablation of airway smooth muscle for sustained treatment of asthma: preliminary investigations,” European Respiratory Journal, 2004, 24, 659-663. |
Danek C. J., et al., “Asthma Intervention Research (AIR) Trial Evaluating Bronchial Thermoplasty™: Early Results, American Thoracic Society Annual Meeting,” 2002, 1 page. |
Danek C. J., et al., “Bronchial thermoplasty reduces canine airway responsiveness to local methacholine challenge, American Thoracic Society Annual Meeting,” 2002, 1 page. |
Danek C. J., et al., “Reduction in airway hyperresponsiveness to methacholine by the application of RF energy in dogs,” J Appl Physiol, 2004, 97, 1946-1953. |
Dierkesmann, et al., “Indication and Results of Endobronchial Laser Therapy,” Lung, 1990, 168, 1095-1102. |
Erle C. H., et al., “Botulinum toxin: a novel therapeutic option for bronchial asthma?,” Medical Hypotheses, 2006, 66, 915-919. |
Global Strategy for Asthma Management and Prevention, 2002, 192 Pages Total. |
Hogg J. C., “The Pathology of Asthma,” APMIS, 1997, 105 (10), 735-745. |
Ivanyuta O. M., et al., “Effect of Low-Power Laser Irradiation of Bronchial Mucosa on the State of Systemic and Local Immunity in Patients with Chronic Bronchitis,” Problemy Tuberkuleza, 1991, 6, 26-29. |
James, et al., “The Mechanics of Airway Narrowing in Asthma,” Am. Rev. Respir. Dis., 1989, 139, 242-246. |
Janssen L. J., “Asthma therapy: how far have we come, why did we fail and where should we go next?,” Eur Respir J, 2009, 33, pp. 11-20. |
Johnson S. R., et al., “Synthetic Functions of Airway Smooth Muscle in Asthma,” Trends Pharmacol. Sci., 1997, 18 (8), 288-292. |
Julian Solway M. D., et al., “Airway Smooth Muscle as a Target for Asthma Therapy,” The New England journal of medicine, 2007, 356 (13), 1367-1369. |
Kitamura S., “Color Atlas of Clinical Application of Fiberoptic Bronchoscopy,” 1990, Year Book Medical Publishers, 17. |
Kraft M., “The distal airways: are they Important in asthma?,” European Respiratory, 1999, 1403-1417. |
Laviolette, et al., “Asthma Intervention Research (Air) Trial: Early Safety Assessment of Bronchial Thermoplasty,” Am J Respir Crit Care Med, 2004, 169, A314. |
Leff, et al., “Bronchial Thermoplasty Alters Airway Smooth Muscle and Reduces Responsiveness in Dogs: A Possible Procedure for the Treatment of Asthma, American Thoracic Society Annual Meeting,” 2002, 1 page. |
Lombard, et al., “Histologic Effects of Bronchial Thermoplasty of Canine and Human Airways, American Thoracic Society Annual Meeting,” 2002, 1 page. |
Macklem P. T., “Mechanical Factors Determining Maximum Bronchoconstriction,” European Respiratory Journal, 1989, 6, 516s-519s. |
Mayse M. L., et al., “Clinical Pearls for Bronchial Thermoplasty,” J Bronchol, 2007, 14 (2), 115-123. |
Miller J. D., et al., “A Prospective Feasibility Study of Bronchial Thermoplasty in the Human Airway,” 2005, 127, 1999-2006. |
Miller J. D., et al., “Bronchial Thermoplasty Is Well Tolerated by Non-Asthmatic Patients Requiring Lobectomy, American Thoracic Society Annual Meeting,” 2002, 1 page. |
Netter F. H., “Respiratory System: A Compilation of Paintings Depicting Anatomy and Embryology, Physiology, Pathology, Pathophysiology, and Clinical Features and Treatment of Diseases,in the CIBA Collection of Medical Illustrations M.B. Divertie, ed., Summit: New Jerse,” 1979, 7, 119-135. |
Notice of final Rejection, Japanese Patent Application No. 2000-553172, dated Sep. 2, 2008, 5 pages. |
PCT International search report for application No. PCT/US00/05412 mailed on Jun. 20, 2000, 2 pages. |
PCT International search report for application No. PCT/US00/18197 mailed on Oct. 3, 2000, 1 pages. |
PCT International search report for application No. PCT/US00/28745 mailed on Mar. 28, 2001, 6 pages. |
PCT International search report for application No. PCT/US01/32321 mailed on Jan. 18, 2002, 2 pages. |
PCT International search report for application No. PCT/US98/03759 mailed on Jul. 30, 1998, 1 page. |
PCT International search report for application No. PCT/US98/26227 mailed on Mar. 25, 1999, 1 page. |
PCT International search report for application No. PCT/US99/00232 mailed on Mar. 4, 1999, 1 page. |
PCT International search report for application No. PCT/US99/12986 mailed on Sep. 29, 1999, 1 page. |
Peter K. Jeffery, “Remodeling in Asthma and Chronic Obstructive Lung Disease,” American Journal of Respiratory and Critical Care Medicine, 2001, 164 (10), 13516. |
Provotorov, et al., “The Clinical Efficacy of Treating Patients with Nonspecific Lung Disease by Using Low-energy Laser Irradiation and Intrapulmonary Drug Administration, ISSN: 0040-3660,” Terapevticheskii Arkhiv (USSR), 1991, 62 (12), 18-23. |
Rubin, et al., “Bronchial thermoplasty improves asthma status of moderate to severe perisstent asthmatics over and above current standard-of-care, American College of Chest Physicians,” 2006, 2 pages. |
Seow C. Y., et al., “Signal Transduction in Smooth Muscle Historical perspective on airway smooth muscle: the saga of a frustrated cell,” J Appl Physiol, 2001, 91, 938-952. |
Shesterina M. V., et al., “Effect of laser therapy on immunity in patients with bronchial asthma and pulmonary tuberculosis,” 1993, 23-26. |
Stephanie A.Shore, “Airway Smooth Muscle in Asthma—Not Just More of the Same,” N. Engl J Med, 2004, 351 (6), 531-532. |
Sterk P. J., et al., “Heterogeneity of airway hyperresponsiveness: time for unconventional, but traditional, studies,” J Appl Physiol, 2004, 96, 2017-2018. |
Toma, et al., “Brave new world for interventional bronchoscopy,” Thorax, 2005, 60, 180-181. |
Trow T., “Clinical Year in Review I Diagnostic Imaging, Asthma, Lung Transplantation, and Interventional Pulmonology,” Proceedings of the American Thoracic Society, 2006, 3, 553-556. |
UNSW Embryo- Respiratory System [online], Embryology, 2007, [retrieved on Dec. 10, 2007]. Retrieved from the Internet: (URL:http://embryology.med.unsw.edu.au/Refer/respire/sclect.htm). |
Vasilotta P. L., et al., “I-R Laser: A new therapy in Rhino-Sino-Nasal bronchial syndrome with asthmatic component,” American Society for Laser medicine and Surgery abstracts, 74. |
Vorotnev, et al., “Low energy laser treatment of chronic obstructive bronchitis in a general rehabilitation center,ISSN: 0040-3660,” Terapevticheskii Arkhiv, 1997, 69 (3), 17-19. |
Wayne Mitzner, “Airway Smooth Muscle the appendix of the Lung,” American Journal of Respiratory and Critical Care Medicine, 2004, 169, 787-790. |
Wayne Mitznerl, “Bronchial Thermoplasty in Asthma,” Allergology International, 2006, 55, 225-234. |
Wiggs B. R., et al., “On the Mechanism of Mucosal Folding in Normal and Asthmatic Airways,” J. Appl. Physiol., 1997, 83 (6), 1814-1821. |
Wilson S. R., et al., “Global assessment after bronchial thermoplasty: the patients perspective,” Journal of Outcomes Research, 2006, 10, 37-46. |
Wizeman, et al., “A Computer Model of Thermal Treatment of Airways by Radiofrequency (RF) Energy Delivery, American Thoracic Society Annual Meeting,” 2007, 1 page. |
Shesterina M.V. et al., “Effect of Laser Therapy on Immunity in Patents with Bronchial Asthma and Pulmonary Tuberculosis,” Moscow Scientific Research Institute for Tuberculosos of the Russian Federation Ministry of Heath and the Medical Industry, 1994. (13 pages including translation). |
Appeal Brief filed at USPTO on Aug. 13, 2009, in U.S. Appl. No. 09/095,323 (64 pages). |
Appeal Brief filed at USPTO on Oct. 12, 2009, in U.S. Appl. No. 09/095,323 (7 pages). |
USPTO Examiner's Answer to Appeal Brief with mail date Jun. 13, 2011, in U.S. Appl. No. 09/095,323 (47 pages). |
Reply Brief Filed at USPTO on Aug. 12, 2011, in U.S. Appl. No. 09/095,323 (9 pages). |
USPTO Non-Final Office Action with mail date Dec. 28, 2011, in U.S. Appl. No. 11/562,925. |
Applicant Argument/Remarks made in Amendment filed at USPTO on Jun. 28, 2011, in U.S. Appl. No. 11/562,925 (22 pages). |
Number | Date | Country | |
---|---|---|---|
20100204689 A1 | Aug 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11609242 | Dec 2006 | US |
Child | 12765704 | US | |
Parent | 11117905 | Apr 2005 | US |
Child | 11609242 | US | |
Parent | 09999851 | Oct 2001 | US |
Child | 11117905 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09296040 | Apr 1999 | US |
Child | 09999851 | US | |
Parent | 09095323 | Jun 1998 | US |
Child | 09296040 | US | |
Parent | 09436455 | Nov 1999 | US |
Child | 09999851 | US | |
Parent | 09535856 | Mar 2000 | US |
Child | 09436455 | US | |
Parent | 09349715 | Jul 1999 | US |
Child | 09535856 | US | |
Parent | 09003750 | Jan 1998 | US |
Child | 09349715 | US |