The present patent application claims the priority benefit of French patent application FR20/08792 which is herein incorporated by reference.
The present disclosure generally concerns a method for treating an optoelectronic device, particularly a method for modifying the optoelectronic device after its manufacturing.
By optoelectronic devices, there is meant devices capable of converting an electric signal into an electromagnetic radiation or conversely, and particularly devices dedicated to the detection, the measurement, or the emission of an electromagnetic radiation. An example of application concerns a display screen comprising a support having distinct optoelectronic devices bonded thereto, each optoelectronic device comprising at least one light-emitting diode for the transmission of signals relative to an image pixel. Another example of application concerns an image sensor comprising a support having optoelectronic devices individually bonded thereto, each optoelectronic device comprising at least one photodiode for the capture of signals relative to an image pixel.
For certain applications, it is necessary to provide a step of modification of the optoelectronic device after its manufacturing.
A first example of application corresponds to the case of an optoelectronic device for which a calibration operation may be implemented after the manufacturing of the optoelectronic device, the calibration operation being likely to cause a modification of operating parameters of the optoelectronic device. As an example, for an optoelectronic device comprising light-emitting diodes for the display of an image pixel, the calibration operation may enable to set the white balance of the optoelectronic device.
For this purpose, it is known to provide a memory in the optoelectronic device into which data may be written after the calibration operation to modify the operation of the optoelectronic device. To perform the write operation in the memory of the optoelectronic device, it may then be necessary to provide on the optoelectronic device terminals of access to this memory. However, the desired dimensions of the optoelectronic device may not enable the presence of additional access terminals in addition to those provided for the normal operation of the optoelectronic device.
A second example of application corresponds to the case where the optoelectronic device comprises a system for protecting the optoelectronic device against electrostatic discharges (ESDs), particularly electrostatic discharges likely to occur during the method of manufacturing and handling of the optoelectronic device. Indeed, according to the structure of the protection system, it may be necessary to provide a step of deactivation of the protection system once the optoelectronic device is in place so that the optoelectronic device operates normally.
To perform the step of deactivation of the protection system, it may then be necessary to provide specific access terminals on the optoelectronic device. However, the desired dimensions of the optoelectronic device may not enable the presence of additional access terminals in addition to those provided for the normal operation of the optoelectronic device.
An embodiment overcomes all or part of the disadvantages of the previously-described optoelectronic device treatment methods, particularly, methods for modifying the optoelectronic devices after their manufacturing.
According to an embodiment, the optoelectronic device comprises no specific access terminals to perform the treatment of the optoelectronic device.
An embodiment provides a method for treating a region of an optoelectronic device further comprising a substrate adjacent to the region to be treated, the optoelectronic device comprising, in the region to be treated, programmable elements configured to be modified when they are exposed to a laser beam, the method comprising the exposure of at least one of the programmable elements to the laser beam focused through the substrate.
According to an embodiment, each programmable element comprises a conductive track, the method comprising the interruption of the conductive track of at least one of the programmable elements by the focused laser beam.
According to an embodiment, the optoelectronic device comprises a one-time programmable memory comprising the programmable elements, the method comprising the exposure of a portion of said programmable elements to the focused laser beam.
According to an embodiment, the optoelectronic device comprises a system of protection against electrostatic discharges comprising the programmable elements, the method comprising the exposure of all the programmable elements to the focused laser beam.
According to an embodiment, the protection system comprises a circuit of interconnection of electronic components and of optoelectronic components via the programmable elements.
According to an embodiment, the conductive tracks are metallic or made of a non-metallic electrically-conductive material, particularly, doped single-crystal or polycrystalline silicon.
According to an embodiment, the optoelectronic device comprises light-emitting diodes and/or photodiodes.
According to an embodiment, the method comprises the exposure of the optoelectronic device to a pulse of the focused laser beam, the duration of said at least one pulse being in the range from 0.1 ps to 1,000 ps.
According to an embodiment, the method comprises the exposure of the optoelectronic device to said at least one pulse of the focused laser beam with a peak power in the range from 300 kW to 100 MW.
According to an embodiment, the method comprises the exposure of the optoelectronic device to said at least one pulse of the focused laser beam with a wavelength in the range from 1.2 μm to 4 μm.
According to an embodiment, the material forming the substrate is semiconductor.
According to an embodiment, the substrate is made of silicon, of germanium, or of a mixture or alloy of these compounds.
An embodiment also provides an optoelectronic device comprising a substrate and programmable elements in a stack resting on the substrate, at least one of the programmable elements having been modified by a laser beam focused through the substrate.
According to an embodiment, each programmable element comprises a conductive track, the conductive track of at least one of the programmable elements having been interrupted by the focused laser beam.
According to an embodiment, the optoelectronic device comprises a one-time programmable memory comprising the programmable elements, a portion of said programmable elements having been modified by the focused laser beam.
According to an embodiment, the optoelectronic device comprises a system of protection against electrostatic discharges comprising the programmable elements, the protection system being activated when all the programmable elements are not modified by the focused laser beam.
The foregoing features and advantages, as well as others, will be described in detail in the rest of the disclosure of specific embodiments given by way of illustration and not limitation with reference to the accompanying drawings, in which:
Like features have been designated by like references in the various figures. In particular, the structural and/or functional features that are common among the various embodiments may have the same references and may dispose identical structural, dimensional and material properties. For the sake of clarity, only the steps and elements that are useful for an understanding of the embodiments described herein have been illustrated and described in detail. In particular, display pixel control circuits are well known by those skilled in the art and will not be described in detail. Unless indicated otherwise, when reference is made to two elements connected together, this signifies a direct connection without any intermediate elements other than conductors, and when reference is made to two elements coupled together, this signifies that these two elements can be connected or they can be coupled via one or more other elements.
In the following description, when reference is made to terms qualifying absolute positions, such as terms “front”, “rear”, “top”, “bottom”, “left”, “right”, etc., or relative positions, such as terms “above”, “under”, “upper”, “lower”, etc., or to terms qualifying directions, such as terms “horizontal”, “vertical”, etc., it is referred to the orientation of the drawings or to an optoelectronic device in a normal position of use. Unless specified otherwise, the expressions “around”, “approximately”, “substantially” and “in the order of” signify within 10%, and preferably within 5%. Further, it is here considered that the terms “insulating” and “conductive” respectively signify “electrically insulating” and “electrically conductive”.
Embodiments will be described in the case of an optoelectronic device used for the display of an image pixel, and in particular an optoelectronic device comprising light-emitting diodes. It should however be clear that these embodiments may be implemented for an optoelectronic device used for the acquisition of an image pixel, and in particular an optoelectronic device comprising photodiodes.
A pixel of an image corresponds to the unit element of the image displayed by a display screen. An optoelectronic device allowing the display of an image pixel is called display pixel hereafter. When the display screen is a color image display screen, it generally comprises, for the display of each image pixel, at least three emission and/or light intensity regulation components, also called display sub-pixels, which each emit a light radiation substantially in a single color (for example, red, green, or blue). The superposition of the radiations emitted by the three display sub-pixels provides the observer with the colored sensation corresponding to the pixel of the displayed image. In this case, the assembly formed by the three display sub-pixels used for the display of a pixel of an image is called display pixel of the display screen. When the display screen is a monochrome image display screen, it generally comprises a single light source for the display of each image pixel.
Display pixel Pix comprises from bottom to top in
Control circuit 10 comprises a lower surface 12 and an upper surface 14 opposite to lower surface 12, surfaces 12 and 14 being preferably parallel. Control circuit 10 further comprises conductive pads 16 on lower surface 12. Control circuit 10 may comprise a semiconductor substrate 18, a stack 20 of insulating layers covering substrate 18, and conductive tracks 22 of several metallization levels formed between the insulating layers of stack 20 and connected by conductive vias, not shown. Control circuit 10 may further comprise electronic components, not shown in
Optoelectronic circuit 30 is bonded to the upper surface 14 of control circuit 10. As a variant, particularly when the electronic components comprise thin-film transistors, also called TFTs, control circuit 10 may be directly formed on optoelectronic circuit 30.
Optoelectronic circuit 30 comprises a support 32 having light-emitting diodes DEL, preferably at least three light-emitting diodes, formed thereon. The light-emitting diodes may for example be of planar shape, of wire shapes, or of pyramidal shape. Optoelectronic circuit 30 may comprise photoluminescent blocks 34 covering light-emitting diodes DEL on the side opposite to control circuit 10. Each photoluminescent block 34 is in front of at least one of light-emitting diodes DEL.
Optoelectronic circuit 30 comprises conductive elements 36 located in support 32, and connected to the electrodes of light-emitting diodes DEL. Optoelectronic circuit 30 is electrically coupled to control circuit 10 by conductive pads, which may correspond to conductive elements 36 and which are in contact with conductive pads of control circuit 10.
Preferably, optoelectronic circuit 30 only comprises the light-emitting diodes DEL and the conductive elements 36 of these light-emitting diodes DEL and control circuit 10 comprises all the electronic components necessary for the control of the light-emitting diodes DEL of optoelectronic circuit 30. As a variant, optoelectronic circuit 30 may also comprise other electronic components in addition to light-emitting diodes DEL.
According to an embodiment, the display pixel treatment operation, implemented after the manufacturing of display pixel Pix, comprises a laser treatment of display pixel Pix, as described in further detail hereafter. For this purpose, display pixel Pix comprises at least one programmable element 40 likely to be modified by the laser treatment. According to an embodiment, programmable element 40 comprises a conductive track likely to be interrupted by a laser treatment. Programmable element 40 may be provided in control circuit 10. According to an embodiment, programmable element 40 may be at least partly formed by some of conductive tracks 22, particularly by conductive tracks of the first metallization level of control circuit 10, which may be made of polysilicon, or by conductive tracks of another metallization level, which may be metallic.
According to an embodiment, programmable element 40 forms a memory cell of a one-time programmable memory or OTP memory. In this embodiment, after the manufacturing of the optoelectronic device, the track 46 of the programmable element 40 of each memory cell is not interrupted so that programmable element 40 is in the first configuration. This corresponds to the storage in the memory cell of a binary piece of data in a first state. Calibration operations may then be performed for the optoelectronic device. The programming step comprises, for some of the memory cells, the interruption of the track 46 of the programmable element 40 of the memory cell to take programmable element 40 to the second configuration. This corresponds to the storage in the memory cell of a binary piece of data in a second state.
According to another embodiment, programmable element 40 forms part of a system of protection of the display pixel against electrostatic discharges. In this embodiment, after the manufacturing of the display pixel, the track 46 of each programmable element 40 is not interrupted so that programmable element 40 is in the first configuration. The display pixel protection system is then activated. The programming step comprises, by laser treatment, the interruption of the track 46 of each programmable element 40. This enables to make the display pixel protection system inactive.
In
Protection circuit 60 comprises programmable elements 40 series-connected with conductive tracks 62. Before the programming, all the programmable elements 40 are in the first configuration, whereby they behave as on switches. After the programming, all the programmable elements 40 are in the second configuration, whereby they behave as off switches. Programmable elements 40 are located on the path of conductive tracks 62 at the locations where an interruption of the electric path is desired after the programming.
In the equivalent electric diagram of
In the equivalent electric diagram of
Treatment system 70 comprises a laser source 71 and an optical focusing device 72 having an optical axis D. Source 71 is adapted to delivering an incident laser beam 73 to focusing device 72, which delivers a convergent laser beam 74. Optical focusing device 72 may comprise one optical component, two optical components, or more than two optical components, an optical component for example corresponding to a lens. Preferably, incident laser beam 73 is substantially collimated along the optical axis D of optical device 72.
There has been shown in
According to an embodiment, the thickness of substrate 76 is in the range from 50 μm to 3 mm. According to an embodiment, an antireflection layer, not shown, is provided on exposure surface 77. Substrate 76 may comprise at least one semiconductor material, for example, silicon, in particular single-crystal silicon, and/or at least one electrically-insulating material, and/or at least one electrically-conducting material.
According to an embodiment, the treatment corresponds to the exposure of portions of the region to be treated 75 to allow, for each exposed portion, the destruction of the programmable element located in this portion. The laser beam may be adapted to be sufficiently high to destroy the programmable element, and sufficiently low to avoid damaging the neighboring elements.
According to an embodiment, the wavelength of the laser beam 74 supplied by treatment system 70 is greater than the wavelength corresponding to the bandgap of the material mainly forming substrate 76, preferably by at least 500 nm, more preferably by at least 700 nm. This advantageously enables to decrease interactions between laser beam 74 and substrate 76 during the crossing of substrate 76 by laser beam 74. According to an embodiment, the wavelength of the laser beam 74 delivered by treatment system 70 is not greater than the wavelength corresponding to the bandgap of the material forming substrate 76, preferably by more than 2,500 nm. This advantageously enables to more easily provide a laser beam forming a laser spot of small dimensions.
In the case where substrate 76 is mainly made of silicon which has a 1.14-eV bandgap, which corresponds to a 1.1-μm wavelength, the wavelength of laser beam 74 is selected to be equal to approximately 2 μm. In the case where substrate 76 is mainly made of germanium which has a 0.661-eV bandgap, which corresponds to a 1.87-μm wavelength, the wavelength of laser beam 74 is selected to be equal to approximately 2 μm or 2.35 μm.
According to an embodiment, laser beam 74 is polarized. According to an embodiment, laser beam 74 is polarized according to a rectilinear polarization. This advantageously enables to improve interactions of laser beam 74 with the region 75 to be treated. According to another embodiment, laser beam 74 is polarized according to a circular polarization. This advantageously enables to favor the propagation of laser beam 74 through substrate 76.
According to an embodiment, laser beam 74 is emitted by treatment system 70 in the form of a pulse, of two pulses, or of more than two pulses, each pulse having a duration in the range from 0.1 ps to 1,000 ps. The peak power of the laser beam for each pulse is in the range from 300 kW to 100 MW. The fact of using pulses longer than pulses of durations shorter than 100 femtoseconds enables to decrease the peak power of laser beam 74 and thus to decrease non-linear interactions of laser beam 74 with substrate 76. The fact of using pulses shorter than nanosecond pulses enables to avoid an unwanted heating outside of the region 75 to be treated, likely to cause a deterioration of the layers next to the region 75 to be treated.
In the embodiment where the programmable elements form part of a one-time programmable memory, the display pixel programming treatment may be implemented once tests have been performed on the display pixel and the programming of the OTP memory may depend on the results of the tests. According to an embodiment, the tests may comprise a measurement of display properties of the display pixel, for example, the white balance, and the data written into the OTP memory depend on the performed measurements. In operation, the display properties of the display pixel are modified according to the data written into the OTP memory, which may be read by the control circuit.
In the embodiment where the programmable elements form part of a system of protection against electrostatic discharges, the treatment for programming the display pixel may be implemented once the display pixel has been placed on the final support. Thereby, a protection against electrostatic discharges is obtained all along the manipulation of the display pixel. Advantageously, since the system of protection against electrostatic discharges is made inactive after the programming treatment, the system of protection against electrostatic discharges may essentially comprise conductive tracks and be of small dimensions.
According to an embodiment, the control circuit 10 of display pixel Pix comprises from bottom to top in
According to an embodiment, the optoelectronic circuit 30 of display pixel Pix comprises from bottom to top in
Each wire 94 for example has a mean diameter, for example corresponding to the diameter of the disk having the same area as the cross-section of wire 94, in the range from 5 nm to 5 μm, preferably from 100 nm to 2 μm, more preferably from 200 nm to 1.5 μm, and a height greater than or equal to 1 time, preferably greater than or equal to 3 times, and more preferably still greater than or equal to 5 times the mean diameter, particularly greater than 500 nm, preferably in the range from 1 μm to 50 μm. Wires 94 comprise at least one semiconductor material. The semiconductor material may be silicon, germanium, silicon carbide, a III-V compound, for example, GaN, AlN, InN, InGaN, AlGaN, or AlInGaN, a II-VI compound, or a combination of at least two of these compounds.
According to an embodiment, light-emitting diodes DEL are adapted to emitting blue light, that is, a radiation having a wavelength in the range from 430 nm to 490 nm. According to an embodiment, the first wavelength corresponds to green light and is in the range from 510 nm to 570 nm. According to an embodiment, the second wavelength corresponds to red light and is in the range from 600 nm to 720 nm. According to another embodiment, light-emitting diodes DEL are for example adapted to emitting an ultraviolet radiation. According to an embodiment, the first wavelength corresponds to blue light and is within the range from 430 nm to 490 nm. According to an embodiment, the second wavelength corresponds to green light and is within the range from 510 nm to 570 nm. According to an embodiment, the third wavelength corresponds to red light and is within the range from 600 nm to 720 nm.
Various embodiments and variants have been described. Those skilled in the art will understand that certain features of these various embodiments and variants may be combined, and other variants will occur to those skilled in the art. In particular, the embodiment where the programmable elements form part of a one-time programmable memory and the embodiment where the programmable elements form part of a system of protection against electrostatic discharges may be combined. The display pixel may then both comprise programmable elements which form part of a one-time programmable memory and programmable elements which form part of an ESD system.
Finally, the practical implementation of the described embodiments and variations is within the abilities of those skilled in the art based on the functional indications given hereabove. In particular, although embodiments have been described in the case of display pixels with light-emitting diodes comprising microwires or nanowires, it should be clear that these embodiments may concern a display pixel with light-emitting diodes comprising pyramids of micrometer- or nanometer-range size, a pyramid being a three-dimensional structure having a portion of elongated conical or pyramidal shape. This pyramidal structure may be truncated, that is, the top of the cone is absent and replaced with a flat area. The base of the pyramid is inscribed within a polygon having a side length from 100 nm to 10 μm, preferably from 1 to 3 μm. The polygon forming the base of the pyramid may be a hexagon. The height of the pyramid between the base of the pyramid and the apex or the top plateau varies from 100 nm to 20 μm, preferably from 1 μm to 10 μm. Further, although embodiments have been described in the case of display pixels comprising light-emitting diodes comprising microwires or nanowires, it should be clear that these embodiments may concern a display pixel comprising planar light-emitting diodes where each light-emitting diode is formed by a stack of planar semiconductor layers.
Number | Date | Country | Kind |
---|---|---|---|
2008792 | Aug 2020 | KR | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2021/073092 | 8/19/2021 | WO |