Method for treating graphene sheets for large-scale transfer using free-float method

Information

  • Patent Grant
  • 10017852
  • Patent Number
    10,017,852
  • Date Filed
    Thursday, April 14, 2016
    8 years ago
  • Date Issued
    Tuesday, July 10, 2018
    6 years ago
Abstract
A method for transferring a graphene sheet from a copper substrate to a functional substrate includes forming the graphene sheet on the copper substrate using chemical vapor deposition, and irradiating the graphene sheet disposed on the copper substrate with a plurality of xenon ions using broad beam irradiation to form a prepared graphene sheet. The prepared graphene sheet is resistant to forming unintentional defects induced during transfer of the prepared graphene sheet to the functional substrate. The method further includes removing the copper substrate from the prepared graphene sheet using an etchant bath, floating the prepared graphene sheet in a floating bath, submerging the functional substrate in the floating bath, and decreasing a fluid level of the floating bath to lower the prepared graphene sheet onto the functional substrate.
Description
BACKGROUND

Graphene represents a form of carbon in which the carbon atoms reside within a single atomically thin sheet or a few layered sheets (e.g., about 20 or less) of six-membered lattice rings. One known method of producing high quality, large-scale graphene sheets (i.e., 1 cm2 or larger) is through chemical vapor deposition (CVD). During CVD, a growth substrate is exposed to one or more gaseous reactants, which react to deposit a carbon film on the surface of the growth substrate, resulting in the production of a graphene sheet. After growth, the graphene sheet must then be transferred to a functional substrate suitable for the intended application of the graphene sheet. To transfer the graphene sheet to the desired substrate requires separation of the graphene sheet from the growth substrate, which may result in tearing, cracking, or other substantial defects in the graphene sheet, especially in large-scale transfers in which the risk of damage is higher. In general, two methods may be used to facilitate the transfer of the graphene sheet from the growth substrate: the supported transfer method and the free-float transfer method.


The supported transfer method typically involves the use of a support polymer, such as poly(methyl methacrylate) (PMMA) or other similar polymers. In this method, the graphene is coated with PMMA and then the underlying growth substrate is etched away. The PMMA-graphene composite is then transferred to the functional substrate and mounted. Once mounted, the composite is washed with a solvent to remove the PMMA. Because this method provides a physical support to the graphene during transfer, large-scale transfer of graphene sheets is made possible. However, the use of the polymer leaves contaminants or residues on the surface of the graphene sheet. While it is possible to remove the PMMA such that the contaminants or residues are present in small amounts, even small amounts may nevertheless impact the quality of the sheet. This impact in quality, however small, may be significant in certain applications. For example, the contaminants or residues may impact the ability to reliably perforate the graphene sheet. In addition, the solvent required to remove the polymer may limit the type of functional substrate that may be used. For example, in removing PMMA, acetone is typically used. The use of this solvent, however, may prevent the use of track-etched polycarbonate as a functional substrate.


The free-float transfer method typically requires floating the graphene in a solution. During this method, the graphene-growth substrate composite is first floated in an etching solution containing an agent that etches away the growth substrate, producing a free-floating graphene sheet. The etching solution is then washed out and changed to a water-based solution to allow the graphene to be floated onto the desired substrate. As the free-float transfer method does not involve the use of secondary polymer materials to coat the graphene sheet, the free-float transfer method is desirable over the supported transfer method due to the decreased risk of introducing contaminants or leaving residue on the graphene sheet. However, large-scale transfer of the graphene sheet is difficult using this method as the risk of tearing or otherwise damaging the sheet is higher due to the unsupported nature of the transfer method.


SUMMARY

According to some embodiments, a method for transferring a graphene sheet from a copper substrate to a functional substrate may include forming the graphene sheet on the copper substrate using chemical vapor deposition, and irradiating the graphene sheet formed on the copper substrate with a plurality of xenon ions using broad beam irradiation to form a prepared graphene sheet. The prepared graphene sheet may be resistant to forming unintentional defects induced during transfer of the prepared graphene sheet to the functional substrate. The method may further include removing the copper substrate from the prepared graphene sheet using an etchant bath, floating the prepared graphene sheet in a floating bath, submerging the functional substrate in the floating bath, and decreasing a fluid level of the floating bath to lower the prepared graphene sheet onto the functional substrate.


According to some embodiments, the graphene sheet may comprise an area of 1 cm2 or larger.


According to some embodiments, the broad beam irradiation may be collimated.


According to some embodiments, the plurality of xenon ions may be applied at a voltage in a range of about 100 V to about 1500 V.


According to some embodiments, the plurality of xenon ions may be applied at a voltage in a range of about 250 V to about 750 V.


According to some embodiments, the plurality of xenon ions may be applied at a voltage of about 500 V.


According to some embodiments, the method may further include the graphene sheet formed on the copper substrate to a temperature ranging from about 50° C. to about 100° C.


According to some embodiments, the method may further include heating the graphene sheet disposed on the copper substrate to a temperature of about 80° C.


According to some embodiments, the plurality of xenon ions may be provided at a flux of about 6.24×1011 Xe+/cm2/s to about 6.24×1014 Xe+/cm2/s.


According to some embodiments, the plurality of xenon ions may be provided at a flux of about 6.24×1012 Xe+/cm2/s to about 6.24×1013 Xe+/cm2/s.


According to some embodiments, the plurality of xenon ions may be provided at a flux of about 3.75×1013 Xe+/cm2/s.


According to some embodiments, the graphene sheet formed on the copper substrate may be irradiated with the plurality of xenon ions for a contact time resulting in a total fluence of about 6.24×1012 Xe+/cm2 to about 2.5×1013 Xe+/cm2.


According to some embodiments, the graphene sheet formed on the copper substrate may be irradiated with the plurality of xenon ions for a contact time resulting in a total fluence of about 1.25×1013 Xe+/cm2.


According to some embodiments, a method for transferring a graphene sheet from a copper substrate to a functional substrate may include forming the graphene sheet on the copper substrate using chemical vapor deposition and irradiating the graphene sheet formed on the copper substrate with a plurality of neon ions using broad beam irradiation to form a prepared graphene sheet. The prepared graphene sheet may be resistant to forming unintentional defects induced during transfer of the prepared graphene sheet to the functional substrate. The method may further include removing the copper substrate from the prepared graphene sheet using an etchant bath, floating the prepared graphene sheet in a floating bath, submerging the functional substrate in the floating bath, and decreasing a fluid level of the floating bath to lower the prepared graphene sheet onto the functional substrate.


According to some embodiments, the method may further include heating the graphene sheet formed on the copper substrate to a temperature of about 50° C. to about 100° C.


According to some embodiments, the graphene sheet formed on the copper substrate may be irradiated with the plurality of neon ions for a contact time resulting in a total fluence of about 6.24×1012 ions/cm2 to about 7.5×1013 ions/cm2.


According to some embodiments, the graphene sheet formed on the copper substrate may be irradiated with the plurality of neon ions for a contact time resulting in a total fluence of up to 2×1014 ions/cm2.


According to some embodiments, a method for transferring a graphene sheet from a growth substrate to a functional substrate may include forming the graphene sheet on the growth substrate and irradiating the graphene sheet formed on the growth substrate with a plurality of ions to form a prepared graphene sheet. The prepared graphene sheet may be resistant to forming unintentional defects induced during transfer of the prepared graphene sheet to the functional substrate. The method may further include removing the growth substrate from the prepared graphene sheet using an etchant bath, floating the prepared graphene sheet in a floating bath, submerging the functional substrate in the floating bath, and decreasing a fluid level of the floating bath to lower the prepared graphene sheet onto the functional substrate.


According to some embodiments, the graphene sheet may comprise an area of 1 cm2 or larger.


According to some embodiments, the growth substrate may be a copper substrate.


According to some embodiments, the growth substrate may be a nickel substrate.


According to some embodiments, the graphene sheet may be formed on the copper substrate using chemical vapor deposition.


According to some embodiments, the graphene sheet may be formed on the nickel substrate using chemical vapor deposition.


According to some embodiments, the plurality of ions may comprise noble gas ions.


According to some embodiments, the noble gas ions may comprise xenon ions.


According to some embodiments, the noble gas ions may comprise neon ions.


According to some embodiments, the noble gas ions may comprise argon ions.


According to some embodiments, the plurality of ions may be applied to the graphene sheet formed on the growth substrate using broad beam irradiation.


According to some embodiments, the broad beam irradiation may be collimated.


According to some embodiments, the plurality of ions may be applied to the graphene sheet formed on the growth substrate at a voltage of about 100 V to about 1500 V.


According to some embodiments, the plurality of ions may be applied at a flux of about 1 nA/mm2 to about 1000 nA/mm2.


According to some embodiments, the plurality of ions may be applied at a flux of about 10 nA/mm2 to about 100 nA/mm2.


According to some embodiments, the plurality of ions may be applied at a flux of about 40 nA/mm2 to about 80 nA/mm2.


According to some embodiments, the plurality of ions may be applied at a flux of about 60 nA/mm2.


According to some embodiments, the graphene sheet formed on the growth substrate may be irradiated with the plurality of ions for a contact time resulting in a total fluence of about 10 nAs/mm2 to about 120 nAs/mm2.


According to some embodiments, the graphene sheet formed on the growth substrate may be irradiated with the plurality of ions for a contact time resulting in a total fluence of about 10 nAs/mm2 to about 40 nAs/mm2.


According to some embodiments, the graphene sheet formed on the growth substrate may be irradiated with the plurality of ions for a contact time resulting in a total fluence of about 20 nAs/mm2.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1A is a schematic, perspective view of a growth substrate used in the formation of a graphene sheet according to an embodiment of the present invention.



FIG. 1B is a schematic, perspective view of the graphene sheet formed on the growth substrate of FIG. 1A.



FIG. 2 is a schematic view of a transfer preparation apparatus to prepare the graphene sheet of FIG. 1B for free-float transfer.



FIG. 3A is a schematic, perspective view of an etching step of the growth substrate from the prepared graphene sheet of FIG. 2 using a free-float transfer method.



FIG. 3B is a schematic, perspective view of a transfer step of the prepared graphene sheet of FIG. 2 to a functional substrate using the free-float transfer method.



FIG. 4 shows a large-scale graphene sheet prepared using the transfer preparation apparatus of FIG. 2 after removal of the growth substrate.



FIG. 5 shows the large-scale graphene sheet of FIG. 4 after transfer to a functional substrate using the free-float transfer method.



FIG. 6 is a scanning electron microscope (SEM) micrograph of a graphene sheet transferred to a functional substrate using the free-float transfer method.



FIG. 7 is a detailed view of the SEM micrograph of FIG. 6.





DETAILED DESCRIPTION

Some embodiments provide a system and method for treating graphene sheet that has been grown on a growth substrate before the growth substrate is removed and the graphene sheet transferred to a functional substrate using the free-float transfer method. The treatment provides a pristine (e.g., substantially residual/contaminant-free) graphene sheet having little to no unintended defects, which is capable of being transferred from the growth substrate with reduced risk of failure (e.g., little risk of tearing, cracking, or forming other undesirable defects) in transferring the sheet to a functional substrate during the free-float transfer method. In some embodiments, the graphene sheet is modified, and thus prepared for transfer, through an application of energy to the graphene sheet while it is disposed on the growth substrate. The energetic application may be in the form of a broad beam ion source configured to irradiate the graphene sheet with ions (e.g., group 18 element ions) such that the graphene sheet is prepared for reliable, large-scale transfer while disposed on the growth substrate. Thus, some of the systems and methods described herein eliminate the need of secondary coating materials (e.g., polymers) to aid in the transfer of the graphene sheet to the functional substrate, thus eliminating the risk of lowering the quality of the graphene sheet through contaminants introduced by the use of secondary coating materials. Accordingly, the transfer preparation method of some of the embodiments allows for the reliable transfer of high quality graphene sheets on a large-scale (i.e., 1 cm2 or larger) using the free-float transfer method.



FIGS. 1A-1B illustrate a method for growing a large-scale graphene or graphene-based sheet onto a growth substrate according to some embodiments. FIG. 1A shows a first step of preparing a growth substrate 10 for use in the production of a graphene sheet. The growth substrate 10 may be any growth substrate appropriate for the production of graphene. For example, in some embodiments, the growth substrate 10 is a metal catalyst, such as copper or nickel. As shown in FIG. 1A, the growth substrate 10 is a copper substrate, which is prepared by cleaning the surface with a solvent and annealing the substrate 10 at a high temperature.


After preparation of the growth substrate 10, graphene is grown on both the upper and bottom surface of the growth substrate 10, which may be accomplished through chemical vapor deposition (CVD) by exposing the growth substrate 10 to gaseous reactants until graphene is formed. The CVD process results in graphene sheets being synthesized on both a bottom surface of the growth substrate 10 and an upper surface of the growth substrate 10. As shown in FIG. 1B, the graphene sheet synthesized on the bottom surface is removed, while the graphene sheet 20 synthesized on the upper surface is utilized for transfer to a functional substrate. After growth, the graphene sheet 20 may have carbonaceous material on its surface which, in some cases, may be the result of the growth of the graphene sheet 20 on the copper substrate. The carbonaceous material may be a material such as amorphous carbon, one or more hydrocarbons, oxygen-containing carbon compounds, nitrogen-containing carbon compounds, or combinations thereof. In the embodiment shown in FIG. 1B, the graphene sheet 20 is a large-scale sheet having a cross-sectional area in the planar direction of at least 1 cm2 or greater.


Once the graphene sheet 20 has been deposited onto the upper surface of the growth substrate 10, the graphene sheet 20 may then be transferred to a substrate for a desired application. As shown in FIG. 2, before the graphene sheet 20 is removed from the growth substrate 10, the graphene sheet 20 is prepared for transfer using a transfer preparation apparatus 100. The transfer preparation apparatus 100 is configured to impart energy to the graphene sheet 20 and growth substrate 10 structure. For example, the transfer preparation apparatus 100 may be configured to impart ion irradiation to the graphene sheet 20 and growth substrate 10. As shown in FIG. 2, the transfer preparation apparatus 100 may be an ion source configured to supply a plurality of ions 50 to the graphene sheet 20.


In certain embodiments, the transfer preparation apparatus 100 may be configured to provide broad beam ion irradiation to the graphene sheet 20 and the growth substrate 10. The broad beam ion source may be collimated or substantially collimated (e.g., five degrees from normal). The plurality of ions 50 may comprise of ions that are singly charged or multiply charged. In some embodiments, the plurality of ions 50 may be noble gas ions, such as ions of an element from Group 18 of the periodic table. In some embodiments, the plurality of ions 50 may be organic ions or organometallic ions. The organic or organometallic ions may have an aromatic component. In addition, the molecular mass of the organic or organometallic ions may range from 75 to 200 or 90 to 200. In some embodiments, the plurality of ions 50 may comprise Ne+ ions, Ar+ ions, tropylium ions, and/or ferrocenium ions. In certain embodiments, the plurality of ions 50 comprises Xe+ ions.


The ion source may be configured to supply the plurality of ions 50 at a voltage in a range of about 100 V to about 1500 V. In some embodiments, the plurality of ions 50 may be applied at a voltage in a range of about 250 V to about 750 V. In certain embodiments, the plurality of ions 50 (e.g., Xe+ ions) may be applied at a voltage of about 500 V.


During the transfer preparation process, the graphene sheet 20 and the growth substrate 10 may be heated to a temperature ranging from about 50° C. to about 100° C. In some embodiments, the graphene sheet 20 and the growth substrate 10 may be heated to a temperature of about 80° C. In other embodiments, the graphene sheet 20 and the growth substrate 10 may be kept at room temperature. In addition, the graphene sheet 20 and the growth substrate 10 may be exposed to a pressure of less than 5×10−7 Torr. In some embodiments, the graphene sheet 20 and the growth substrate 10 may be exposed to a pressure ranging from 1×10−7 Torr to 5×10−6 Torr. In some embodiments, this process may be set to occur over several hours or overnight.


The ion source may be configured to provide the plurality of ions 50 at a flux of about 1 nA/mm2 (6.24×1011 ions/cm2/s) to about 1000 nA/mm2 (6.24×1014 ions/cm2/s). In some embodiments, the plurality of ions 50 is provided at a flux of about 10 nA/mm2 (6.24×1012 ions/cm2/s) to about 100 nA/mm2 (6.24×1013 ions/cm2/s) In certain embodiments, the plurality of ions 50 is provided at a flux of about 40 nA/mm2 (2.5×1013 ions/cm2/s) to about 80 nA/mm2 (5.0×1013 ions/cm2/s). In certain embodiments, the plurality of ions 50 is provided at a flux of about 60 nA/mm2 (3.75×1013 ions/cm2/s). In embodiments where the plurality of ions 50 comprises Xe+ ions, the plurality of ions 50 may be provided at a flux of about 6.24×1011 Xe+/cm2/s to about 6.24×1014 Xe+/cm2/s. In other embodiments, the plurality of ions 50 comprises Xe+ ions provided at a flux of about 6.24×1012 Xe+/cm2/s to about 6.24×1013 Xe+/cm2/s. In other embodiments, the plurality of ions 50 comprises Xe+ ions provided at a flux of about 3.75×1013 Xe+/cm2/s.


The graphene sheet 20 and the growth substrate 10 may be exposed to the ion source for a contact time resulting in a total fluence of about 10 nAs/mm2 (6.24×1012 ions/cm2) to about 40 nAs/mm2 (2.5×1013 ions/cm2). In certain embodiments, the graphene sheet 20 and the growth substrate 10 are exposed for under a second such that the total fluence is 20 nAs/mm2 (1.25×1013 ions/cm2). In embodiments where the plurality of ions comprises Xe+ ions, the graphene sheet 20 and the growth substrate 10 may be exposed for a contact time that results in a total fluence of about 10 nAs/mm2 to about 40 nAs/mm (or about 6.24×1012 Xe+/cm2 to about 2.5×1013 Xe+/cm2). In certain embodiments where the plurality of ions 50 comprises Xe+ ions, the total exposure time results in a total fluence of about 1.25×1013 Xe+/cm2. The upper limit of total fluence for the transfer preparation process may increase as the atomic number of the plurality of ions 50 decreases. In some embodiments, the upper limit of the total fluence may be about 120 nAs/mm2. In other embodiments, the upper limit of the total fluence may be about 500 nAs/mm2. In some embodiments, the upper limit of the total fluence may be about 1000 nAs/mm2. For example, in embodiments where the plurality of ions comprises Ne+ ions, the graphene sheet 20 and the growth substrate 10 may be exposed for a contact time that results in a total fluence of about 10 nAs/mm2 (6.24×1012 ions/cm2) to about 120 nAs/mm2 (7.5×1013 ions/cm2/s). In some embodiments, the graphene sheet 20 and the growth substrate 10 may be exposed to a plurality of neon ions for a contact time that results in a total fluence of about about 10 nAs/mm2 to about 500 nAs/mm2 In other embodiments, the graphene sheet 20 and the growth substrate 10 may be exposed to a plurality of neon ions for a contact time that results in a total fluence of about about 10 nAs/mm2 to about 1000 nAs/mm2. In yet other embodiments, the graphene sheet 20 and the growth substrate 30 may be exposed to a plurality of neon ions for a contact time that results in a total fluence of up to 2×1014 ions/cm2.


After the above treatment, the graphene sheet 20 and the growth substrate 10 may be exposed to about 1 atm of N2 as a final step in the process before transferring of the graphene sheet 20 to the functional substrate. The result of the preparation process is, in effect, a “toughened” graphene sheet 20 that may be reliably transferred to a functional substrate using the unsupported free-float transfer method while being resistant to forming or inducing unintentional defects (tears, cracks, wrinkles, unintentionally-created pores) in the graphene sheet 20 during the free-float transfer process. The treatment thus provides a toughened graphene sheet 20 that is capable of providing a high coverage area (e.g., 99% or more of the functional substrate is covered by the graphene sheet) over the functional substrate and a clean surface for effective use of other treatment processes (e.g., perforating processes). While not being restricted to any particular theory for the mechanism that prepares or toughens the graphene sheet 20 for transfer, the toughening may be facilitated by the presence of the carbonaceous material and the interaction between the graphene sheet 20 and the copper growth substrate 10 interface. The ion beam irradiation may provide sufficient energy to the carbonaceous material to reform the graphene sheet 20 while on the copper substrate 10 to a pristine layer due to the sputtering of the carbon atoms present in and/or on the surface of the graphene sheet 20.


Once the graphene sheet 20 has been prepared using the transfer preparation apparatus 100, the graphene sheet 20 and the growth substrate 10 composite is placed in an etchant bath 30, as shown in FIG. 3A. The etchant bath 30 allows the growth substrate 10 to be etched away such that a clean graphene sheet 20 remains. The etchant bath 30 may be any appropriate etchant capable of etching the growth substrate 10 from the graphene sheet 20. For example, for copper-based growth substrates, the etchant bath 30 may include iron chloride, iron nitrate, and/or ammonium persulfate. In some embodiments, the graphene sheet 20 and the growth substrate 10 composite may be placed in a second etchant bath 30, which may include the same or a different etchant, to further aid in the complete etching of the growth substrate 10 from the graphene sheet 20.


As shown in FIG. 3B, the etchant bath 30 is then gradually removed and replaced with a floating bath 35 that may serve as a floating mechanism to transfer the graphene sheet 20 to a functional substrate 40. The floating bath 35 may be a water-based solution, such as water (e.g., deionized water) or a mixture of water and a solvent (e.g., isopropyl alcohol). For example, in some embodiments, the etchant bath 30 may be removed by the gradual introduction of deionized water, which may then be additionally introduced as a mixture of deionized water and isopropyl alcohol. As the graphene sheet 20 floats in the floating bath 35, the functional substrate 40 may be introduced below a bottom surface of the graphene sheet 20, as shown in FIG. 3B. In some embodiments, a floating frame (not shown) may be disposed around the graphene sheet 20 during this process to provide stability to the graphene sheet 20 as it floats in the solution and then applied to the functional substrate 40. The floating bath 35 is then gradually removed such that the fluid level decreases to lower the graphene sheet 20 onto the substrate 40. One or more additional graphene sheets 20 that have been prepared for transfer using the transfer preparation apparatus 100 may be stacked onto the functional substrate 40 as needed using the free-float transfer method.



FIGS. 4 and 5 show images of a graphene sheet that was prepared for transfer by an embodiment of a transfer preparation apparatus configured to supply collimated broad beam ion irradiation using Xe+ ions. FIG. 4 shows a prepared graphene sheet after removal of the copper growth substrate by chemical etching. The prepared graphene sheet shown in FIG. 4 is large-scale sheet having dimensions approximately 9 cm by 14 cm (or about 126 cm2 extended planar area). The black circular markings shown in FIG. 4 delineate the boundaries of the graphene sheet.



FIG. 5 shows a prepared graphene sheet like that shown in FIG. 4 after it has been transferred to a functional substrate (a polymer membrane substrate in the embodiment shown in FIG. 5). Like FIG. 4, the prepared graphene sheet is a large-scale sheet having dimensions approximately 9 cm by 14 cm. As shown in FIG. 5, the graphene sheet and functional substrate composite shows a graphene sheet that is free of visible, unintentional defects. While some defects may occur along the edges due to collisions with the walls of the etchant bath tank while the sheet was free-floating, the prepared graphene sheet does not show any visible defects (e.g., visible tears, crack, or wrinkles) within the main body of the sheet even after the free-float and lowering of the graphene sheet onto the functional substrate without the use of secondary polymer support materials. This indicates that the preparation process of the graphene sheet using the transfer preparation apparatus results in a graphene sheet that is toughened to be resistant to unintentional defects that may arise during the free-float transfer process.



FIGS. 6 and 7 show SEM images of a prepared graphene sheet that was prepared for transfer by an embodiment of a transfer preparation apparatus configured to supply collimated broad beam ion irradiation using Xe+ ions. After preparation, the prepared graphene sheet was transferred to a functional substrate in the form of a track-etched polymer substrate having a plurality of pores using the free-float transfer method as described above. In the embodiment shown in the figures, the plurality of pores has a nominal pore size ranging from 350 nm to 450 nm. The total field of view shown in FIG. 6 is approximately 0.036 mm2 (about 225 μm×160 μm), while FIG. 7 shows a detailed area of the top-left quadrant of the graphene sheet shown in FIG. 6.


The pores present in the polymer substrate that are covered by the prepared graphene sheet are shown as medium gray in FIGS. 6 and 7. Pores that are uncovered due to unintentional defects present in the prepared graphene sheet due to the transfer process are shown in black. As shown in FIGS. 6 and 7, greater than 99% of the substrate pores are covered by the prepared graphene sheet indicating high coverage area of the prepared graphene sheet over the polymer substrate.


Some embodiments have been described in detail with particular reference to preferred embodiments thereof, but it will be understood by those skilled in the art that variations and modifications may be effected within the spirit and scope of the claims.

Claims
  • 1. A method for transferring a graphene sheet from a copper substrate to a functional substrate comprising: forming the graphene sheet on the copper substrate using chemical vapor deposition;irradiating the graphene sheet formed on the copper substrate with a plurality of xenon ions using broad beam irradiation to form a prepared graphene sheet;removing the copper substrate from the prepared graphene sheet using an etchant bath;floating the prepared graphene sheet in a floating bath;submerging the functional substrate in the floating bath; anddecreasing a fluid level of the floating bath to lower the prepared graphene sheet onto the functional substrate.
  • 2. The method of claim 1, wherein the graphene sheet comprises an area of 1 cm2 or larger.
  • 3. The method of claim 1, wherein the broad beam irradiation is collimated.
  • 4. The method of claim 1, wherein the plurality of xenon ions is applied at a voltage in a range of about 100 V to about 1500 V.
  • 5. The method of claim 1, wherein the plurality of xenon ions is applied at a voltage in a range of about 250 V to about 750 V.
  • 6. The method of claim 1, wherein the plurality of xenon ions is applied at a voltage of about 500 V.
  • 7. The method of claim 1, further comprising heating the graphene sheet formed on the copper substrate to a temperature ranging from about 50° C. to about 100° C.
  • 8. The method of claim 1, further comprising heating the graphene sheet disposed on the copper substrate to a temperature of about 80° C.
  • 9. The method of claim 1, wherein the plurality of xenon ions is provided at a flux of about 6.24×1011 Xe−1/cm2/s to about 6.24×1014 Xe+/cm2/s.
  • 10. The method of claim 1, wherein the plurality of xenon ions is provided at a flux of about 6.24×1012 Xe+/cm2/s to about 6.24×1013 Xe+/cm2/s.
  • 11. The method of claim 1, wherein the plurality of xenon ions is provided at a flux of about 3.75×1013 Xe+/cm2/s.
  • 12. The method of claim 1, wherein the graphene sheet formed on the copper substrate is irradiated with the plurality of xenon ions for a contact time resulting in a total fluence of about 6.24×1012 Xe+/cm2 to about 2.5×1013 Xe+/cm2.
  • 13. The method of claim 1, wherein the graphene sheet formed on the copper substrate is irradiated with the plurality of xenon ions for a contact time resulting in a total fluence of about 1.25×1013 Xe+/cm2.
  • 14. A method for transferring a graphene sheet from a copper substrate to a functional substrate comprising: forming the graphene sheet on the copper substrate using chemical vapor deposition;irradiating the graphene sheet formed on the copper substrate with a plurality of neon ions using broad beam irradiation to form a prepared graphene sheet;removing the copper substrate from the prepared graphene sheet using an etchant bath;floating the prepared graphene sheet in a floating bath;submerging the functional substrate in the floating bath; anddecreasing a fluid level of the floating bath to lower the prepared graphene sheet onto the functional substrate.
  • 15. The method of claim 14, further comprising heating the graphene sheet formed on the copper substrate to a temperature of about 50° C. to about 100° C.
  • 16. The method of claim 14, wherein the graphene sheet formed on the copper substrate is irradiated with the plurality of neon ions for a contact time resulting in a total fluence of about 6.24×1012 ions/cm2 to about 7.5×1013 ions/cm2.
  • 17. The method of claim 14, wherein the graphene sheet formed on the copper substrate is irradiated with the plurality of neon ions for a contact time resulting in a total fluence of up to 2×1014 ions/cm2.
  • 18. A method for transferring a graphene sheet from a growth substrate to a functional substrate comprising: forming the graphene sheet on the growth substrate;irradiating the graphene sheet formed on the growth substrate with a plurality of ions to form a prepared graphene sheet;removing the growth substrate from the prepared graphene sheet using an etchant bath;floating the prepared graphene sheet in a floating bath;submerging the functional substrate in the floating bath; anddecreasing a fluid level of the floating bath to lower the prepared graphene sheet onto the functional substrate.
  • 19. The method of claim 18, wherein the graphene sheet comprises an area of 1 cm2 or larger.
  • 20. The method of claim 18, wherein the growth substrate is a copper substrate.
  • 21. The method of claim 18, wherein the growth substrate is a nickel substrate.
  • 22. The method of claim 20, wherein the graphene sheet is formed on the copper substrate using chemical vapor deposition.
  • 23. The method of claim 21, wherein the graphene sheet is formed on the nickel substrate using chemical vapor deposition.
  • 24. The method of claim 18, wherein the plurality of ions comprises noble gas ions.
  • 25. The method of claim 24, wherein the noble gas ions comprise xenon ions.
  • 26. The method of claim 24, wherein the noble gas ions comprise neon ions.
  • 27. The method of claim 24, wherein the noble gas ions comprise argon ions.
  • 28. The method of claim 18, wherein the plurality of ions is applied to the graphene sheet formed on the growth substrate using broad beam irradiation.
  • 29. The method of claim 28, wherein the broad beam irradiation is collimated.
  • 30. The method of claim 18, wherein the plurality of ions is applied to the graphene sheet formed on the growth substrate at a voltage of about 100 V to about 1500 V.
  • 31. The method of claim 18, wherein the plurality of ions is applied at a flux of about 1 nA/mm2 to about 1000 nA/mm2.
  • 32. The method of claim 18, wherein the plurality of ions is applied at a flux of about 10 nA/mm2 to about 100 nA/mm2.
  • 33. The method of claim 18, wherein the plurality of ions is applied at a flux of about 40 nA/mm2 to about 80 nA/mm2.
  • 34. The method of claim 18, wherein the plurality of ions is applied at a flux of about 60 nAs/mm2.
  • 35. The method of claim 18, wherein the graphene sheet formed on the growth substrate is irradiated with the plurality of ions for a contact time resulting in a total fluence of about 10 nAs/mm2 to about 120 nAs/mm2.
  • 36. The method of claim 18, wherein the graphene sheet formed on the growth substrate is irradiated with the plurality of ions for a contact time resulting in a total fluence of about 10 nAs/mm2 to about 40 nAs/mm2.
  • 37. The method of claim 18, wherein the graphene sheet formed on the growth substrate is irradiated with the plurality of ions for a contact time resulting in a total fluence of about 20 nAs/mm2.
US Referenced Citations (611)
Number Name Date Kind
2187417 Doble Jan 1940 A
3024153 Kennedy Mar 1962 A
3303085 Price et al. Feb 1967 A
3501831 Gordon Mar 1970 A
3593854 Swank Jul 1971 A
3701433 Krakauer et al. Oct 1972 A
3802972 Fleischer et al. Apr 1974 A
4073732 Lauer et al. Feb 1978 A
4159954 Gangemi Jul 1979 A
4162220 Servas Jul 1979 A
4277344 Cadotte Jul 1981 A
4303530 Shah et al. Dec 1981 A
4743371 Servas et al. May 1988 A
4855058 Holland et al. Aug 1989 A
4880440 Perrin Nov 1989 A
4889626 Browne Dec 1989 A
4891134 Vcelka Jan 1990 A
4925560 Sorrick May 1990 A
4935207 Stanbro et al. Jun 1990 A
4976858 Kadoya Dec 1990 A
5052444 Messerly et al. Oct 1991 A
5080770 Culkin Jan 1992 A
5082476 Kahlbaugh et al. Jan 1992 A
5156628 Kranz Oct 1992 A
5182111 Aebischer et al. Jan 1993 A
5185086 Kaali et al. Feb 1993 A
5201767 Caldarise et al. Apr 1993 A
5244981 Seidner et al. Sep 1993 A
5314492 Hamilton et al. May 1994 A
5314960 Spinelli et al. May 1994 A
5314961 Anton et al. May 1994 A
5331067 Seidner et al. Jul 1994 A
5344454 Clarke et al. Sep 1994 A
5371147 Spinelli et al. Dec 1994 A
5425858 Farmer Jun 1995 A
5480449 Hamilton et al. Jan 1996 A
5514181 Light et al. May 1996 A
5516522 Peyman et al. May 1996 A
5549697 Caldarise Aug 1996 A
5562944 Kafrawy Oct 1996 A
5565210 Rosenthal et al. Oct 1996 A
5580530 Kowatsch et al. Dec 1996 A
5595621 Light et al. Jan 1997 A
5636437 Kaschmitter et al. Jun 1997 A
5639275 Baetge et al. Jun 1997 A
5641323 Caldarise Jun 1997 A
5658334 Caldarise et al. Aug 1997 A
5662158 Caldarise Sep 1997 A
5665118 LaSalle et al. Sep 1997 A
5671897 Ogg et al. Sep 1997 A
5679232 Fedor et al. Oct 1997 A
5679249 Fendya et al. Oct 1997 A
5687788 Caldarise et al. Nov 1997 A
5700477 Rosenthal et al. Dec 1997 A
5713410 LaSalle et al. Feb 1998 A
5716412 DeCarlo et al. Feb 1998 A
5716414 Caldarise Feb 1998 A
5725586 Sommerich Mar 1998 A
5731360 Pekala et al. Mar 1998 A
5733503 Kowatsch et al. Mar 1998 A
5746272 Mastrorio et al. May 1998 A
5782286 Sommerich Jul 1998 A
5782289 Mastrorio et al. Jul 1998 A
5788916 Caldarise Aug 1998 A
5800828 Dionne et al. Sep 1998 A
5808312 Fukuda Sep 1998 A
5868727 Barr et al. Feb 1999 A
5897592 Caldarise et al. Apr 1999 A
5902762 Mercuri et al. May 1999 A
5906234 Mastrorio et al. May 1999 A
5910172 Penenberg Jun 1999 A
5910173 DeCarlo et al. Jun 1999 A
5913998 Butler et al. Jun 1999 A
5922304 Unger Jul 1999 A
5925247 Huebbel Jul 1999 A
5932185 Pekala et al. Aug 1999 A
5935084 Southworth Aug 1999 A
5935172 Ochoa et al. Aug 1999 A
5954937 Farmer Sep 1999 A
5974973 Tittgemeyer Nov 1999 A
5976555 Liu et al. Nov 1999 A
5980718 Van Konynenburg et al. Nov 1999 A
6008431 Caldarise et al. Dec 1999 A
6013080 Khalili Jan 2000 A
6022509 Matthews et al. Feb 2000 A
6052608 Young et al. Apr 2000 A
6080393 Liu et al. Jun 2000 A
6093209 Sanders Jul 2000 A
6139585 Li Oct 2000 A
6152882 Prutchi Nov 2000 A
6156323 Verdicchio et al. Dec 2000 A
6193956 Liu et al. Feb 2001 B1
6209621 Treacy Apr 2001 B1
6213124 Butterworth Apr 2001 B1
6228123 Dezzani May 2001 B1
6264699 Noiles et al. Jul 2001 B1
6292704 Malonek et al. Sep 2001 B1
6309532 Tran et al. Oct 2001 B1
6346187 Tran et al. Feb 2002 B1
6375014 Garcera et al. Apr 2002 B1
6426214 Butler et al. Jul 2002 B1
6454095 Brisebois et al. Sep 2002 B1
6455115 Demeyer Sep 2002 B1
6461622 Liu et al. Oct 2002 B2
6462935 Shiue et al. Oct 2002 B1
6521865 Jones et al. Feb 2003 B1
6532386 Sun et al. Mar 2003 B2
6544316 Baker et al. Apr 2003 B2
6580598 Shiue et al. Jun 2003 B2
6654229 Yanagisawa et al. Nov 2003 B2
6659298 Wong Dec 2003 B2
6660150 Conlan et al. Dec 2003 B2
6661643 Shiue et al. Dec 2003 B2
6686437 Buchman et al. Feb 2004 B2
6692627 Russell et al. Feb 2004 B1
6695880 Roffman et al. Feb 2004 B1
6699684 Ho et al. Mar 2004 B2
6719740 Burnett et al. Apr 2004 B2
6905612 Dorian et al. Jun 2005 B2
6924190 Dennison Aug 2005 B2
7014829 Yanagisawa et al. Mar 2006 B2
7071406 Smalley et al. Jul 2006 B2
7092753 Darvish et al. Aug 2006 B2
7138042 Tran et al. Nov 2006 B2
7171263 Darvish et al. Jan 2007 B2
7175783 Curran Feb 2007 B2
7179419 Lin et al. Feb 2007 B2
7190997 Darvish et al. Mar 2007 B1
7267753 Anex et al. Sep 2007 B2
7306768 Chiga Dec 2007 B2
7357255 Ginsberg et al. Apr 2008 B2
7374677 McLaughlin et al. May 2008 B2
7381707 Lin et al. Jun 2008 B2
7382601 Yoshimitsu Jun 2008 B2
7434692 Ginsberg et al. Oct 2008 B2
7452547 Lambino et al. Nov 2008 B2
7459121 Liang et al. Dec 2008 B2
7460907 Darvish et al. Dec 2008 B1
7476222 Sun et al. Jan 2009 B2
7477939 Sun et al. Jan 2009 B2
7477940 Sun et al. Jan 2009 B2
7477941 Sun et al. Jan 2009 B2
7479133 Sun et al. Jan 2009 B2
7505250 Cho et al. Mar 2009 B2
7531094 McLaughlin et al. May 2009 B2
7600567 Christopher et al. Oct 2009 B2
7631764 Ginsberg et al. Dec 2009 B2
7650805 Nauseda et al. Jan 2010 B2
7674477 Schmid et al. Mar 2010 B1
7706128 Bourcier Apr 2010 B2
7761809 Bukovec et al. Jul 2010 B2
7786086 Reches et al. Aug 2010 B2
7866475 Doskoczynski et al. Jan 2011 B2
7875293 Shults et al. Jan 2011 B2
7935331 Lin May 2011 B2
7935416 Yang et al. May 2011 B2
7943167 Kulkarni et al. May 2011 B2
7960708 Wolfe et al. Jun 2011 B2
7998246 Liu et al. Aug 2011 B2
8109893 Lande Feb 2012 B2
8147599 McAlister Apr 2012 B2
8262943 Meng et al. Sep 2012 B2
8278106 Martinson et al. Oct 2012 B2
8308702 Batchvarova et al. Nov 2012 B2
8316865 Ochs et al. Nov 2012 B2
8329476 Pitkanen et al. Dec 2012 B2
8354296 Dimitrakopoulos et al. Jan 2013 B2
8361321 Stetson et al. Jan 2013 B2
8449504 Carter et al. May 2013 B2
8475689 Sun et al. Jul 2013 B2
8506807 Lee et al. Aug 2013 B2
8512669 Hauck Aug 2013 B2
8513324 Scales et al. Aug 2013 B2
8535726 Dai et al. Sep 2013 B2
8592291 Shi Nov 2013 B2
8617411 Singh Dec 2013 B2
8666471 Rogers et al. Mar 2014 B2
8686249 Whitaker et al. Apr 2014 B1
8697230 Ago Apr 2014 B2
8698481 Lieber et al. Apr 2014 B2
8715329 Robinson et al. May 2014 B2
8721074 Pugh et al. May 2014 B2
8734421 Sun et al. May 2014 B2
8744567 Fassih et al. Jun 2014 B2
8751015 Frewin et al. Jun 2014 B2
8753468 Caldwell Jun 2014 B2
8759153 Elian et al. Jun 2014 B2
8808257 Pugh et al. Aug 2014 B2
8828211 Garaj et al. Sep 2014 B2
8840552 Brauker et al. Sep 2014 B2
8857983 Pugh et al. Oct 2014 B2
8861821 Osumi Oct 2014 B2
8894201 Pugh et al. Nov 2014 B2
8940552 Pugh et al. Jan 2015 B2
8950862 Pugh et al. Feb 2015 B2
8974055 Pugh et al. Mar 2015 B2
8975121 Pugh et al. Mar 2015 B2
8979978 Miller et al. Mar 2015 B2
8986932 Turner et al. Mar 2015 B2
8993234 Turner et al. Mar 2015 B2
8993327 McKnight et al. Mar 2015 B2
9014639 Pugh et al. Apr 2015 B2
9017937 Turner et al. Apr 2015 B1
9023220 Graphenea May 2015 B2
9028663 Stetson et al. May 2015 B2
9035282 Dimitrakopoulos May 2015 B2
9045847 Batchvarova et al. Jun 2015 B2
9050452 Sun et al. Jun 2015 B2
9052533 Pugh et al. Jun 2015 B2
9056282 Miller et al. Jun 2015 B2
9062180 Scales et al. Jun 2015 B2
9067811 Bennett et al. Jun 2015 B1
9070615 Elian et al. Jun 2015 B2
9075009 Kim Jul 2015 B2
9080267 Batchvarova et al. Jul 2015 B2
9095823 Fleming Aug 2015 B2
9096050 Bedell Aug 2015 B2
9096437 Tour Aug 2015 B2
9102111 Pugh et al. Aug 2015 B2
9108158 Yu et al. Aug 2015 B2
9110310 Pugh et al. Aug 2015 B2
9125715 Pugh et al. Sep 2015 B2
9134546 Pugh et al. Sep 2015 B2
9170646 Toner et al. Oct 2015 B2
9185486 Pugh Nov 2015 B2
9193587 Bennett Nov 2015 B2
9195075 Pugh et al. Nov 2015 B2
9225375 Pugh et al. Dec 2015 B2
9388048 Zhou Jul 2016 B1
9425709 Hayashi et al. Aug 2016 B2
9437370 Chen et al. Sep 2016 B2
9463421 Fleming Oct 2016 B2
9505192 Stoltenberg et al. Nov 2016 B2
9567224 Bedworth Feb 2017 B2
9572918 Bachmann et al. Feb 2017 B2
9592475 Stoltenberg et al. Mar 2017 B2
9610546 Sinton et al. Apr 2017 B2
9708640 Wu et al. Jul 2017 B2
9713794 Choi et al. Jul 2017 B2
9870895 Bedworth Jan 2018 B2
20010036556 Jen Nov 2001 A1
20010047157 Burnett et al. Nov 2001 A1
20010055597 Liu et al. Dec 2001 A1
20020079004 Sato et al. Jun 2002 A1
20020079054 Nakatani Jun 2002 A1
20020104435 Baker et al. Aug 2002 A1
20020115957 Sun et al. Aug 2002 A1
20020117659 Lieber et al. Aug 2002 A1
20020183682 Darvish et al. Dec 2002 A1
20020183686 Darvish et al. Dec 2002 A1
20030052354 Dennison Mar 2003 A1
20030134281 Evans Jul 2003 A1
20030138777 Evans Jul 2003 A1
20030159985 Siwy et al. Aug 2003 A1
20040035787 Tanga et al. Feb 2004 A1
20040061253 Kleinmeyer et al. Apr 2004 A1
20040063097 Evans Apr 2004 A1
20040099324 Fraser et al. May 2004 A1
20040111968 Day et al. Jun 2004 A1
20040112865 McCullough et al. Jun 2004 A1
20040121488 Chang et al. Jun 2004 A1
20040142463 Walker et al. Jul 2004 A1
20040185730 Lambino et al. Sep 2004 A1
20040193043 Duchon et al. Sep 2004 A1
20040199243 Yodfat Oct 2004 A1
20040217036 Ginsberg et al. Nov 2004 A1
20040241214 Kirkwood et al. Dec 2004 A1
20040251136 Lean et al. Dec 2004 A1
20050004508 Sun et al. Jan 2005 A1
20050004509 Sun et al. Jan 2005 A1
20050004550 Sun et al. Jan 2005 A1
20050010161 Sun et al. Jan 2005 A1
20050010192 Sun et al. Jan 2005 A1
20050015042 Sun et al. Jan 2005 A1
20050053563 Manissier et al. Mar 2005 A1
20050112078 Boddupalli et al. May 2005 A1
20050126966 Tanida et al. Jun 2005 A1
20050129633 Lin Jun 2005 A1
20050148996 Sun et al. Jul 2005 A1
20050170089 Lashmore et al. Aug 2005 A1
20050189673 Klug et al. Sep 2005 A1
20050226834 Lambino et al. Oct 2005 A1
20050238730 Le Fur et al. Oct 2005 A1
20060005381 Nishi et al. Jan 2006 A1
20060036332 Jennings Feb 2006 A1
20060073370 Krusic et al. Apr 2006 A1
20060093885 Krusic et al. May 2006 A1
20060121279 Petrik Jun 2006 A1
20060151382 Petrik Jul 2006 A1
20060166347 Faulstich et al. Jul 2006 A1
20060180604 Ginsberg et al. Aug 2006 A1
20060222701 Kulkarni et al. Oct 2006 A1
20060253078 Wu et al. Nov 2006 A1
20070004640 Lin et al. Jan 2007 A1
20070032054 Ramaswamy et al. Feb 2007 A1
20070056894 Connors, Jr. Mar 2007 A1
20070060862 Sun et al. Mar 2007 A1
20070062856 Pahl et al. Mar 2007 A1
20070099813 Luizzi et al. May 2007 A1
20070131646 Donnelly Jun 2007 A1
20070284279 Doskoczynski et al. Dec 2007 A1
20080017564 Hammond Jan 2008 A1
20080035484 Wu et al. Feb 2008 A1
20080035541 Franzreb et al. Feb 2008 A1
20080045877 Levin et al. Feb 2008 A1
20080061477 Capizzo Mar 2008 A1
20080063585 Smalley et al. Mar 2008 A1
20080081323 Keeley et al. Apr 2008 A1
20080081362 Keeley et al. Apr 2008 A1
20080149561 Chu et al. Jun 2008 A1
20080156648 Dudziak et al. Jul 2008 A1
20080170982 Zhang et al. Jul 2008 A1
20080185293 Klose et al. Aug 2008 A1
20080188836 Weber et al. Aug 2008 A1
20080190508 Booth et al. Aug 2008 A1
20080241085 Lin et al. Oct 2008 A1
20080268016 Fang et al. Oct 2008 A1
20080290020 Marand et al. Nov 2008 A1
20080290111 Ginsberg et al. Nov 2008 A1
20090023572 Backes et al. Jan 2009 A1
20090032475 Ferrer et al. Feb 2009 A1
20090039019 Raman Feb 2009 A1
20090048685 Frigstad et al. Feb 2009 A1
20090075371 Keeley et al. Mar 2009 A1
20090078640 Chu et al. Mar 2009 A1
20090087395 Lin et al. Apr 2009 A1
20090117335 Iyoda et al. May 2009 A1
20090148495 Hammer et al. Jun 2009 A1
20090176159 Zhamu et al. Jul 2009 A1
20090222072 Robinson et al. Sep 2009 A1
20090236295 Braun et al. Sep 2009 A1
20090241242 Beatty et al. Oct 2009 A1
20090283475 Hylton et al. Nov 2009 A1
20090291270 Zettl et al. Nov 2009 A1
20090294300 Kanzius et al. Dec 2009 A1
20090306364 Beer et al. Dec 2009 A1
20100000754 Mann et al. Jan 2010 A1
20100016778 Chattopadhyay Jan 2010 A1
20100021708 Kong et al. Jan 2010 A1
20100024722 Ochs et al. Feb 2010 A1
20100024838 Ochs et al. Feb 2010 A1
20100025330 Ratto et al. Feb 2010 A1
20100055464 Sung Mar 2010 A1
20100059378 Elson et al. Mar 2010 A1
20100072643 Pugh et al. Mar 2010 A1
20100076553 Pugh et al. Mar 2010 A1
20100105834 Tour et al. Apr 2010 A1
20100110372 Pugh et al. May 2010 A1
20100124564 Martinson et al. May 2010 A1
20100127312 Grebel et al. May 2010 A1
20100161014 Lynch et al. Jun 2010 A1
20100167551 Dedontney Jul 2010 A1
20100196439 Beck et al. Aug 2010 A1
20100209330 Golzhauser et al. Aug 2010 A1
20100209515 Chantalat et al. Aug 2010 A1
20100213079 Willis Aug 2010 A1
20100224555 Hoek et al. Sep 2010 A1
20100228204 Beatty et al. Sep 2010 A1
20100233781 Bangera et al. Sep 2010 A1
20100249273 Scales et al. Sep 2010 A1
20100258111 Shah et al. Oct 2010 A1
20100323177 Ruoff et al. Dec 2010 A1
20100327847 Leiber et al. Dec 2010 A1
20110014217 Fahmy et al. Jan 2011 A1
20110037033 Green et al. Feb 2011 A1
20110041519 McAlister Feb 2011 A1
20110041687 Diaz et al. Feb 2011 A1
20110045523 Strano et al. Feb 2011 A1
20110054418 Pugh et al. Mar 2011 A1
20110054576 Robinson et al. Mar 2011 A1
20110056892 Lancaster Mar 2011 A1
20110073563 Chang et al. Mar 2011 A1
20110092054 Seo et al. Apr 2011 A1
20110092949 Wang Apr 2011 A1
20110100921 Heinrich May 2011 A1
20110112484 Carter et al. May 2011 A1
20110118655 Fassih et al. May 2011 A1
20110120970 Joo et al. May 2011 A1
20110124253 Shah et al. May 2011 A1
20110132834 Tomioka et al. Jun 2011 A1
20110139707 Siwy et al. Jun 2011 A1
20110152795 Aledo et al. Jun 2011 A1
20110201201 Arnold et al. Aug 2011 A1
20110202201 Matsubara Aug 2011 A1
20110253630 Bakajin et al. Oct 2011 A1
20110258791 Batchvarova et al. Oct 2011 A1
20110258796 Batchvarova et al. Oct 2011 A1
20110262645 Batchvarova et al. Oct 2011 A1
20110263912 Miller et al. Oct 2011 A1
20110269920 Min et al. Nov 2011 A1
20120000845 Park et al. Jan 2012 A1
20120031833 Ho et al. Feb 2012 A1
20120048804 Stetson et al. Mar 2012 A1
20120115243 Pitkanen et al. May 2012 A1
20120116228 Okubo May 2012 A1
20120145548 Sivan et al. Jun 2012 A1
20120148633 Sun et al. Jun 2012 A1
20120162600 Pugh et al. Jun 2012 A1
20120183738 Zettl et al. Jul 2012 A1
20120186850 Sugiyama et al. Jul 2012 A1
20120211367 Vecitis Aug 2012 A1
20120218508 Pugh et al. Aug 2012 A1
20120220053 Lee et al. Aug 2012 A1
20120234453 Pugh et al. Sep 2012 A1
20120234679 Garaj et al. Sep 2012 A1
20120235277 Pugh et al. Sep 2012 A1
20120236254 Pugh et al. Sep 2012 A1
20120236524 Pugh et al. Sep 2012 A1
20120241371 Revanur et al. Sep 2012 A1
20120242953 Pugh et al. Sep 2012 A1
20120255899 Choi et al. Oct 2012 A1
20120267337 Striemer et al. Oct 2012 A1
20120292245 Saito Nov 2012 A1
20120298396 Hong et al. Nov 2012 A1
20120301707 Kinloch et al. Nov 2012 A1
20130015136 Bennett Jan 2013 A1
20130034760 Otts et al. Feb 2013 A1
20130045523 Leach et al. Feb 2013 A1
20130056367 Martinez et al. Mar 2013 A1
20130071941 Miller Mar 2013 A1
20130096292 Brahmasandra et al. Apr 2013 A1
20130100436 Jackson et al. Apr 2013 A1
20130105417 Stetson et al. May 2013 A1
20130108839 Arnold et al. May 2013 A1
20130116541 Gracias et al. May 2013 A1
20130131214 Scales et al. May 2013 A1
20130135578 Pugh et al. May 2013 A1
20130146221 Kolmakov Jun 2013 A1
20130146480 Garaj et al. Jun 2013 A1
20130152386 Pandojirao-S et al. Jun 2013 A1
20130174978 Pugh et al. Jul 2013 A1
20130190476 Lancaster et al. Jul 2013 A1
20130192460 Miller et al. Aug 2013 A1
20130192461 Miller et al. Aug 2013 A1
20130194540 Pugh et al. Aug 2013 A1
20130213568 Pugh et al. Aug 2013 A1
20130215377 Pugh et al. Aug 2013 A1
20130215378 Pugh et al. Aug 2013 A1
20130215380 Pugh et al. Aug 2013 A1
20130216581 Fahmy et al. Aug 2013 A1
20130240355 Ho et al. Sep 2013 A1
20130240437 Rodrigues et al. Sep 2013 A1
20130248097 Ploss, Jr. Sep 2013 A1
20130248367 Stetson et al. Sep 2013 A1
20130249147 Bedworth Sep 2013 A1
20130256118 Meller et al. Oct 2013 A1
20130256139 Peng Oct 2013 A1
20130256154 Peng Oct 2013 A1
20130256210 Fleming Oct 2013 A1
20130256211 Fleming Oct 2013 A1
20130261568 Martinson et al. Oct 2013 A1
20130269819 Ruby et al. Oct 2013 A1
20130270188 Karnik et al. Oct 2013 A1
20130273288 Luo et al. Oct 2013 A1
20130277305 Stetson et al. Oct 2013 A1
20130295150 Chantalat et al. Nov 2013 A1
20130309776 Drndic Nov 2013 A1
20130317131 Scales et al. Nov 2013 A1
20130317132 Scales et al. Nov 2013 A1
20130317133 Scales et al. Nov 2013 A1
20130323295 Scales et al. Dec 2013 A1
20130338611 Pugh et al. Dec 2013 A1
20130338744 Frewin et al. Dec 2013 A1
20140002788 Otts et al. Jan 2014 A1
20140005514 Pugh et al. Jan 2014 A1
20140015160 Kung et al. Jan 2014 A1
20140017322 Dai et al. Jan 2014 A1
20140048411 Choi et al. Feb 2014 A1
20140066958 Priewe Mar 2014 A1
20140079936 Russo Mar 2014 A1
20140093728 Shah et al. Apr 2014 A1
20140128891 Astani-Matthies et al. May 2014 A1
20140141521 Peng et al. May 2014 A1
20140151288 Miller et al. Jun 2014 A1
20140151631 Duesberg Jun 2014 A1
20140154464 Miller et al. Jun 2014 A1
20140170195 Fassih et al. Jun 2014 A1
20140171541 Scales et al. Jun 2014 A1
20140174927 Bashir et al. Jun 2014 A1
20140190004 Riall et al. Jul 2014 A1
20140190550 Loh Jul 2014 A1
20140190676 Zhamu et al. Jul 2014 A1
20140190833 Lieber et al. Jul 2014 A1
20140192313 Riall et al. Jul 2014 A1
20140192314 Riall et al. Jul 2014 A1
20140199777 Ruiz et al. Jul 2014 A2
20140209539 El Badawi et al. Jul 2014 A1
20140212596 Jahangiri-Famenini Jul 2014 A1
20140230653 Yu et al. Aug 2014 A1
20140230733 Miller Aug 2014 A1
20140231351 Wickramasinghe et al. Aug 2014 A1
20140248621 Collins Sep 2014 A1
20140257348 Priewe et al. Sep 2014 A1
20140257515 So et al. Sep 2014 A1
20140257517 Deichmann et al. Sep 2014 A1
20140259657 Riall et al. Sep 2014 A1
20140261999 Stetson et al. Sep 2014 A1
20140263035 Stoltenberg et al. Sep 2014 A1
20140263178 Sinton et al. Sep 2014 A1
20140264977 Pugh et al. Sep 2014 A1
20140268015 Riall et al. Sep 2014 A1
20140268020 Pugh et al. Sep 2014 A1
20140268021 Pugh et al. Sep 2014 A1
20140268026 Pugh et al. Sep 2014 A1
20140272286 Stoltenberg et al. Sep 2014 A1
20140272522 Pugh et al. Sep 2014 A1
20140273315 Pugh et al. Sep 2014 A1
20140273316 Pugh et al. Sep 2014 A1
20140276481 Pugh et al. Sep 2014 A1
20140276999 Harms et al. Sep 2014 A1
20140306361 Pugh et al. Oct 2014 A1
20140308681 Strano et al. Oct 2014 A1
20140315213 Nagrath et al. Oct 2014 A1
20140318373 Wood et al. Oct 2014 A1
20140322518 Addleman et al. Oct 2014 A1
20140333892 Pugh et al. Nov 2014 A1
20140335661 Pugh et al. Nov 2014 A1
20140343580 Priewe Nov 2014 A1
20140346081 Sowden et al. Nov 2014 A1
20140349892 Van Der Zaag Nov 2014 A1
20140350372 Pugh et al. Nov 2014 A1
20140377651 Kwon et al. Dec 2014 A1
20140377738 Bachmann et al. Dec 2014 A1
20150015843 Pugh et al. Jan 2015 A1
20150017918 Pugh et al. Jan 2015 A1
20150053627 Silin et al. Feb 2015 A1
20150057762 Harms et al. Feb 2015 A1
20150061990 Toner et al. Mar 2015 A1
20150062533 Toner et al. Mar 2015 A1
20150063605 Pugh Mar 2015 A1
20150066063 Priewe Mar 2015 A1
20150075667 McHugh et al. Mar 2015 A1
20150077658 Pugh et al. Mar 2015 A1
20150077659 Pugh et al. Mar 2015 A1
20150077660 Pugh et al. Mar 2015 A1
20150077661 Pugh et al. Mar 2015 A1
20150077662 Pugh et al. Mar 2015 A1
20150077663 Pugh et al. Mar 2015 A1
20150077699 De Sio et al. Mar 2015 A1
20150077702 Pugh et al. Mar 2015 A9
20150079683 Yager et al. Mar 2015 A1
20150087249 Pugh et al. Mar 2015 A1
20150096935 Mitra et al. Apr 2015 A1
20150098910 Mordas et al. Apr 2015 A1
20150101931 Garaj et al. Apr 2015 A1
20150105686 Vasan Apr 2015 A1
20150118318 Fahmy et al. Apr 2015 A1
20150122727 Karnik et al. May 2015 A1
20150138454 Pugh et al. May 2015 A1
20150142107 Pugh et al. May 2015 A1
20150145155 Pugh et al. May 2015 A1
20150146162 Pugh et al. May 2015 A1
20150147474 Batchvarova et al. May 2015 A1
20150170788 Miller et al. Jun 2015 A1
20150174253 Sun et al. Jun 2015 A1
20150174254 Sun et al. Jun 2015 A1
20150182473 Bosnyak et al. Jul 2015 A1
20150185180 Ruhl et al. Jul 2015 A1
20150196579 Ferrante et al. Jul 2015 A1
20150202351 Kaplan et al. Jul 2015 A1
20150212339 Pugh et al. Jul 2015 A1
20150217219 Sinsabaugh et al. Aug 2015 A1
20150218210 Stetson et al. Aug 2015 A1
20150221474 Bedworth Aug 2015 A1
20150231557 Miller et al. Aug 2015 A1
20150231577 Nair et al. Aug 2015 A1
20150247178 Mountcastle et al. Sep 2015 A1
20150258254 Simon et al. Sep 2015 A1
20150258498 Simon et al. Sep 2015 A1
20150258502 Turowski Sep 2015 A1
20150258503 Sinton et al. Sep 2015 A1
20150258525 Westman et al. Sep 2015 A1
20150268150 Newkirk et al. Sep 2015 A1
20150272834 Sun et al. Oct 2015 A1
20150272896 Sun et al. Oct 2015 A1
20150273401 Miller et al. Oct 2015 A1
20150309337 Flitsch et al. Oct 2015 A1
20150321147 Fleming et al. Nov 2015 A1
20150321149 McGinnis Nov 2015 A1
20150323811 Flitsch et al. Nov 2015 A1
20150336202 Bedworth et al. Nov 2015 A1
20150342900 Putnins Dec 2015 A1
20150346382 Bliven et al. Dec 2015 A1
20150351887 Peters Dec 2015 A1
20150359742 Fassih et al. Dec 2015 A1
20150378176 Flitsch et al. Dec 2015 A1
20160009049 Stoltenberg et al. Jan 2016 A1
20160038885 Hogen-Esch et al. Feb 2016 A1
20160043384 Zhamu et al. Feb 2016 A1
20160058932 Stetson et al. Mar 2016 A1
20160059190 Yoo et al. Mar 2016 A1
20160067390 Simon et al. Mar 2016 A1
20160074814 Park et al. Mar 2016 A1
20160074815 Sinton et al. Mar 2016 A1
20160256805 Grein et al. Sep 2016 A1
20160272499 Graphenea Sep 2016 A1
20160282326 Waduge et al. Sep 2016 A1
20160284811 Yu Sep 2016 A1
20160339160 Bedworth et al. Nov 2016 A1
20170000937 Gottschalk Jan 2017 A1
20170032962 Graphenea Feb 2017 A1
20170035943 Simon et al. Feb 2017 A1
20170036916 Bedworth et al. Feb 2017 A1
20170037356 Simon Feb 2017 A1
20170057812 Graphenea Mar 2017 A1
20170065939 Kim et al. Mar 2017 A1
20170202885 Agulnick Jul 2017 A1
20170239623 Stoltenberg et al. Aug 2017 A1
20170296972 Sinton et al. Oct 2017 A1
20170296976 Liu et al. Oct 2017 A1
20170296979 Swett et al. Oct 2017 A1
Foreign Referenced Citations (107)
Number Date Country
2037988 Sep 1992 CA
2411935 Dec 2002 CA
1128501 Aug 1996 CN
101108194 Jan 2008 CN
101243544 Aug 2008 CN
101428198 May 2009 CN
101489653 Jul 2009 CN
101996853 Mar 2011 CN
102242062 Nov 2011 CN
102344132 Feb 2012 CN
102423272 Apr 2012 CN
102592720 Jul 2012 CN
101996853 Aug 2012 CN
102637584 Aug 2012 CN
103153441 Jun 2013 CN
103182249 Jul 2013 CN
203235358 Oct 2013 CN
103480281 Jan 2014 CN
103585891 Feb 2014 CN
103603706 Feb 2014 CN
19536560 Mar 1997 DE
10 2005 049 388 Apr 2007 DE
0 364 628 Apr 1990 EP
1 034 251 Jan 2004 EP
1 777 250 Apr 2007 EP
1 872 812 Jan 2008 EP
2 060 286 May 2009 EP
2 107 120 Oct 2009 EP
2 230 511 Sep 2010 EP
1 603 609 May 2011 EP
2 354 272 Aug 2011 EP
2 450 096 May 2012 EP
2 489 520 Aug 2012 EP
2 511 002 Oct 2012 EP
2 586 473 May 2013 EP
2 679 540 Jan 2014 EP
2 937 313 Oct 2015 EP
3 070 053 Sep 2016 EP
3 084 398 Oct 2016 EP
1 538 2430.5 Mar 2017 EP
3 135 631 Mar 2017 EP
59-102111 Jul 1984 JP
10-510471 May 1995 JP
7504120 May 1995 JP
2001-232158 Aug 2001 JP
2002-126510 May 2002 JP
2004-179014 Jun 2004 JP
2005-126966 May 2005 JP
2006-188393 Jul 2006 JP
2009-291777 Dec 2009 JP
2011-168448 Sep 2011 JP
2011-241479 Dec 2011 JP
2012-500708 Jan 2012 JP
2004-202480 Jul 2014 JP
2015-503405 Feb 2015 JP
2016-175828 Oct 2016 JP
1020110084110 Jul 2011 KR
10-2012-0022164 Mar 2012 KR
1020120022164 Mar 2012 KR
1020140002570 Jan 2014 KR
WO-9333901 Mar 1993 WO
WO-9312859 Aug 1993 WO
WO-9500231 Jan 1995 WO
WO-9712664 Apr 1997 WO
WO-9830501 Jul 1998 WO
WO-0070012 Nov 2000 WO
WO-02055539 Jul 2002 WO
WO-2013115762 Aug 2003 WO
WO-2004009840 Jan 2004 WO
WO-2004082733 Sep 2004 WO
WO-2005047857 May 2005 WO
WO-2007103411 Sep 2007 WO
WO-2007140252 Dec 2007 WO
WO-2008008533 Jan 2008 WO
WO-2009129984 Oct 2009 WO
WO-2010006080 Jan 2010 WO
WO-2010115904 Oct 2010 WO
WO-2011019686 Feb 2011 WO
WO-2011046706 Apr 2011 WO
WO-2011001674 Jun 2011 WO
WO-2011063458 Jun 2011 WO
WO-2011075158 Jun 2011 WO
WO-2011094204 Aug 2011 WO
WO-2011100458 Aug 2011 WO
WO-2011138689 Nov 2011 WO
WO-2012006657 Jan 2012 WO
WO-2012021801 Feb 2012 WO
WO-2012027148 Mar 2012 WO
WO-2012028695 Mar 2012 WO
WO-2012030368 Mar 2012 WO
WO 2012125770 Sep 2012 WO
WO-2012138671 Oct 2012 WO
WO-2012142852 Oct 2012 WO
WO-2013016445 Jan 2013 WO
WO-2013048063 Apr 2013 WO
WO-2013138137 Sep 2013 WO
WO-2013138698 Sep 2013 WO
WO-2013151799 Oct 2013 WO
WO-2013152179 Oct 2013 WO
WO-2014084861 Jun 2014 WO
WO-2014168629 Oct 2014 WO
WO-2015030698 Mar 2015 WO
WO-2015138736 Sep 2015 WO
WO-2015138752 Sep 2015 WO
WO-2015138771 Sep 2015 WO
WO-2015197217 Dec 2015 WO
WO-2016102003 Jun 2016 WO
Non-Patent Literature Citations (401)
Entry
Barreiro et al. “Understanding the catalyst-free transformation of amorphous carbon into graphene by current-induced annealing,” Scientific Reports, 3 (Article 1115): 1-6 (Jan. 2013).
Botari et al., “Graphene healing mechanisms: A theoretical investigation,” Carbon, 99: 302-309 (Apr. 2016) (published online Dec. 2015).
Chen et al., “Defect Scattering in Graphene,” Physical Review Letters, 102: 236805-1-236805-4 (Jun. 2009).
Chen et al., “Self-healing of defected graphene,” Applied Physics Letters, 102(10): 103107-1-103107-5 (Mar. 2013).
Cheng et al., “Ion Transport in Complex Layered Graphene-Based Membranes with Tuneable Interlayer Spacing,” Science Advances, 2(2): e1501272 (9 pages) (Feb. 2016).
Crock et al., “Polymer Nanocomposites with Graphene-Based Hierarchical Fillers as Materials for Multifunctional Water Treatment Membranes,” Water Research, 47(12): 3984-3996 (Aug. 2013) (published online Mar. 2013).
Han et al., “Ultrathin Graphene Nanofiltration Membrane for Water Purification,” Advanced Functional Materials, 23(29): 3693-3700 (Aug. 2013).
International Search Report and Written Opinion in PCT/US2016/027583 mailed Jan. 13, 2017.
Written Opinion in PCT/US2016/027590 mailed Jan. 6, 2017.
International Search Report and Written Opinion in PCT/US2016/027594 mailed Jan. 13, 2017.
International Search Report and Written Opinion in PCT/US2016/027628 mailed Jan. 9, 2017.
International Search Report and Written Opinion in PCT/US2016/027631 mailed Jan. 13, 2017.
International Search Report and Written Opinion in PCT/US2016/027632 mailed Jan. 9, 2017.
Written Opinion in PCT/US2016/052010 mailed Dec. 20, 2016.
International Search Report in PCT/US2016/027629 mailed Dec. 8, 2016.
International Search Report in PCT/US2016/052007 mailed Dec. 27, 2016.
Kjeldsen, T., “Yeast secretory expression of insulin precursors,” Appl Microbiol Biotechnol, 54: 277-286 (May 2000).
Lin et al., “A Direct and Polymer-Free Method for Transferring Graphene Grown by Chemical Vapor Deposition to Any Substrate,” ACSNANO, 8(2): 1784-1791 (Jan. 2014).
Liu et al. “Synthesis of high-quality monolayer and bilayer graphene on copper using chemical vapor deposition,” Carbon, 49(13): 4122-4130 (Nov. 2011) (published online May 2011).
O'Hern et al., “Nanofiltration across defect-sealed nanoporous monolayer graphene,” Nano Letters, 15(5): 3254-3260 (Apr. 2015).
US Corrected Notice of Allowance in U.S. Appl. No. 13/480,569 mailed May 26, 2015.
US Notice of Allowance for U.S. Appl. No. 14/610,770 dated Apr. 25, 2016.
US Notice of Allowance in U.S. Appl. No. 14/819,273 mailed Dec. 14, 2016.
US Notice of Allowance in U.S. Appl. No. 13/480,569 mailed Feb. 27, 2015.
US Office Action in U.S. Appl. No. 13/480,569 mailed Jul. 30, 2014.
US Office Action in U.S. Appl. No. 14/856,471 mailed Dec. 1, 2016.
US Restriction Requirement in U.S. Appl. No. 14/193,007 mailed Jul. 17, 2015.
Wang et al., “Graphene Oxide Membranes with Tunable Permeability due to Embedded Carbon Dots,” Chemical Communications, 50(86): 13089-13092 (Nov. 2014) (published online Sep. 2014).
Xu et al., “Graphene Oxide-TiO2 Composite Filtration Membranes and their Potential Application for Water Purification,” Carbon, 62: 465-471 (Oct. 2013) (published online Jun. 2013).
Zhao et al., “A glucose-responsive controlled release of insulin system based on enzyme multilayers-coated mesoporous silica particles,” Chem. Commun., 47: 9459-9461 (Jun. 2011).
Adiga et al., “Nanoporous Materials for Biomedical Devices,” JOM 60: 26-32 (Mar. 25, 2008).
AMI Applied Membranes Inc. (undated). FilmTec Nanofiltration Membrane Elements. Retrieved Jun. 1, 2016, from http://www.appliedmembranes.com/filmtec-nanofiltration-membrane-elements.html.
Apel, “Track etching technique in membrane technology,” Radiation Measurements 34(1-6): 559-566 (Jun. 2001).
Bae et al., “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nature Nanotechnology 5: 574-578 (Jun. 20, 2010).
Bai et al., “Graphene nanomesh,” Nature Nanotechnology 5: 190-194 (Feb. 14, 2010).
Baker. (2004). “Track-etch Membranes.” In Membrane Technology and Applications (2nd ed., pp. 92-94). West Sussex, England: John Wiley & Sons.
Butler et al. “Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene”, Materials Review 7(4): 2898-2926 (Mar. 6, 2013).
Chhowalla et al., “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,” Nature Chemistry 5: 263-275 (Mar. 20, 2013).
Childres et al., “Effect of oxygen plasma etching on graphene studied using Raman spectroscopy and electronic transport measurements,” New Journal of Physics 13 (Feb. 10, 2011).
Clochard. (undated). Radiografted track-etched polymer membranes for research and application [Scholarly project]. In Laboratoire Des Solides Irradiés. Retrieved Jun. 2, 2016, from http://iramis.cea.fr/radiolyse/5juin2015/Clochard.pdf.
Cohen-Tanugi et al, “Water Desalination across Nanoporous Graphene,” ACS Nano Letters 12(7): 3602-3608 (Jun. 5, 2012).
Cohen-Tanugi, “Nanoporous graphene as a water desalination membrane,” Thesis: Ph.D., Massachusetts Institute of Technology, Department of Materials Science and Engineering (Jun. 2015).
Colton, “Implantable biohybrid artificial organs,” Cell Transplantation 4(4): 415-436 (Jul.-Aug. 1995).
Desai et al., “Nanoporous microsystems for islet cell replacement,” Advanced Drug Delivery Reviews 56: 1661-1673 (Jul. 23, 2004).
Fischbein et al., “Electron beam nanosculpting of suspended graphene sheets,” Applied Physics Letters 93(113107): 1-3, (Sep. 16, 2008).
Fissell et al., “High-Performance Silicon Nanopore Hemofiltration Membranes,” NIH-PA Author Manuscript, PMC, (Jan. 5, 2010), also published in J. Memb. Sci. 326(1): 58-63 (Jan. 5, 2009).
Gimi et al., “A Nanoporous, Transparent Microcontainer for Encapsulated Islet Therapy,” J. Diabetes Sci. Tech. 3(2): 1-7 (Mar. 2009).
International Search Report dated Dec. 4, 2015, in related international application PCT/US2015/048205.
International Search Report dated Jun. 10, 2015, from related international application PCT/US15/20201.
Jiang et al., “Porous Graphene as the Ultimate Membrane for Gas Separation,” Nano Letters 9(12): 4019-4024 (Sep. 23, 2009).
Joshi et al., “Precise and ultrafast molecular sieving through graphene oxide membranes”, Science 343(6172): 752-754 (Feb. 14, 2014).
Kanani et al., “Permeability—Selectivity Analysis for Ultrafiltration: Effect of Pore Geometry,” NIH-PA Author Manuscript, PMC, (Mar. 1, 2011), also published in J. Memb. Sci. 349(1-2): 405 (Mar. 1, 2010).
Karan et al., “Ultrafast Viscous Permeation of Organic Solvents Through Diamond-Like Carbon Nanosheets,” Science 335: 444-447 (Jan. 27, 2012).
Kim et al., “Fabrication and Characterization of Large Area, Semiconducting Nanoperforated Graphene Materials,” Nano Letters 10(4): 1125-1131 (Mar. 1, 2010).
Kim et al., “The structural and electrical evolution of graphene by oxygen plasma-induced disorder,” Nanotechnology IOP 20(375703): 1-8 (Aug. 26, 2009).
Koski and Cui, “The New Skinny in Two-Dimensional Nanomaterials”, ACS Nano 7(5): 3739-3743 (May 16, 2013).
Liu et al., “Atomically Thin Molybdenum Disulfide Nanopores with High Sensitivity for DNA Translocation,” ACS Nano 8(3): 2504-2511 (Feb. 18, 2014).
Liu et al., “Graphene Oxidation: Thickness-Dependent Etching and Strong Chemical Doping,” Nano Letters 8(7): 1965-1970 (Jun. 19, 2008).
Mishra et al., “Functionalized Graphene Sheets for Arsenic Removal and Desalination of Sea Water,” Desalination 282: 39-45 (Nov. 1, 2011).
Morse, “Scalable Synthesis of Semiconducting Nanopatterned Graphene Materials,” InterNano Resources for Nanomanufacturing (undated). Retrieved Jun. 2, 2016 from: http://www.internano.org/node/345.
Nair et al., “Unimpeded Permeation of Water Through Helium-Leak-tight Graphene-Based Membranes,” Science 335: 442-444 (Jan. 27, 2012).
O'Hern et al. “Selective Molecular Transport through Intrinsic Defects in a Single Layer of CVD Graphene,” ACS Nano, 6(11): 10130-10138 (Oct. 2, 2012).
O'Hern et al., “Selective Ionic Transport through Tunable Subnanometer Pores in Single-Layer Graphene Membranes,” Nano Letters 14(3): 1234-1241 (Feb. 3, 2014).
Paul, “Creating New Types of Carbon-Based Membranes,” Science 335: 413-414 (Jan. 27, 2012).
Schweicher et al., “Membranes to achieve immunoprotection of transplanted islets,” NIH-PA Author Manuscript, PMC, (Nov. 13, 2014), also published in Frontiers in Bioscience (Landmark Ed) 19: 49-76 (Jan. 1, 2014).
Sint et al., “Selective Ion Passage through Functionalized Graphene Nanopores,” JACS 130: 16448-16449 (Nov. 14, 2008).
Suk et al., “Water Transport Through Ultrathin Graphene,” Journal of Physical Chemistry Letters 1(10): 1590-1594 (Apr. 30, 2010).
Tan et al., “Beta-cell regeneration and differentiation: how close are we to the ‘holy grail’?” J. Mol. Encodrinol. 53(3): R119-R129 (Dec. 1, 2014).
Vlassiouk et al., “Versatile ultrathin nanoporous silicon nitride membranes,” Proc. Natl. Acad. Sci. USA 106(50): 21039-21044 (Dec. 15, 2009).
Wadvalla, “Boosting agriculture through seawater,” Nature Middle East (Jul. 2, 2012). Retrieved Jun. 1, 2016 from: natureasia.com/en/nmiddleeast/article/10.1038/nmiddleeast.2012.92?WT.mc_id=FBK NatureMEast].
Wikipedia, “Ion track.” Jun. 1, 2016. Retrieved Jun. 1, 2016 from: en.wikipedia.org/wiki/ion_track.
Xu et al., “Graphene-like Two-Dimensional Materials”, Chemical Reviews 113: 3766-3798 (Jan. 3, 2013).
Zan et al., “Graphene Reknits Its Holes,” Nano Lett. 12(8): 3936-3940 (Jul. 5, 2012).
Zhao et al. “Two-Dimensional Material Membranes: An Emerging Platform for Controllable Mass Transport Applications,” Small 10(22): 4521-4542 (Sep. 10, 2014).
Allen et al., “Craters on silicon surfaces created by gas cluster ion impacts,” Journal of Applied Physics, 92(7): 3671-3678 (Oct. 2002).
Atmeh et al., “Albumin Aggregates: Hydrodynamic Shape and Physico-Chemical Properties,” Jordan Journal of Chemistry, 2(2): 169-182 (2007).
Chen et al., “Mechanically Strong, Electrically Conductive, and Biocompatible Graphene Paper,” Adv. Mater., 20(18): 3557-3561 (Sep. 2008) (available online Jul. 2008).
CN Office Action in Chinese Application No. 201380013988.9 mailed Aug. 18, 2016 (English translation not readily available).
Fuertes, “Carbon composite membranes from Matrimid® and Kapton® polyimides for gas separation,” Microporous and Mesoporous Materials, 33: 115-125 (1991).
Galashev, “Computer study of the removal of Cu from the graphene surface using Ar clusters,” Computational Materials Science, 98: 123-128 (Feb. 2015) (available online Nov. 2014).
International Search Report and Written Opinion in PCT/US2015/013599 mailed Jul. 20, 2015.
International Search Report and Written Opinion in PCT/US2015/013805 mailed Apr. 30, 2015.
International Search Report and Written Opinion in PCT/US2015/018114 mailed Jun. 3, 2015.
International Search Report and Written Opinion in PCT/US2015/020246 mailed Jun. 10, 2015.
International Search Report and Written Opinion in PCT/US2015/020296 mailed Jun. 17, 2015.
International Search Report and Written Opinion in PCT/US2015/028948 mailed Jul. 16, 2015.
International Search Report and Written Opinion in PCT/US2015/029932 mailed Oct. 6, 2015.
Inui et al., “Molecular dynamics simulations of nanopore processing in a graphene sheet by using gas cluster ion beam,” Appl. Phys. A, 98: 787-794 (Mar. 2010) (available online Dec. 2009).
Koh et al., “Sensitive NMR Sensors Detect Antibodies to Influenza,” NIH PA Author Manuscript PMC (Apr. 2009), also published in Angew. Chem. Int'l Engl, 47(22): 4119-4121 (May 2008) (available online Apr. 2008).
Lehtinen et al., “Cutting and controlled modification of graphene with ion beams,” Nanotechnology, 22: 175306 (8 pages) (Mar. 2011).
Matteucci et al., “Transport of gases and Vapors in Glass and Rubbery Polymers,” in Materials Science of Membranes for Gas and Vapor Separation. (Yampolskii et al., eds. 2006) (available online Jun. 2006).
O'Hern et al., “Development of process to transfer large areas of LPCVD graphene from copper foil to a porous support substrate,” 1-62 (M.S. Thesis, Massachusetts Institute of Technology, Thesis) (Sep. 2011).
Plant et al. “Size-dependent propagation of Au nanoclusters through few-layer graphene,” Nanoscale, 6: 1258-1263 (2014) (available online Oct. 2013).
Popok. “Cluster Ion Implantation in Graphite and Diamond: Radiation Damage and Stopping of Cluster Constituents,” Reviews on Advanced Materials Science, 38(1): 7-16 (2014).
Russo et al., “Atom-by-atom nucleation and growth of graphene nanopores,” PNAS 109(16): 5953-5957 (Apr. 2012).
US Notice of Allowance in U.S. Appl. No. 14/610,770 mailed Aug. 12, 2016.
US Office Action in U.S. Appl. No. 14/656,190 mailed Aug. 29, 2016.
US Office Action for U.S. Appl. No. 14/656,580 dated Jun. 2, 2016.
US Office Action in U.S. Appl. No. 14/819,273 mailed Jul. 6, 2016.
US Office Action for U.S. Appl. No. 14/856,198 dated Jun. 3, 2016.
Yoon, “Simulations show how to turn graphene's defects into assets,” ScienceDaily (Oct. 4, 2016), www.sciencedaily.com/releases/2016/10/161004120428.htm.
Zabihi et al., “Formation of nanopore in a suspended graphene sheet with argon cluster bombardment: A molecular dynamics simulation study,” Nuclear Instruments and Methods in Physics Research B, 343: 48-51: (Jan. 2015) (available online Nov. 2014).
Zhang et al. Modern Thin-Film Technology 284-285 (Metallurgical Industry Press, 1st ed. 2009) (English translation not readily available).
Zhao et al. (2012), “Effect of SiO2 substrate on the irradiation-assisted manipulation of supported graphene: a molecular dynamics study,” Nanotechnology 23(28): 285703 (Jul. 2012) (available online Jun. 2012).
Zhao et al. (May 2012), “Drilling Nanopores in Graphene with Clusters: A Molecular Dynamics Study,” J. Phys. Chem. C, 116(21): 11776-11178 (2012) (available online May 2012).
Baker. (2004). Track-etch Membranes. In Membrane Technology and Applications (2nd ed., pp. 92-94). West Sussex, England: John Wiley & Sons.
Notice of Allowance for U.S. Appl. No. 14/819,273 dated Oct. 28, 2016.
US Office Action for U.S. Appl. No. 14/193,007 dated Oct. 21, 2016.
US Office Action for U.S. Appl. No. 14/193,007 dated Dec. 21, 2015.
US Office Action for U.S. Appl. No. 14/193,007 dated Jul. 1, 2016.
Dong et al., “Growth of large-sized graphene thin-films by liquid precursor-based chemical vapor deposition under atmospheric pressure,” Carbon 49(11): 3672-3678 (May 2011).
Hong et al., “Graphene multilayers as gates for multi-week sequential release of proteins from surfaces,” NIH-PA Author Manuscript PMC (Jun. 1, 2014), also published in ACS Nano, Jan. 24, 2012; 6(1): 81-88 (first published online Dec. 29, 2011).
Hu et al., “Enabling graphene oxide nanosheets as water separation membranes,” Environmental Science & Technology, 47(8): 3715-3723 (Mar. 14, 2013).
International Search Report and Written Opinion of the International Searching Authority dated Jul. 22, 2016, from related international patent application PCT/US2016/027607.
International Search Report and Written Opinion of the International Searching Authority dated Jul. 22, 2016, from related international patent application PCT/US2016/027616.
International Search Report and Written Opinion of the International Searching Authority dated Jul. 22, 2016, from related PCT application PCT/US2016/027596.
International Search Report and Written Opinion of the International Searching Authority dated Jul. 22, 2016, from related PCT application PCT/US2016/027603.
International Search Report and Written Opinion of the International Searching Authority dated Jul. 22, 2016, from related PCT application PCT/US2016/027610.
International Search Report and Written Opinion of the International Searching Authority dated Jul. 22, 2016, from related PCT application PCT/US2016/027612.
International Search Report and Written Opinion of the International Searching Authority dated Jun. 22, 2016, from related PCT application PCT/US2016/027637.
Kurapati et al., “Graphene oxide based multilayer capsules with unique permeability properties: facile encapsulation of multiple drugs,” Chemical Communication 48: 6013-6015 (Apr. 25, 2012).
Li et al., “3D graphene oxide-polymer hydrogel: near-infrared light-triggered active scaffold for reversible cell capture and on-demand release,” Advanced Materials 25: 6737-6743 (Oct. 7, 2013).
Marquardt et al., “Hybrid materials of platinum nanoparticles and thiol-functionalized graphene derivatives,” Carbon 66: 285-294 (Jan. 2014; first published online Sep. 12, 2013).
Nam et al., “Monodispersed PtCo nanoparticles on hexadecyltrimethylammonium bromide treated graphene as an effective oxygen reduction reaction catalyst for proton exchange membrane fuel cells,” Carbon 50: 3739-3747 (Aug. 2012; first published online Apr. 5, 2012).
Nandamuri et al., “Chemical vapor deposition of graphene films,” Nanotechnology 21(14): 1-4 (Mar. 10, 2010).
Nayini et al., “Synthesis and characterization of functionalized carbon nanotubes with different wetting behaviors and their influence on the wetting properties of carbon nanotubes/polymethylmethacrylate coatings,” Progress in Organic Coatings 77(6): 1007-1014 (Mar. 2014).
Sun et al., “Growth of graphene from solid carbon sources,” Nature 468(7323): 549-552 (Nov. 25, 2010; including corrigendum in Nature 471(7336): 124 (Mar. 2011).
Tang et al., “Highly wrinkled cross-linked graphene oxide membranes for biological and charge-storage applications,” Small 8(3): 423-431 (Feb. 6, 2012; first published online Dec. 13, 2011).
US Notice of Allowance in U.S. Appl. No. 14/610,770 mailed Jan. 23, 2017.
US Notice of Allowance in U.S. Appl. No. 14/856,198 mailed Feb. 10, 2017.
US Notice of Allowance in U.S. Appl. No. 14/856,198 mailed Mar. 1, 2017.
US Office Action in U.S. Appl. No. 14/609,325 mailed Feb. 16, 2017.
US Office Action in U.S. Appl. No. 14/193,007 mailed Mar. 23, 2017.
US Office Action in U.S. Appl. No. 14/656,580 mailed Feb. 9, 2017.
US Office Action in U.S. Appl. No. 14/843,944 mailed Jan. 6, 2017.
AE Search and Examination Report for United Arab Emirates Application No. P186/13 dated Oct. 4, 2016.
Agenor et al., “Renal tubular dysfunction in human visceral leishmaniasis (Kala-azar),” Clinical Nephrology 71(5): 492-500 (May 2009) (available online Mar. 21, 2011).
Albert et al., “Ringer's lactate is compatible with the rapid infusion of AS-3 preserved packed red blood cells,” Can. J. Anaesth. 56(5): 352-356 (May 2009) (available online Apr. 2, 2009).
Aluru et al. “Modeling electronics on the nanoscale.” Handbook of nanoscience, engineering and technology Goddard W, Brenner D, Lyshevski S, lafrate GJ (2002): 11-1.
Alvarenga, “Carbon nanotube materials for aerospace wiring” Rochester Institute of Technology, 2010.
AMI Applied Membranes Inc., “Filmtec Nanofiltration Membrane Elements”, Retrieved from appliedmembranes.com/nanofiltration_elements.htm, accessed Apr. 25, 2015 (2 Pages).
Aso et al., “Comparison of serum high-molecular weight (HMW) adiponectin with total adiponectin concentrations in type 2 diabetic patients with coronary artery using a novel enzyme-linked immunosorbent assay to detect HMW adiponectin,” Diabetes 55(7): 1954-1960 (Jul. 2006).
AU Examination Report for Australian Patent Application No. 2013235234, dated Jan. 13, 2017, 4 pages.
AU Examination Report for Australian Patent Application No. 2013363283, dated Jun. 20, 2017, 4 pages.
AU Notice of Acceptance for Australian Application No. 2011293742 dated Jan. 13, 2016.
Axelsson et al., “Acute hyperglycemia induces rapid, reversible increases in glomerular permeability in nondiabetic rats,” AM. J. Physiol. Renal Physiol. 298(6): F1306-F1312 (Jun. 2010) (available online Mar. 17, 2010).
Bains et al., “Novel lectins from rhizomes of two Acorus species with mitogenic activity and inhibitory potential towards murine cancer cell lines,” Int'l Immunopharmacol. 5(9): 1470-1478 (Aug. 2005) (available online May 12, 2005).
Baker, “Membrane Technology and Applications”, Membrane Technology and Applications; Apr. 14, 2004; pp. 92-94.
Barreiro et al. “Transport properties of graphene in the high-current limit.” Physical review letters 103.7 (2009): 076601.
Bazargani et al. “Low molecular weight heparin improves peritoneal ultrafiltration and blocks complement and coagulation,” Peritoneal Dialysis Int'l 25(4): 394-404 (Jul. 2005-Aug 2005).
Bazargani, “Acute inflammation in peritoneal dialysis: experimental studies in rats. Characterization of regulatory mechanisms,” Swedish Dental J. Supp. 171: 1-57, i (2005).
Beppu et al., “Antidiabetic effects of dietary administration of Aloe arborescens Miller components on multiple low-dose streptozotocin-induced diabetes in mice: investigation on hypoglycemic action and systemic absorption dynamics of aloe components,” J. Ethnopharmacol. 103(3): 468-77 (Feb. 20, 2006) (available online Jan. 6, 2006).
Bieri et al. “Two-dimensional Polymer Formation on Surfaces: Insight into the Roles of Precursor Mobility and Reactivity” JACS, 2010, vol. 132, pp. 16669-16676.
Bruin et al., “Maturation and function of human embryonic stem cell-derived pancreatic progenitors in macroencapsulation devices following transplant into mice”, Diabetologia (2013), vol. 56: 1987-1998 (Jun. 16, 2013).
Chu Ju, et al. “Modern Biotechnology” East China University of Technology Press, (Sep. 2007), vol. 1; pp. 306-307, ISBN 978-7-5628-2116-8.
Clochard, “Track-Etched Polymer Membranes,” Laboratory of Irradiated Solids, Ecole Polytechnique, retrieved from http://www.lsi.polytechnique.fr/home/research/physics-and-chemistry-of-nano-objects/trac . . . , Accessed Jul. 30, 2015 (2 pages).
CN Notification of Grant for Chinese Application No. 201180049184.5 dated Jun. 6, 2016.
CN Office Action for Chinese Application No. 201380014845.X dated Jul. 8, 2016.
CN Office Action for Chinese Application No. 201380014845.X dated Sep. 2, 2015.
CN Office Action for Chinese Application No. 201380019165.5 dated Aug. 25, 2015.
CN Office Action for Chinese Application No. 201380073141.X dated Jun. 8, 2016.
CN Office Action for Chinese Application No. 201380073141.X dated Mar. 21, 2017.
CN Office Action for Chinese Application No. 201480015372.X dated Aug. 2, 2016.
CN Office Action for Chinese Application No. 20118004918.5 dated Jun. 15, 2015.
CN Office Action for Chinese Application No. 201180049184.5 dated Jul. 30, 2014.
CN Office Action for Chinese Application No. 201180049184.5 dated Mar. 4, 2016.
CN Office Action for Chinese Application No. 201380014845.X dated Dec. 23, 2016.
CN Office Action for Chinese Application No. 201380017644.5 dated Feb. 7, 2017.
CN Office Action for Chinese Application No. 201380017644.5 dated May 26, 2016.
CN Office Action for Chinese Application No. 201380017644.5 dated Sep. 29, 2015.
CN Office Action in Chinese Application No. 201380013988.9 dated Oct. 27, 2015.
CN Office Action in Chinese Application No. 201580006829.5 dated Aug. 1, 2017 (English translation) (5 pages).
Daniel et al. “Implantable Diagnostic Device for Cancer Monitoring.” Biosens Bioelectricon. 24(11): 3252-3257 (Jul. 15, 2009).
Database WPI, Week 201238, Thomson Scientific, London, GB; AN 2012-D49442.
De Lannoy et al., “Aquatic Biofouling Prevention by Electrically Charged Nanocomposite Polymer Thin Film Membranes”, 2013 American Water Work Association membrane Technology Conference; Environmental science & technology 47.6 (2013): 2760-2768.
Deng et al., “Renal protection in chronic kidney disease: hypoxia-inducible factor activation vs. angiotensin II blockade,” Am. J. Physiol. Renal Physiol. 299(6): F1365-F1373 (Dec. 2010) (available online Sep. 29, 2010).
Edwards, “Large Sheets of Graphene Film Produced for Transparent Electrodes (w/ Video)”; (Jun. 21, 2010), PhysOrg.com, retrieved on May 15, 2017 from https://phys.org/news/2010-06-large-sheets-graphene-transparentelectrodes.html (2 pages).
EP Office Action for European Application No. 13715529.7 dated Jun. 24, 2016.
EP Office Action for European Application No. 15743307.9 dated Aug. 8, 2017. (17 pages).
European Search Report dated Aug. 28, 2017 from related EP application 15743750.0 (7 pages).
Fayerman, “Canadian scientists use stem cells to reverse diabetes in mice”, The Telegraph-Journal (New Brunswick), 1-2 (Jun. 29, 2012).
Fayerman, “Diabetes reversed in mice; University of B.C. scientists use embryonic stem cells to deal with Type 1 disease”, The Vancouver Sun (British Columbia), 1-2 (Jun. 28, 2012).
Fejes et al. “A review of the properties and CVD synthesis of coiled carbon nanotubes.” Materials 3.4 (2010): 2618-2642.
Franzen, C. “MIT Setting Up Industrial-Scale Graphene Printing Press” Sep. 23, 2011, retrieved from http://talkingpointsmemo.com/idealab/mit-setting-up-industrial-scale-graphene-printing-press (2 pages).
Freedman et al., “Genetic basis of nondiabetic end-stage renal disease,” Semin. Nephrol. 30(2): 101-110 (Mar. 2010).
Garcia-Lopez et al., “Determination of high and low molecular weight molecules of icodextrin in plasma and dialysate, using gel filtration chromatography, in peritoneal dialysis patients,” Peritoneal Dialysis Int'l 25(2): 181-191 (Mar. 2005-Apr. 2005).
Georgakilas et al., “Functionalization of Graphene: Covalent and Non-Covalent Approaches, Derivatives and Applications,” Chem. Rev., (2012) 112(11), pp. 6156-6214.
Gnudi “Molecular mechanisms of proteinuria in diabetes,” Biochem. Soc. Trans. 36(5): 946-949 (Oct. 2008).
Gotloib et al., “Peritoneal dialysis in refractory end-stage congestive heart failure: a challenge facing a no-win situation,” Nephrol. Dialysis. Transplant. 20(Supp. 7): vii32-vii36 (Jul. 2005).
Harvey “Carbon as conductor: a pragmatic view.” Proceedings of the 61st IWCS Conference, http://www. iwcs.org/archives/56333-iwcs-2012b-1.1584632. vol. 1. 2012.
Hashimoto et al. “Direct evidence for atomic defects in graphene layers.” Nature 430.7002 (2004): 870-873.
He, et al. “The attachment of Fe3 O4 nanoparticles to graphene oxide by covalent bonding.” Carbon 48.11 (2010): 3139-3144.
Hone et al. “Graphene has record-breaking strength” Physicsworld.com, Jul. 17, 2008.
Huang et al., “Gene expression profile in circulating mononuclear cells afterexposure to ultrafine carbon particles,” Inhalation Toxicol. 22(10): 835-846 (Aug. 2010).
Humplik, et al. “Nanostructured materials for water desalination.” Nanotechnology 22.29 (2011): 292001.
International Search Report and Written Opinion dated Aug. 14, 2017 from related PCT application PCT/US2017/031537 (12 pages).
International Search Report and Written Opinion dated Jan. 5, 2012 for related International Application No. PCT/US11/47800.
International Search Report and Written Opinion dated Jul. 5, 2017 from related PCT application PCT/US2017/024147.
International Search Report and Written Opinion dated Mar. 12, 2014 for International Application No. PCT/US2013/074942.
International Search Report and Written Opinion for International Application No. PCT/US2011/047800 dated Jan. 5, 2012.
International Search Report and Written Opinion for PCT Application No. PCT/US2014/023027 dated Jun. 26, 2014.
International Search Report and Written Opinion in International Application No. PCT/US2013/030344 dated Jun. 19, 2013.
International Search Report and Written Opinion in International Application No. PCT/US2013/033035 dated Jun. 28, 2013.
International Search Report and Written Opinion in International Application No. PCT/US2013/033400, dated Jun. 28, 2013.
International Search Report and Written Opinion in International Application No. PCT/US2013/033403 dated Jun. 28, 2013.
International Search Report and Written Opinion in PCT/US2014/041766, dated Sep. 30, 2014.
International Search Report and Written Opinion dated Jun. 5, 2014 in International Application No. PCT/US2014/021677.
International Search Report and Written Opinion dated Jun. 6, 2014 in International Application No. PCT/US2014/023043.
International Search Report and Written Opinion dated Dec. 16, 2014, for International Application No. PCT/US2014/051011.
International Search Report and Written Opinion dated Jun. 19, 2015, in International Application No. PCT/US2015/020287.
Inui et al. “Molecular dynamics simulations of nanopore processing in a graphene sheet by using gas cluster ion beam.” Applied Physics A: Materials Science & Processing 98.4 (2010): 787-794.
Israelachvili, “Intermolecular and Surface Forces,” 3rd ed., Chap.7.1, Sizes of Atoms, Molecules, and Ions, 2011, 1 page.
Jiang, L. et al., Design of advanced porous grapheme materials: from grapheme nanomesh to 3D architectures. Nanoscale, Oct. 16, 2013, vol. 6, pp. 1922-1945.
Jiao et al., “Castration differentially alters basal and leucine-stimulated tissue protein synthesis in skeletal muscle and adipose tissue,” Am. J. Physiol. Endocrinol. Metab. 297(5): E1222-1232 (Nov. 2009) (available online Sep. 15, 2009).
JP Office Action in Japanese Application No. 2015-501729 dated Dec. 9, 2016 (English translation).
JP Office Action in Japanese Application No. 2015-501729 dated Jun. 20, 2017 (English translation).
JP Office Action in Japanese Application No. 2015-501867 dated Oct. 11, 2016 (English translation).
JP Office Action in Japanese Application No. 2015-503405 dated Jun. 28, 2017 (English translation) (6 pages).
JP Office Action in Japanese Application No. 2015-503405 dated Nov. 14, 2016 (English translation).
JP Office Action in Japanese Application No. 2015-503406 dated Dec. 6, 2016(English translation).
JP Office Action in Japanese Application No. 2015-549508 dated Jun. 27, 2017 (English translation).
Kang et al., “Effect of eplerenone, enalapril and their combination treatment on diabetic nephropathy in type II diabetic rats,” Nephrol. Dialysis Transplant. 24(1): 73-84 (Jan. 2009).
Kang et al., “Efficient Transfer of Large-Area Graphene Films onto Rigid Substrates by Hot Pressing,” American Chemical Society Nano, 6(6): 5360-5365(May 28, 2012).
Kar et al., “Effect of glycation of hemoglobin on its interaction with trifluoperazine,” Protein J. 25(3): 202-211 (Apr. 2006) (available online Jun. 6, 2006).
Kawamoto et al., “Serum high molecular weight adiponectin is associated with mild renal dysfunction in Japanese adults,” J. Atherosclerosis Thrombosis 17(11): 1141-1148 (Nov. 27, 2011).
Khun et al. “From Microporous Regular Frameworks to Mesoporous Materials with Ultrahigh Surface Area: Dynamic reorganization of Porous Polymer Networks” JACS, 2008; vol. 130; pp. 13333-13337.
Krupka et al., “Measurements of the Sheet Resistance and Conductivity of Thin Epitaxial Graphene and SiC Films” Applied Physics Letters 96, 082101-I; Feb. 23, 2010.
Kumar et al., “Modulation of alpha-crystallin chaperone activity in diabetic rat lens by curcumin,” Molecular Vision 11: 561-568 (Jul. 26, 2005).
Lathuiliere et al., “Encapsulated Cellular Implants for Recombinant Protein Delivery and Therapeutic Modulation of the Immune System,” Journal of Applied Physics, Int. J. Mol. Sci., 16: 10578-10600 (May 8, 2015).
Lee, et al. “Measurement of the elastic properties and intrinsic strength of monolayer graphene.” science 321.5887 (2008): 385-388.
Li, R.H. “Materials for immunoisolated cell transplantation”. Adv. Drug Deliv. Rev. 33, 87-109 (1998).
Lucchese et al. “Quantifying ion-induced defects and Raman relaxation length in graphene.” Carbon 48.5 (2010): 1592-1597.
Macleod et al. “Supramolecular Orderinng in Oligothiophene-Fullerene Monolayers” JACS, 2009, vol. 131, pp. 16844-16850.
Mattevi et al. “A review of chemical vapour deposition of graphene on copper.” Journal of Materials Chemistry 21.10 (2011): 3324-3334.
Miao et al. “Chemical vapor deposition of grapheme” INTECH Open Access Publisher, 2011.
MIT/MTL Center for Graphene Devices and 2D Systems, retrieved from: http://www-mtl.mit.edu/wpmu/graphene/ [retrieved from Aug. 21, 2014 archive] (3 pages).
MIT/MTL Center for Graphene Devices and 2D Systems, retrieved from: http://www-mtl.mit.edu/Wpmu/graphene/ [retrieved from Mar. 4, 2015 archive] (3 pages).
Nafea, et al. “Immunoisolating semi-permeable membranes for cell encapsulation: focus on hydrogels.” J Control Release. 154(2): 110-122 (Sep. 5, 2011).
Nezlin, “Circulating non-immune IgG complexes in health and disease,” Immunol. Lett. 122(2); 141-144 (Feb. 21, 2009) (available online Feb. 2, 2009).
Norata et al., “Plasma adiponectin levels in chronic kidney disease patients: relation with molecular inflammatory profile and metabolic status,” Nutr. Metab. Cardiovasc. Dis. 20(1): 56-63 (Jan. 2010) (available online Apr. 9, 2009).
Ogawa et al., “Exosome-like vesicles in Gloydius blomhoffii blomhoffii venom,” Toxicon 51(6): 984-993 (May 2008) (available online Feb. 19, 2008).
Ohgawara et al. “Assessment of pore size of semipermeable membrane for immunoisolation on xenoimplatntation of pancreatic B cells using a diffusion chamber.” Transplant Proc. (6): 3319-3320. 1995.
Oki et al., “Combined acromegaly and subclinical Cushing disease related to high-molecular-weight adrenocorticotropic hormone,” J. Neurosurg. 110(2): 369-73 (Feb. 2009).
Osorio et al., “Effect of treatment with losartan on salt sensitivity and SGLT2 expression in hypertensive diabetic rats,” Diabetes Res. Clin. Pract. 86(3): e46-e49 (Dec. 2009) (available online Oct. 2, 2009).
Osorio et al., “Effect of phlorizin on SGLT2 expression in the kidney of diabetic rats,” J. Nephrol. 23(5): 541-546 (Sep.-Oct. 2010).
Padidela et al., “Elevated basal and post-feed glucagon-like peptide 1 (GLP-1) concentrations in the neonatal period,” Eur. J. Endocrinol. 160(1): 53-58 (Jan. 2009) (available online Oct. 24, 2008).
Pall Corporation, “Pall Water Processing Disc-Tube Filter Technology”, Retrieved on Feb. 10, 2015, Retrieved from http://www.pall.com /pdfs/Fuels-and-Chemicals/Disc- Tube_Filter_Technology-DT100b.pdF (15 Pages).
Plant et al. “Size-dependent propagation of Au nanoclusters through few-layer grapheme,” The Royal Society of Chemistry 2013, Nanoscale.
Pollard, “Growing Graphene via Chemical Vapor” Department of Physics, Pomona College; May 2, 2011.
Rafael et al. “Cell Transplantation and Immunoisolation: Studies on a macroencapsultaion device.” From the Departments of Transplantation Pathology: Stockholm, Sweden (1999).
Rezania et al., “Enrichment of Human Embryonic Stem Cell-Derived NKX6.1-Expressing Pancreatic Progenitor Cells Accelerates the Maturation of Insulin-Secreting Cells In Vivo”, Stem Cells Regenerative Medicine, vol. 31: 2432-2442 (Jul. 29, 2013).
Rezania et al., “Maturation of Human Embryonic Stem Cell-Derived Pancreatic Progenitors Into Functional Islets Capable of Treating Pre-existing Diabetes in Mice”, Diabetes Journal, vol. 61: 2016-2029 (Aug. 1, 2012).
Ribeiro et al., “Binary Mutual Diffusion Coefficients of Aqueous Solutions of Sucrose, Lactose, Glucose, and Fructose in the Temperature Range from (298.15 to 328.15) K,” J. Chem. Eng. Data 51(5): 1836-1840 (Sep. 2006) (available online Jul. 20, 2006).
Rippe et al., “Size and charge selectivity of the glomerular filter in early experimental diabetes in rats,” Am. J. Physiol. Renal Physiol. 293(5): F1533-F1538 (Nov. 2007)(available online Aug. 15, 2007).
SA Final Rejection for Saudi Arabia Application No. 113340400 dated Jan. 28, 2016.
SA First Examination Report for Saudi Arabia Application No. 113340401 dated Apr. 28, 2015.
SA First Examination Report for Saudi Arabia Application No. 113340424 dated May 10, 2015.
SA First Examination Report for Saudi Arabia Application No. 113340426 dated May 12, 2015.
SA First Examination Report in Saudi Arabia Application No. 113340400 dated Apr. 13, 2015.
SA Second Examination Report for Saudi Arabia Application No. 113340400 dated Aug. 11, 2015.
Sanchez, et al. “Biological Interactions of Graphene-Family Nanomaterials—An Interdisciplinary Review.” Chem Res Toxicol. 25(1): 15-34 (Jan. 13, 2012).
Schweitzer, Handbook of Separation Techniques for Chemical Engineers, 1979, McGraw-Hill Book Company, pp. 2-5 to 2-8.
Search Report and Written Opinion dated Aug. 14, 2017 for Singapore Application No. 11201606287V. (10 pages).
Search Report and Written Opinion dated Aug. 22, 2017 for Singapore Application No. 11201607584P.
Sears et al., “Recent Developments in Carbon Nanotube Membranes for Water Purification and Gas Separation” Materials, vol. 3 (Jan. 4, 2010), pp. 127-149.
Sethna et al., “Serum adiponectin levels and ambulatory blood pressure monitoring in pediatric renal transplant recipients,” Transplantation 88(8): 1030-1037 (Oct. 27, 2009).
Sullivan et al., “Microarray analysis reveals novel gene expression changes associated with erectile dysfunction in diabetic rats,” Physiol. Genom. 23(2): 192-205 (Oct. 17, 2005) (available online Aug. 23, 2005).
Swett et al, “Imagining and Sculpting Graphene on the atomic scale” Oak Ridge National Laboratory's (ORNL) Center for Nanophase Materials Sciences (CNMS) Biannual Review. 1 page.
Swett et al, “Supersonic Nanoparticle Interaction with Suspended CVD Graphene”, Microsc. Microanal. 22 (Suppl 3): 1670-1671 (Jul. 25, 2016).
Takata et al., “Hyperresistinemia is associated with coexistence of hypertension and type 2 diabetes,” Hypertension 51. 2 (Feb 2008): 534-9.
Tamborlane et al., “Continuous Glucose Monitoring and Intensive Treatment of Type 1 Diabetes” N Engl J Med 359;14: 1464-1476 (Oct. 2, 2008).
Tan et al., “Beta-cell regeneration and differentiation: how close are we to the ‘holy grail’?” J. Mol. Encodrinol. 53(3): R119-R129 (Oct. 9, 2014).
Tanugi et al., “Nanoporous Graphene Could Outperform Best Commercial Water Desalination Techniques,” ; ACS 2012; Jun. 25, 2012; Weftec 2012; Sep. 29-Oct. 3.
Totani et al. “Gluten binds cytotoxic compounds generated in heated frying oil.” Journal of oleo science 57.12 (2008): 683-690.
Tsukamoto et al. “Purification, characterization and biological activities of a garlic oliqosaccharide,” Journal of UOEH 30.2 (Jun. 1, 2008): 147-57.
TW Office Action in Taiwanese Application No. 102146079 dated Apr. 14, 2017. 9 Pages. (English translation).
TW Search Report in Taiwanese Application No. 102146079 dated Apr. 14, 2017. 1 page.
UMEA Universitet “Graphene nanoscrolls are formed by decoration of magnetic nanoparticles.” ScienceDaily. Aug. 15, 2013. https://www.sciencedaily.com/releases/2013/08/130815084402.htm (3 pages).
U.S. Notice of Allowance for U.S. Appl. No. 12/868,150 dated Sep. 25, 2012.
U.S. Notice of Allowance for U.S. Appl. No. 13/548,539 dated Aug. 18, 2015.
U.S. Notice of Allowance for U.S. Appl. No. 13/548,539 dated Jul. 23, 2015.
U.S. Notice of Allowance for U.S. Appl. No. 13/719,579 dated May 20 ,2016.
U.S. Notice of Allowance for U.S. Appl. No. 13/795276 dated Oct. 7, 2016.
U.S. Notice of Allowance for U.S. Appl. No. 13/802,896 dated Apr. 1, 2015.
U.S. Notice of Allowance for U.S. Appl. No. 13/803,958 dated Aug. 29, 2016.
U.S. Notice of Allowance for U.S. Appl. No. 13/803,958 dated Jun. 2, 2016.
U.S. Notice of Allowance for U.S. Appl. No. 13/803,958 dated Sep. 12, 2016.
U.S. Notice of Allowance for U.S. Appl. No. 13/804,085 dated Jan. 15, 2015.
U.S. Notice of Allowance for U.S. Appl. No. 13/804,085 dated Mar. 12, 2015.
U.S. Notice of Allowance for U.S. Appl. No. 13/923,503 dated Oct. 14, 2016.
U.S. Notice of Allowance for U.S. Appl. No. 13/923,503 dated Oct. 5, 2016.
U.S. Notice of Allowance for U.S. Appl. No. 14/200,195 dated Jul. 5, 2016.
U.S. Notice of Allowance for U.S. Appl. No. 14/200,530 dated Aug. 1, 2016.
U.S. Notice of Allowance for U.S. Appl. No. 14/203,655 dated Dec. 9, 2016.
U.S. Notice of Allowance for U.S. Appl. No. 13/795,276 dated Jan. 19, 2017.
U.S. Notice of Allowance for U.S. Appl. No. 14/193,007 dated Sep. 6, 2017.
U.S. Notice of Allowance for U.S. Appl. No. 14/610,770 dated May 5, 2017.
U.S. Notice of Allowance for U.S. Appl. No. 14/656,580 dated May 8, 2017.
U.S. Notice of Allowance for U.S. Appl. No. 14/656,580 dated Sep. 5, 2017.
U.S. Notice of Allowance for U.S. Appl. No. 14/819,273 dated Jun. 9, 2017.
U.S. Office Action for U.S. Appl. No. 13/548,539 dated Feb. 6, 2015.
U.S. Office Action for U.S. Appl. No. 13/719,579 dated Jul. 8, 2015.
U.S. Office Action for U.S. Appl. No. 13/719,579 dated May 4, 2016.
U.S. Office Action for U.S. Appl. No. 13/795,276 dated Apr. 22, 2016.
U.S. Office Action for U.S. Appl. No. 13/795,276 dated Oct. 6, 2015.
U.S. Office Action for U.S. Appl. No. 13/802,896 dated Sep. 24, 2014.
U.S. Office Action for U.S. Appl. No. 13/803,958 dated Aug. 11, 2014.
U.S. Office Action for U.S. Appl. No. 13/803,958 dated May 28, 2015.
U.S. Office Action for U.S. Appl. No. 13/803,958 dated Nov. 18, 2015.
U.S. Office Action for U.S. Appl. No. 13/923,503 dated Mar. 22, 2016.
U.S. Office Action for U.S. Appl. No. 14/031,300 dated Jan. 20, 2016.
U.S. Office Action for U.S. Appl. No. 14/031,300 dated Jul. 7, 2015.
U.S. Office Action for U.S. Appl. No. 14/200,195 dated Mar. 21, 2016.
U.S. Office Action for U.S. Appl. No. 14/200,195 dated Nov. 4, 2015.
U.S. Office Action for U.S. Appl. No. 14/200,530 dated Feb. 29, 2016.
U.S. Office Action for U.S. Appl. No. 14/203,655 dated Aug. 10, 2016.
U.S. Office Action for U.S. Appl. No. 14/609,325 dated Aug. 25, 2017.
U.S. Office Action for U.S. Appl. No. 14/656,190 dated May 18, 2017.
U.S. Office Action for U.S. Appl. No. 14/656,657 dated Jul. 7, 2017.
U.S. Office Action for U.S. Appl. No. 14/686,452 dated Jun. 9, 2017.
U.S. Office Action for U.S. Appl. No. 14/843,944 dated Jun. 23, 2017.
U.S. Office Action for U.S. Appl. No. 14/856,471 dated May 31, 2017.
U.S. Office Action for U.S. Appl. No. 14/858,741 dated Dec. 1, 2016.
U.S. Office Action for U.S. Appl. No. 15/099,193 dated Jul. 19, 2017.
U.S. Office Action for U.S. Appl. No. 15/289,944 dated Feb. 9, 2017.
U.S. Office Action for U.S. Appl. No. 15/289,944 dated Jul. 13, 2017.
U.S. Office Action for U.S. Appl. No. 15/332,982 dated Aug. 18, 2017.
U.S. Office Action for U.S. Appl. No. 15/336,545 dated Dec. 19, 2016.
U.S. Office Action for U.S. Appl. No. 15/453,441 dated Jun. 5, 2017.
U.S. Office Action for U.S. Appl. No. 14/193,007 dated Apr. 24, 2017.
U.S. Office Action for U.S. Appl. No. 14/656,617 dated Apr. 4, 2017.
U.S. Office Action for U.S. Appl. No. 14/656,335 dated Apr. 25, 2017.
U.S. Office Action for U.S. Appl. No. 15/332,982 dated Jan. 30, 2017.
U.S. Supplemental Notice of Allowance for U.S. Appl. No. 13/795,276 dated Nov. 29, 2016.
Vallon,“Micropuncturing the nephron,” Pflugers Archiv: European journal of physiology 458. 1 (May 2009): 189-201.
Van der Zande et al. “Large-scale arrays of single-layer graphene resonators.” Nano letters 10.12 (2010): 4869-4873.
Verdonck, P., “Plasma Etching”, in Oficina de Microfabricao: Projeto e Construcao de CI's MOS, Swart, J.W., Ed., Campinas (Sao Paulo, Brazil): Unicamp, 2006, ch. 10, p. 9.
Vlassiouk et al. “Large scale atmospheric pressure chemical vapor deposition of graphene.” Carbon 54 (2013): 58-67.
Vriens et al. “Methodological considerations in quantification of oncological FDG PET studies.” European journal of nuclear medicine and molecular imaging 37.7 (2010): 1408-1425.
Wang et al., “Direct Observation of a Long-Lived Single-Atom Catalyst Chiseling Atomic Structures in Graphene,” Nano Lett., 2014, pp. A-F.
Wang et al., “Porous Nanocarbons: Molecular Filtration and Electronics,” Advances in Graphene Science, Edited by Mahmood Aliofkhazraei, (2013) ISBN 978-953-51/1182-5, Publisher: InTech; Chapter 6, pp. 119-160.
Wang et al.,“What is the role of the second “structural ” NADP+-binding site in human glucose 6-phosphate dehydrogenase?,”Protein science a publication of the Protein Society 17.8 (Aug 2008): 1403-11.
Wei et al., “Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties”, Nano Lett. 2009 9 1752-58.
Xiaogan Liang et al., Formation of Bandgap and Subbands in Graphene Nanomeshes with Sub-10nm Ribbon Width Fabricated via Nanoimprint Lithography., Nano Letters, Jun. 11, 2010, pp. 2454-2460.
Xie et al., “Fractionation and characterization of biologically-active polysaccharides from Artemisia tripartite,” Phytochemistry 69. 6 (Apr. 2008): 1359-71.
Xie, et al. “Controlled fabrication of high-quality carbon nanoscrolls from monolayer graphene.” Nano letters 9.7 (2009): 2565-2570.
Yagil et al. “Nonproteinuric diabetes-associated nephropathy in the Cohen rat model of type 2 diabetes” Diabetes 54.5 (May 2005): 1487-96.
Zan et al. “Interaction of Metals with Suspended Graphene Observed by Transmission Electron Microscopy”, J. Phys. Chem. Lett., Mar. 8, 2012, 3, 953-958.
Zhang et al. “Effect of Chemical Oxidation on the Structure of Single-Walled Carbon Nanotubes”, J. Phys. Chem., Feb. 12, 2003, B 107 3712-8.
Zhang et al. “Method for anisotropic etching of graphite or graphene” Institute of Physics, Chinese Academy of Sciences; PEOP. Rep. China; Mar. 30, 2011.
Zhang et al. “Production of Graphene Sheets by Direct Dispersion with Aromatic Healing Agents”, Small, May 6, 2010, vol. 6, No. 10, 1100-1107.
Zhang et al. “Isolation and activity of an alpha-amylase inhibitor from white kidney beans,” Yao xue xue bao =Acta pharmaceutica Sinica 42. 12 (Dec. 2007): 1282-7.
Zhao, et al. “Efficient preparation of large-area graphene oxide sheets for transparent conductive films.” ACS nano 4.9 (2010): 5245-5252.
Zhou, K., et al., “One-pot preparation of graphene/ Fe304 composites by a solvothermal reaction,” New J. Chem., 2010, 34, 2950.
Zhu et al. “Carbon Nanotubes in Biomedicine and Biosensing”, Carbon Nanotubes-Growth and Applications, InTech, (Aug. 9, 2011) Chapter 6: pp. 135-162. Available from: https://www.intechopen.com/books/carbon-nanotubes-growth-and-applications/carbon-nanotubes-in-biomedicine-and-biosensing.
Ziegelmeier et al. “Adipokines influencing metabolic and cardiovascular disease are differentially regulated in maintenance hemodialysis,” Metabolism: clinical and experimental 57. 10 (Oct. 2008): 1414-21.
Zirk et al. “A refractometry-based glucose analysis of body fluids,” Medical engineering & physics 29. 4 (May 2007): 449-58.
Zyga “Nanoporous Graphene Could Outperform Best Commercial Water Desalination Techniques,” Phys.org., Jun. 22, 2012, Retrieved from http://www.phys.org/pdf259579929.pdf [Last Accessed Dec. 3, 2014] (3 pages).
U.S. Notice of Allowance in U.S. Appl. No. 15/332,982 dated Sep. 21, 2017. (5 pages).
EPO Extended Search Report for European Application No. 171684883.5 dated Jul. 25, 2017 (8 pages).
EPO Supplementary Search Report for European Application No. 15762019.6 dated Aug. 9, 2017 (16 pages).
U.S. Notice of Allowance in U.S. Appl. No. 14/610,770 dated Sep. 26, 2017. (12 pages).
U.S. Office Action in U.S. Appl. No. 15/099,099 dated Oct. 5, 2017 (11 pages).
U.S. Office Action in U.S. Appl. No. 15/099,447 dated Oct. 3, 2017 (21 pages).
Weisen, et al., “Fabrication of nanopores in a graphene sheet with heavy ions: A molecular dynamics study”, Journal of Applied Physics 114, 234304 (2013), pp. 234304-1 to 234304-6.
Chen et al., “Hierarchically porous graphene-based hybrid electrodes with excellent electrochemical performance”, Journal of Materials Chemistry A: Materials for Energy and Sustainability, vol. 1, No. 33, Jan. 1, 2013, pp. 9409-9413.
European Extended Search Report in Application No. 15786691.4 dated Dec. 1, 2017 (10 pages).
European Extended Search Report in Application No. 15789852.9 dated Dec. 6, 2017 (8 pages).
Singapore Search Report and Written Opinion in Application No. 11201701654U dated Dec. 6, 2017 (6 pages).
Taiwanese Office Action in Application No. 102146079 dated Dec. 12, 2017 (with English translation) (4 pages).
U.S. Office Action in U.S. Appl. No. 14/609,325 dated Jan. 16, 2018 (11 pages).
U.S. Office Action in U.S. Appl. No. 14/656,190 dated Jan. 10, 2018 (14 pages).
U.S. Office Action in U.S. Appl. No. 14/856,471 dated Jan. 11, 2018 (36 pages).
Wang et al., “Preparation of high-surface-area carbon nanoparticle/graphene composites”, Carbon, Elsevier, Oxford, GB, vol. 50, No. 10, Apr. 8, 2012, pp. 3845-3853.
Australian Office Action in Application No. 2013235234 dated Dec. 19, 2017 (5 pages).
Chu, L., et al., “Porous graphene sandwich/poly(vinylidene fluoride) composites with high dielectric properties,” Composites Science and Technology, 86, (2013), pp. 70-75.
European Extended Search Report in Application No. 15743307.9 dated Nov. 15, 2017 (14 pages).
European Extended Search Report in Application No. 15755350.4 dated Oct. 30, 2017 (9 pages).
European Extended Search Report in Application No. 15762019.6 dated Nov. 20, 2017 (12 pages).
European Extended Search Report in Application No. 15762213.5 dated Oct. 10, 2017 (8 pages).
Gu et al., “One-step synthesis of porous graphene-based hydrogels containing oil droplets for drug delivery”, Royal Society of Chemistry (RSC), vol. 4, No. 7, Jan. 1, 2014, pp. 3211-3218.
Japanese Office Action in Application No. 2015-549508 dated Nov. 7, 2017 (with English translation) (2 pages).
Japanese Office Action in Application No. 2017-002652 dated Nov. 24, 2017 (with English translation) (7 pages).
Kim et al., “Selective Gas Transport Through Few-Layered Graphene and Graphene Oxide Membranes”, Science, vol. 342, Oct. 4, 2013, pp. 91-95 (6 total pages).
Singapore Search Report and Written Opinion in Application No. 11201609272T dated Oct. 5, 2017 (11 pages).
U.S. Notice of Allowance in U.S. Appl. No. 15/332,982 dated Nov. 1, 2017 (9 pages).
U.S. Office Action in U.S. Appl. No. 14/707,808 dated Nov. 6, 2017 (27 pages).
U.S. Office Action in U.S. Appl. No. 15/099,193 dated Dec. 28, 2017 (25 pages).
U.S. Office Action in U.S. Appl. No. 15/099,304 dated Nov. 24, 2017 (23 pages).
Wang, M., et al., “Interleaved Porous Laminate Composed of Reduced Graphene Oxide Sheets and Carbon Black Spacers by In-Situ Electrophoretic Deposition,” The Royal Society of Chemistry (2014), pp. 1-3.
Wimalasiri, Y., et al., “Carbon nanotube/graphene composite for enhanced capacitive deionization performance,” Carbon 59 (2013), pp. 464-471.
Chinese Office Action in Application No. 201580006829.5 dated Jan. 23, 2018 (with English translation) (13 pages).
Japanese Office Action in Application No. 2017-042023 dated Jan. 9, 2018 (with English translation) (9 pages).
U.S. Notice of Allowance in U.S. Appl. No. 14/843,944 dated Feb. 9, 2018 (9 pages).
U.S. Office Action for U.S. Appl. No. 15/099,482 dated Feb. 23, 2018 (9 pages).
U.S. Office Action in U.S. Appl. No. 15/099,099 dated Feb. 15, 2018 (13 pages).
U.S. Office Action in U.S. Appl. No. 15/099,588 dated Feb. 1, 2018 (6 pages).
Office Action for Indian Appl. Ser. No. 1566/DELNP/2013 dated Feb. 2, 2018 (7 pages).
Office Action for Japanese Appl. Ser. No. 2016-521448 dated Mar. 16, 2018 (5 pages).
U.S. Office Action for U.S. Appl. No. 15/099,276 dated Mar. 22, 2018 (13 pages).
U.S. Office Action for U.S. Appl. No. 15/453,441 dated Mar. 22, 2018 (7 pages).
Related Publications (1)
Number Date Country
20170298504 A1 Oct 2017 US