This application is a U.S. National Phase of International Application No. PCT/SG2004/000338, filed Oct. 15, 2004, designating the U.S. and published in English on Oct. 13, 2005 as WO 2005/094725, which claims the benefit of Singapore Application No. 200401735-6, filed Mar. 31, 2004.
The invention concerns a method for treating bifurcation or trifurcation aneurysms. In particular, the method is suitable for bifurcation or trifurcation aneurysms with wide aneurysm necks.
An aneurysm is a bulge or a weakening of a wall of an artery. An aneurysm usually occurs where one main blood vessel splits into two (bifurcation) or three smaller vessels (trifurcation). Bifurcation aneurysms account for approximately 35% of all cases of intracranial hemorrhagic disease.
Aneurysms may burst and cause bleeding into a covering around the brain called the subarachnoid space. This is referred to as a subarachnoid hemorrhage. Subarachnoid hemorrhage secondary to a ruptured aneurysm causes a severe headache.
Therefore, there is a desire for minimally invasive, less traumatic methods to treat bifurcation and trifurcation aneurysms.
In a first preferred aspect, there is provided a method for treating a bifurcation aneurysm, the aneurysm having an aneurysm neck, the method comprising:
The aneurysm neck may be constricted such that blood circulation to the aneurysm is completely interrupted.
The mechanically expandable devices may be stents.
The stents may be mechanically expanded such that blood circulation to the bifurcation aneurysm via the aneurysm neck may be occluded.
The aneurysm may be reduced further in size by deploying gels or using coils. Where the aneurysm neck is wide, coils or securing glues may be deployed inside the aneurysm to reduce blood circulation inside the aneurysm. An aneurysm neck may be wide if the ratio of the diameter of the dome of the aneurysm to the width of the aneurysm neck is less than two.
The stents may be balloon expandable or self-expandable.
The stents may have markers to facilitate precise positioning in the branches. The markers may be placed at the distal and proximal ends of the stents. The markers may be radiopaque. The markers may be made from gold or platinum.
The stents may be positioned in the branches sequentially.
The stents may be expanded at the same time. Alternatively, the stents may be expanded sequentially.
The stent may be tapered towards the distal end of the stent. The stent may have a trapezoidal longitudinal cross-section. The stent may have proximal end struts that are elongated relative to the remaining struts.
The first stent may be positioned partially within the first bifurcation branch such that a portion of the proximal end of the first stent is not introduced within the first bifurcation branch.
The second stent may be positioned partially within the second bifurcation branch such that a portion of the proximal end of the second stent is not introduced within the second bifurcation branch.
A balloon of a balloon catheter may be used to expand the stent during deployment. The balloon may be tapered such that the proximal end of the stent is expanded first during deployment. Advantageously, this allows the aneurysm neck to be bridged with greater effectiveness.
The balloon may be made of soft durometer thin nylon or silicon.
The first stent may be expanded by a first balloon and the second stent may be expanded by a second balloon. The first and second balloons may be on a single shaft of a balloon catheter. The stents may be expanded at the same time during deployment.
Additional angioplasty balloon expansion may be used to secure the deployment of the stents.
The stents may be connected by a membrane for obstructing blood circulation to the bifurcation aneurysm. The membrane may comprise at least one layer of an elastomeric polymer. The membrane may comprise receptacles for carrying drugs or reagents for subsequent release after the stents are deployed. The drugs or reagents may include substances that reduce the thrombogenic, inflammatory or smooth muscle cell proliferative response of the vessel to the implantable medical devices. For example, cell inhibitors can be delivered in order to inhibit smooth muscle cells proliferation. In intracranial or some other applications fibrin sealants can be used and delivered to seal aneurysm neck and provide fibroblasts and endothelial cells growth. Specific examples of drugs or reagents may include heparin, phosporylcholine, albumin, dexamethasone, paclitaxel and vascular endothelial growth factor (VEGF).
In a second aspect, there is provided a method for treating a trifurcation aneurysm, the aneurysm having an aneurysm neck, the method comprising:
The first mechanically expandable device may be positioned partially within the first trifurcation branch such that a portion of the proximal end of the first mechanically expandable device is not introduced within the first trifurcation branch.
The second mechanically expandable device may be positioned partially within the second trifurcation branch such that a portion of the proximal end of the second mechanically expandable device is not introduced within the second trifurcation branch.
The third mechanically expandable device may be positioned partially within the third trifurcation branch such that a portion of the proximal end of the third mechanically expandable device is not introduced within the third trifurcation branch.
In a third aspect, there is provided a system for treating a bifurcation aneurysm, the aneurysm having an aneurysm neck, the system comprising:
In a fourth aspect, there is provided a system for treating a trifurcation aneurysm, the aneurysm having an aneurysm neck, the system comprising:
In a fifth aspect, there is provided a mechanically expandable device for treating a bifurcation or trifurcation aneurysm, the aneurysm having an aneurysm neck, the device comprising:
In a sixth aspect, there is provided a balloon for expanding a mechanically expandable device for treating a bifurcation or trifurcation aneurysm, the balloon being connected to a balloon catheter for inflation, and the device comprising a interconnected struts at its proximal end that are elongated relative to the remaining struts of the device such that the device is tapered towards its distal end after deployment in a bifurcation or trifurcation branch;
The balloon may be a first balloon used in combination with a second balloon to expand a second mechanically expandable device in another bifurcation or trifurcation branch. The first balloon and second balloon may be inflated together via a single balloon catheter
An example of the invention will now be described with reference to the accompanying drawings, in which:
Referring to
Intracranial stents 20, 30 are designed to be very flexible, and have a low profile (0.033″ to 0.034″ or even less as crimped onto delivery catheter) and thin wall (0.0027″ to 0.0028″). The intracranial stents 20, 30 feature low deployment pressure (3 to 4 atmospheres) and do not necessarily have the highest possible radial strength because there is no need for high strength in intracranial applications. In one example, the stents 20, 30 are made from platinum/iridium/tungsten alloys.
Stents 20, 30 are a generally tubular structure having an exterior surface defined by a plurality of interconnected struts 32 having interstitial spaces there between. The generally tubular structure is expandable from a first position, wherein the stent 20, 30 is sized for intravascular insertion, to a second position, wherein at least a portion of the exterior surface of the stent contacts the vessel wall 12, 13. The expansion of the stent 20, 30 is accommodated by flexing and bending of the interconnected struts 32 throughout the generally tubular structure. It is contemplated that many different stent designs can be produced. A myriad of strut patterns are known for achieving various design goals such as enhancing strength, maximizing the expansion ratio or coverage area, enhancing longitudinal flexibility or longitudinal stability upon expansion. One pattern may be selected over another in an effort to optimize those parameters that are of particular importance for a particular application.
In one example, the stent 20, 30 comprises stent struts 32 of a ring, ring connectors, and end markers 34. The stents 100 are made of multiple circumstantial rings, where the ring connectors connect two or three adjacent rings to hold the rings in place. In another example, a self-expanding stent 20, 30 is made of wires/ribbons. While a self-expanding stent may have many designs, one specific stent 20, 30 has a typical braided pattern with welded ends. The stent 20, 30 is designed such that it is relatively flexible along its longitudinal axis to facilitate delivery through tortuous body lumens, but is sufficiently stiff and stable radially in an expanded condition to maintain the patency of a body lumen, such as an artery or bifurcation/trifurcation branch 12, 13 when implanted therein. When a tubular stent 20, 30 is fully expanded to its deployed diameter, the latticework of struts 32 takes on a shape in which adjacent crests undergo wide separation, and portions of the struts 32 take on a transverse, almost fully lateral orientation relative to the longitudinal axis of the stent 20, 30. Such lateral orientation of a plurality of the struts 32 enables each fully opened cell to contribute to the firm mechanical support offered by the stent 20, 30 in its fully deployed position, to assure a rigid structure which is highly resistant to recoil of the vessel wall 12, 13 following stent deployment. It bears emphasis, however, that the configuration of this stent structure, while highly desirable, is illustrative only.
Referring to
The delivery system includes a guide wire lumen, a balloon inflating lumen, a connector, a balloon catheter shaft, and platinum marker bands on the catheter shaft (not shown). The guide wire lumen is used for introducing a guide wire in a balloon catheter 36, and the balloon inflating lumen is used for inflating the balloon 35 after the stent 20, 30 to be placed reaches its targeted location. The connector is used for separating the guide wire lumen and the balloon inflating lumen. The balloon catheter shaft carries the guide wire lumen and the balloon inflating lumen separately, with a typical length ranging 135 to 170 cm. The ring markers on the catheter shaft are used for showing the start of balloon tapers 35 and the edges of the stent 20, 30.
The balloon 35 is formed of suitable materials such as irradiated polyethylene, polyethylene terephthalate, polyvinylchloride, nylon, and copolymer nylons such as Pebax™. Other polymers may also be used. In order for the stent 20, 30 to remain in place on the balloon 35 during delivery to the desired site within a branch 12, 13, the stent 20, 30 is crimped onto the balloon 35.
In a preferred embodiment, the delivery of the stent 20, 30 is accomplished in the following manner. The stent 20, 30 is first mounted onto the inflatable balloon 35 on the distal extremity of the delivery catheter 36. The stent 20, 30 is mechanically crimped onto the exterior of the folded balloon 35. The catheter/stent assembly is introduced within vasculature through a guiding catheter. A guide wire is disposed across the diseased arterial section and then the catheter/stent assembly is advanced over a guide wire within the branch 12, 13 until the stent 20, 30 reaches the desired position. The balloon 35 of the catheter 36 is expanded, expanding the stent 20, 30 against the branch wall 12, 13. The expanded stent serves to hold open the artery after the catheter is withdrawn. Due to the formation of the stent 20, 30 from an elongated tube, the undulating component of the cylindrical elements of the stent 20, 30 is relatively flat in transverse cross-section, so that when the stent 20, 30 is expanded, the cylindrical elements are pressed against the wall of the branch 12, 13 and as a result do not interfere with the blood flow through the branch 12, 13. The cylindrical elements of the stent 20, 30 which are pressed into the wall of the branch 12, 13 is eventually covered with an endothelial cell layer which further minimizes blood flow interference. Furthermore, the closely spaced cylindrical elements at regular intervals provide uniform support for the wall of the branch 12, 13, and consequently are well adopted to take up and hold in place small flaps or dissections in the wall of the branch 12, 13.
As described earlier, a stent 20, 30 may be deployed by radial expansion under outwardly directed radial pressure exerted. For example by active inflation of a balloon 35 of a balloon catheter 36 on which the stent 20, 30 is mounted. Another deployment method may rely on the stent 20, 30 being self-expandable. In some instances, passive spring characteristics of a preformed elastic (that is, self-opening) stent 20, 30 serve the purpose. The stent 20, 30 is then expanded to engage the inner lining or inwardly facing surface of the vessel wall 12, 13 with sufficient resilience to allow some contraction but also with sufficient stiffness to largely resist the natural recoil of the vessel wall 12, 13.
For resilient or self-expanding stents 20, 30, they are deployed without dilation balloons 35. Self-expanding stents 20, 30 are pre-selected according to the diameter of the blood vessel, bifurcation/trifurcation branch 12, 13 or other intended fixation site. While stent deployment requires skill in stent positioning, such deployment does not require the additional skill of carefully dilating a balloon 35 to plastically expand the prosthesis to the appropriate diameter. Further, the self-expanding stent 20, 30 remains at least slightly elastically compressed after fixation, and has a restoring force which facilitates acute fixation. By contrast, a plastically expanded stent 20, 30 must rely on the restoring force of deformed tissue, or on hooks, barbs, or other independent fixation elements.
Referring to
Referring to
In one example, the membrane 25 may comprise one or more layers of an elastomeric polymer. The membrane 25 may comprise a first layer and a second layer. Many polymeric materials are suitable for making the layers of the membrane 25. One such material may be elastomeric polyurethane. Typically, one first layer is disposed onto the outer surface of a stent 20, 30.
In certain embodiments, the first layer is an independent membrane to mechanically cover and seal the aneurysm 10. In certain embodiments, the first and/or second layers may be made from biodegradable material as a drug or reagent carrier for sustained release.
The intermediate layer may be formed of a material which fuses to the first and second layers or attached to the first layer in a different manner. In certain embodiments, the intermediate layer may be merged with the first layer to form a single layer with recessions within the outer surface of the merged layer.
In one embodiment, the second and intermediate layers are made of biodegradable material that contains drugs or reagents for immediate or sustained controlled release. After biodegradable material has degraded over time, the membrane 25 is still in tact to provide vessel support. The second layer may be made from a polymeric material.
The polymeric layers of the membrane 25 may also be made from a material selected from the group consisting of fluoropolymers, polyimides, silicones, polyurethanes, polyurethanes ethers, polyurethane esters, polyurethaneureas and mixtures and copolymers thereof. Biodegradable polymeric materials can also be used.
Adhering, laminating, suturing or otherwise bonding fusible polymeric layers may be conducted. The fusion of the polymeric layers may be achieved by various techniques such as heat-sealing, solvent bonding, adhesive bonding or use of coatings.
The membrane 25 may further comprise pockets (not shown) serving as receptacles for drugs or reagents so that the drugs or reagents may be delivered into vascular systems. The membrane 25 may cover a part of a stent 20, 30, where the size of the membrane 25 may be varied in accordance with any specific application. In one extreme, the membrane 25 may cover the whole outer surface of a stent 20, 30. Thus, the membrane 25 may be in any shape or size. A drug or reagent can be injected in the form of a gel, liquid or powder into receptacles of the pockets. Alternatively the drug or reagent can be supplied in a powder which has been formed into a solid tablet positioned in the receptacles. Such tablets would gradually dissolve after implantation. The drugs or reagents include substances that reduce the thrombogenic, inflammatory or smooth muscle cell proliferative response of the vessel to the implantable medical devices. For example, cell inhibitors can be delivered in order to inhibit smooth muscle cells proliferation. In intracranial or some other applications fibrin sealants can be used and delivered to seal aneurysm neck and provide fibroblasts and endothelial cells growth. Specific examples of drugs or reagents may include heparin, phosporylcholine, albumin, dexamethasone, paclitaxel and vascular endothelial growth factor (VEGF).
Although a bifurcation aneurysm 10 has been described, it is envisaged that the present invention may be used for trifurcation aneurysms and the like.
It will be appreciated by persons skilled in the art that numerous variations and/or modifications may be made to the invention as shown in the specific embodiments without departing from the scope or spirit of the invention as broadly described. The present embodiments are, therefore, to be considered in all respects illustrative and not restrictive.
Number | Date | Country | Kind |
---|---|---|---|
200401735-6 | Mar 2004 | SG | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/SG2004/000338 | 10/15/2004 | WO | 00 | 9/29/2006 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2005/094725 | 10/13/2005 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4416028 | Eriksson et al. | Nov 1983 | A |
4503569 | Dotter | Mar 1985 | A |
5041441 | Radin et al. | Aug 1991 | A |
5234457 | Anderson | Aug 1993 | A |
5356423 | Tihon et al. | Oct 1994 | A |
5405377 | Cragg | Apr 1995 | A |
D359802 | Fontaine | Jun 1995 | S |
5421955 | Lau et al. | Jun 1995 | A |
5443458 | Eury | Aug 1995 | A |
5514154 | Lau et al. | May 1996 | A |
5562725 | Schmitt et al. | Oct 1996 | A |
5589563 | Ward et al. | Dec 1996 | A |
5601593 | Freitag | Feb 1997 | A |
5620763 | House et al. | Apr 1997 | A |
5630840 | Mayer | May 1997 | A |
5632840 | Campbell | May 1997 | A |
5639278 | Dereume et al. | Jun 1997 | A |
5700285 | Myers et al. | Dec 1997 | A |
D390957 | Fontaine | Feb 1998 | S |
5716393 | Lindenberg et al. | Feb 1998 | A |
5718973 | Lewis et al. | Feb 1998 | A |
5735893 | Lau et al. | Apr 1998 | A |
5744515 | Clapper | Apr 1998 | A |
5766238 | Lau et al. | Jun 1998 | A |
5769884 | Solovay | Jun 1998 | A |
5810870 | Myers et al. | Sep 1998 | A |
5843027 | Stone et al. | Dec 1998 | A |
5843172 | Yan | Dec 1998 | A |
5858556 | Eckert et al. | Jan 1999 | A |
5866217 | Stenoien et al. | Feb 1999 | A |
5902475 | Trozera et al. | May 1999 | A |
5925075 | Myers et al. | Jul 1999 | A |
5948018 | Dereume et al. | Sep 1999 | A |
5951599 | McCrory | Sep 1999 | A |
5993489 | Lewis et al. | Nov 1999 | A |
6001123 | Lau | Dec 1999 | A |
6010530 | Goicoechea | Jan 2000 | A |
6024765 | Wallace et al. | Feb 2000 | A |
6027811 | Campbell et al. | Feb 2000 | A |
6033435 | Penn et al. | Mar 2000 | A |
6036720 | Abrams et al. | Mar 2000 | A |
6056775 | Borghi et al. | May 2000 | A |
6056776 | Lau et al. | May 2000 | A |
6066167 | Lau et al. | May 2000 | A |
6139564 | Teoh | Oct 2000 | A |
6140127 | Sprague | Oct 2000 | A |
6168610 | Marin et al. | Jan 2001 | B1 |
6174328 | Cragg | Jan 2001 | B1 |
6217607 | Alt | Apr 2001 | B1 |
6240616 | Yan | Jun 2001 | B1 |
6240948 | Hansen, III et al. | Jun 2001 | B1 |
6248190 | Stinson | Jun 2001 | B1 |
6258120 | McKenzie et al. | Jul 2001 | B1 |
6270523 | Herweck et al. | Aug 2001 | B1 |
6309367 | Boock | Oct 2001 | B1 |
6312463 | Rourke et al. | Nov 2001 | B1 |
6315791 | Gingras et al. | Nov 2001 | B1 |
6371980 | Rudakov et al. | Apr 2002 | B1 |
6409754 | Smith et al. | Jun 2002 | B1 |
6416474 | Penner et al. | Jul 2002 | B1 |
6436132 | Patel et al. | Aug 2002 | B1 |
6451050 | Rudakov et al. | Sep 2002 | B1 |
6451052 | Burmeister et al. | Sep 2002 | B1 |
6454780 | Wallace | Sep 2002 | B1 |
6485507 | Walak et al. | Nov 2002 | B1 |
6488701 | Nolting et al. | Dec 2002 | B1 |
6508832 | Jalisi et al. | Jan 2003 | B1 |
6517571 | Brauker et al. | Feb 2003 | B1 |
6524336 | Papazolgou et al. | Feb 2003 | B1 |
6527802 | Mayer | Mar 2003 | B1 |
6533905 | Johnson et al. | Mar 2003 | B2 |
6547815 | Myers | Apr 2003 | B2 |
6582461 | Burmeister et al. | Jun 2003 | B1 |
6582652 | Craig | Jun 2003 | B2 |
6602281 | Klein | Aug 2003 | B1 |
6613072 | Lau et al. | Sep 2003 | B2 |
6613074 | Mitelberg et al. | Sep 2003 | B1 |
6623520 | Jalisi | Sep 2003 | B2 |
6652574 | Jayaraman | Nov 2003 | B1 |
D484979 | Fontaine | Jan 2004 | S |
6673108 | Zilla et al. | Jan 2004 | B2 |
6676701 | Rourke et al. | Jan 2004 | B2 |
6679910 | Granada | Jan 2004 | B1 |
6695833 | Frantzen | Feb 2004 | B1 |
6695876 | Marotta et al. | Feb 2004 | B1 |
6699276 | Sogard et al. | Mar 2004 | B2 |
6706061 | Fischell et al. | Mar 2004 | B1 |
6719782 | Chuter | Apr 2004 | B1 |
6736844 | Glatt et al. | May 2004 | B1 |
6796997 | Penn et al. | Sep 2004 | B1 |
6802851 | Jones et al. | Oct 2004 | B2 |
6805706 | Solovay et al. | Oct 2004 | B2 |
6818013 | Mitelberg et al. | Nov 2004 | B2 |
6821293 | Pinchasik | Nov 2004 | B2 |
6855154 | Abdel-Gawwad | Feb 2005 | B2 |
6899727 | Armstrong et al. | May 2005 | B2 |
6936055 | Ken et al. | Aug 2005 | B1 |
6949116 | Solymar et al. | Sep 2005 | B2 |
6979349 | Dang et al. | Dec 2005 | B1 |
7029493 | Majercak et al. | Apr 2006 | B2 |
7041127 | Ledergerber | May 2006 | B2 |
7041129 | Rourke et al. | May 2006 | B2 |
7060091 | Killion et al. | Jun 2006 | B2 |
7105019 | Hojeibane | Sep 2006 | B2 |
7125419 | Sequin et al. | Oct 2006 | B2 |
7153322 | Alt | Dec 2006 | B2 |
7169174 | Fischell et al. | Jan 2007 | B2 |
7258697 | Cox et al. | Aug 2007 | B1 |
D553746 | Fliedner | Oct 2007 | S |
D553747 | Fliedner | Oct 2007 | S |
7306622 | Jones et al. | Dec 2007 | B2 |
7311726 | Mitelberg et al. | Dec 2007 | B2 |
7686846 | Laborde et al. | Mar 2010 | B2 |
8075609 | Penn et al. | Dec 2011 | B2 |
20020035394 | Fierens et al. | Mar 2002 | A1 |
20020042646 | Wall | Apr 2002 | A1 |
20020045931 | Sogard et al. | Apr 2002 | A1 |
20020049495 | Kutryk et al. | Apr 2002 | A1 |
20020065546 | Machan et al. | May 2002 | A1 |
20020111543 | Penner et al. | Aug 2002 | A1 |
20020133224 | Bajgar et al. | Sep 2002 | A1 |
20020151968 | Zilla et al. | Oct 2002 | A1 |
20030018294 | Cox | Jan 2003 | A1 |
20030060782 | Bose et al. | Mar 2003 | A1 |
20030093111 | Ken et al. | May 2003 | A1 |
20030171801 | Bates | Sep 2003 | A1 |
20030229286 | Lenker | Dec 2003 | A1 |
20030229393 | Kutryk et al. | Dec 2003 | A1 |
20030233141 | Israel | Dec 2003 | A1 |
20040029268 | Colb et al. | Feb 2004 | A1 |
20040087998 | Lee et al. | May 2004 | A1 |
20040116998 | Erbel et al. | Jun 2004 | A1 |
20040138736 | Obara | Jul 2004 | A1 |
20040170685 | Carpenter et al. | Sep 2004 | A1 |
20040172121 | Eidenschink et al. | Sep 2004 | A1 |
20040186562 | Cox | Sep 2004 | A1 |
20040193206 | Gerberding et al. | Sep 2004 | A1 |
20040204754 | Kaplan et al. | Oct 2004 | A1 |
20050010281 | Yodfat et al. | Jan 2005 | A1 |
20050043787 | Kutryk et al. | Feb 2005 | A1 |
20050075716 | Yan | Apr 2005 | A1 |
20050096725 | Pomeranz et al. | May 2005 | A1 |
20050124896 | Richter et al. | Jun 2005 | A1 |
20050137677 | Rush | Jun 2005 | A1 |
20050137680 | Ortiz et al. | Jun 2005 | A1 |
20050154447 | Goshgarian | Jul 2005 | A1 |
20050154448 | Cully et al. | Jul 2005 | A1 |
20050171593 | Whirley et al. | Aug 2005 | A1 |
20050267568 | Berez et al. | Dec 2005 | A1 |
20050283220 | Gobran et al. | Dec 2005 | A1 |
20060020322 | Leynov et al. | Jan 2006 | A1 |
20060036311 | Nakayama et al. | Feb 2006 | A1 |
20060106421 | Teoh | May 2006 | A1 |
20060121080 | Lye et al. | Jun 2006 | A1 |
20060136037 | DeBeer et al. | Jun 2006 | A1 |
20060142849 | Killion et al. | Jun 2006 | A1 |
20060149355 | Mitelberg et al. | Jul 2006 | A1 |
20060155355 | Jung | Jul 2006 | A1 |
20060173530 | Das | Aug 2006 | A1 |
20060200230 | Richter | Sep 2006 | A1 |
20060200234 | Hines | Sep 2006 | A1 |
20060206199 | Churchwell et al. | Sep 2006 | A1 |
20060217799 | Mailander et al. | Sep 2006 | A1 |
20060224237 | Furst et al. | Oct 2006 | A1 |
20060259123 | Dorn | Nov 2006 | A1 |
20060265051 | Caro et al. | Nov 2006 | A1 |
20060276877 | Owens et al. | Dec 2006 | A1 |
20060276878 | Owens et al. | Dec 2006 | A1 |
20060276879 | Lye et al. | Dec 2006 | A1 |
20060287710 | Lendlein et al. | Dec 2006 | A1 |
20070038288 | Lye et al. | Feb 2007 | A1 |
20070083258 | Falotico et al. | Apr 2007 | A1 |
20070088387 | Eskridge et al. | Apr 2007 | A1 |
20070088425 | Schaeffer | Apr 2007 | A1 |
20070112415 | Bartlett | May 2007 | A1 |
20070150045 | Ferrera | Jun 2007 | A1 |
20070173921 | Wholey et al. | Jul 2007 | A1 |
20070213800 | Fierens et al. | Sep 2007 | A1 |
20070276477 | Lee et al. | Nov 2007 | A1 |
20070288083 | Hines | Dec 2007 | A1 |
20080004653 | Sherman et al. | Jan 2008 | A1 |
20090054966 | Rudakov et al. | Feb 2009 | A1 |
Number | Date | Country |
---|---|---|
0754435 | Jan 1997 | EP |
0 864 301 | Sep 1998 | EP |
0947204 | Oct 1999 | EP |
1121911 | Aug 2001 | EP |
1 129 666 | Sep 2001 | EP |
1391184 | Feb 2004 | EP |
1 470 795 | Oct 2004 | EP |
1543798 | Jun 2005 | EP |
1 550 477 | Jul 2005 | EP |
1797844 | Jun 2007 | EP |
1254623 | Oct 1989 | JP |
WO 9814137 | Apr 1998 | WO |
WO 9902092 | Jan 1999 | WO |
WO 9958084 | Nov 1999 | WO |
WO 9962432 | Dec 1999 | WO |
WO 0001308 | Jan 2000 | WO |
WO 00-06145 | Feb 2000 | WO |
WO 0047134 | Aug 2000 | WO |
WO 0051522 | Sep 2000 | WO |
WO 0056247 | Sep 2000 | WO |
WO 0166167 | Sep 2001 | WO |
WO 0187184 | Nov 2001 | WO |
WO 0193782 | Dec 2001 | WO |
WO 0103607 | Jan 2002 | WO |
WO 02-022024 | Mar 2002 | WO |
WO 02-051336 | Jul 2002 | WO |
WO 02069783 | Sep 2002 | WO |
WO 02078764 | Oct 2002 | WO |
WO 03049600 | Jun 2003 | WO |
WO 03065881 | Aug 2003 | WO |
WO 2004000379 | Dec 2003 | WO |
WO 2004-028405 | Apr 2004 | WO |
WO 2005000165 | Jan 2005 | WO |
WO 2005-065580 | Jul 2005 | WO |
WO 2005-086831 | Sep 2005 | WO |
WO 2005094725 | Oct 2005 | WO |
WO 2005094726 | Oct 2005 | WO |
WO 2006033641 | Mar 2006 | WO |
Entry |
---|
Chatterjee, S., Lactosylceramide stimulates aortic smooth muscle cell proliferation, Biochemical and Biophysical Research Communications, Dec. 16, 1991, 554-561, vol. 181, No. 2, Academic Press, Orlando, FL. |
Reul, J. et al., Long-Term Angiographic and Histopathologic Findings in Experimental Aneurysms of the Carotid Bifurcation Embolized with Platinum and Tungsten Coils, American Journal of Neuroradiology, Jan. 1997, 35-42, vol. 18. |
Number | Date | Country | |
---|---|---|---|
20070191924 A1 | Aug 2007 | US |