The present invention relates to a method for processing an inner wall surface of a micro vacancy.
The semiconductor field has heretofore made significant advances in high integration with the miniaturization of the transistor, a basic electronic active element (basic electronic element). Stagnation of exposure technology, a basic technology thereof, however, has prompted discussions on theories of limitation to high integration based on miniaturization. Further, miniaturization of the basic electronic element presents potential problems in temperature rise and electronic leakage in devices obtained from large-scale integration (LSI) device development. Recently, technological development of high integration that does not depend on miniaturization has also started. One such technology is LSI three-dimensional integration (3DI). One technology required to achieve this technology is through silicon via (TSV). A 3D integrated LSI device that uses this technology, unlike a package-level 3D integrated device that uses wire bonding technology, is expected to show dramatic improvement in electrical interconnectivity between each integrated device, and holds much promise as a highly-integrated device of the next generation.
A through-hole required in TSV is a narrow, deep hole having a depth from tens of microns to several hundred microns, and an aspect ratio of at least 10 (high aspect ratio hole). To form such a hole, adoption of a dry etching method, which has recently been adopted in the formation of half-micron to quarter-micron minute circuit patterns, and an oxygen plasma asking method for resist removal have been proposed. However, in such a dry etching method, deposited polymers caused by dry etching gas, resist, and the like occur on the hole peripheral portion to be formed, remain in the hole interior and on the peripheral portion, and cause high resistance, electrical short-circuits, and a decrease in yield. Further, wet cleaning is required to remove the remaining deposited polymers and clean the hole interior. As a result, the expectations of the wet etching and cleaning process performed to date have heightened for TSV as well.
Nevertheless, the studies and experiments of the inventors have shown conclusions such as the following, making it clear that the wet etching and cleaning of prior art are inadequate. That is, when a conventional processing solution is used in a case where a bottom portion of a high aspect ratio hole is etched and the hole interior is cleaned, the processing solution (etching solution, cleaning solution, and the like) may not enter the hole because the hole is narrow and deep. As a result, a situation in which etching and cleaning cannot be performed as expected occurs. Possible solutions include a conventionally implemented policy of resolving future problems by mixing a surfactant in the processing solution and improving the wettability of the hole inner wall.
Nevertheless, while there are proposals for improving wettability while ensuring sufficient fulfillment of the function of the processing solution to achieve such an objective, preparations of an appropriate processing solution for etching as well as cleaning have been realized. Furthermore, when the processing solution is supplied from the treated body surface to the hole, a phenomenon in which air bubbles of atmospheric gas are formed inside the hole, inhibiting entry of the processing solution in the hole, may also occur. This phenomenon has been remarkably observed in cylindrical holes.
There has been proposed a technique in which depressurization and pressurization are repeatedly performed when polycrystalline silicon for a solar battery having a plurality of complex minute holes is cleaned using ultrasonic vibration (refer to Patent Document 1). Nevertheless, because the technique disclosed in Patent Document 1 uses ultrasonic vibration, the height of the wall in a hole pattern having a high aspect ratio such as that of TSV, which serves as a target in this case, is extremely high with respect to the wall thickness of the wall surface member in which the hole is formed, resulting in the problem of the wall surface member collapsing (pattern collapse) due to the ultrasonic vibration. This problem becomes increasingly significant as the aspect ratio of the hole increases, and as the hole pattern becomes more and more minute.
PTL 1 Japanese Patent Laid-Open No.2012-598
The present invention is the result of vigorous research taking the above into consideration, and it is therefore an object of the present invention to provide a method for processing a hole inner wall surface that allows processing solution to quickly enter and fill a hole, even if the hole provided to the substrate to be processed is narrow and deep, thereby making it possible to reliably perform etching and cleaning without hole pattern collapse.
One aspect of the present invention is a method for processing an inner wall surface of a micro vacancy, includes
a step of depressurizing a depressurizable processing space in which a substrate is arranged, the substrate having a surface on which a processing solution is to be applied and a micro vacancy with an opening on the surface, an aspect ratio (l/r) of the micro vacancy being at least 5, or the aspect ratio being less than 5 and a ratio (V/S) of a micro vacancy volume (V) to a surface area of the opening (S) being at least 3; and
a step of subsequently introducing the processing solution to the depressurized processing space so as to process the inner wall surface of the micro vacancy.
According to the present invention, the processing solution quickly enters and fills the hole, even if the hole is narrow and deep, thereby making it possible to reliably perform etching and cleaning.
In
Under a normal pressure atmosphere, when a processing solution is supplied to a surface of the SOI substrate 100, a situation in which the hole 104 (micro vacancy) is not adequately filled with the processing solution may occur, even if a wettability with respect to an inside wall surface of the Si layer 103 is favorable (one such example is schematically illustrated in
Given an opening diameter “r” of the hole 104 and a depth “l” from an opening position of the hole 104 to the inner bottom wall surface 109, a so-called aspect ratio is expressed by “l/r.” The conditions under which the air bubble 105 inside the hole 104 is formed include many parameters, such as a surface tension, a viscosity, and a composition of the processing solution, a surface smoothness of the inside wall surface 108, a wettability of the used processing solution, sizes of “r” and “l,” and the aspect ratio, making it difficult to theorize.
The inventors first formed a variety of holes in an SOI substrate of structural materials such as illustrated in
Then, in place of the ultrapure water, the inventors used hydrofluoric acid and buffered hydrofluoric acid and performed etching on the SiO2 layer 102 constituting the inner bottom wall surface 109. Results showed that the hydrofluoric acid did not relatively cause air bubble formation to an excessive degree, even near a “V/S” value of “3” (about 15 air bubbles formed in 300 holes having a “V/S” value of “3”), while the buffered hydrofluoric acid caused air bubble formation at percentage of 80% (240 air bubbles), resulting in inadequate etching. Hence, the inventors prepared a depressurizable process chamber and tried to verify the above under reduced pressure (30 Torr). As a result, etching was completed at a percentage of 100% for both the hydrofluoric acid solution (HF: 1 to 20%) and the buffered hydrofluoric acid solution (ammonium fluoride: 20%, HF: 1 to 20%). While the effect of this depressurization depends on the degree of depressurization to a certain extent, the boiling point of the processing solution is exceeded when depressurization is excessive. Depressurization performed in a range in which the boiling point is not exceeded thus offers more convenience in terms of device design, and is therefore preferred.
In the present invention, an inner space of the hole is hereinafter referred to as a “micro vacancy.” In the present invention, the value of “r” for a structure in which the micro vacancy is not a cylinder (“non-cylinder”) is found by regarding the micro vacancy at that time as a cylinder, from “S” of the non-cylinder. “l” in such a case is a depth (maximum depth) from an opening position to a deepest inner bottom wall surface position of the micro vacancy. The effect of depressurization in the present invention is remarkable when the aspect ratio (l/r) is at least 5 or when the aspect ratio is less than 5 and V/S (V: volume of micro vacancy, S: surface area of opening) is at least 3. In particular, an even more remarkable effect can be achieved when the processing solution is buffered hydrofluoric acid and the treated body is an SOI substrate.
In the present invention, when the “l/r” value is at least 5, the depressurization effect is remarkably achieved without dependency on the “V/S” value. When the “l/r” value is less than 5, the depressurization effect depends on the “V/S” value and is substantially not achieved when “V/S”<3, increasing the percentage of holes in which air bubbles remain. In the present invention, when the “l/r” value is less than 5, the “V/S” value is more preferably at least 3.5.
The processing system 200 comprises the depressurization process chamber 201 and the depressurization waste solution tank 207, each having an interior configured to be depressurized to a predetermined value by the exhaust pump 213. Atmospheric gas such as N2 is supplied from the outside via the atmospheric gas supply line 204, and processing (chemical) solution is supplied via the processing solution supply line 205 to the depressurization process chamber 201, each at predetermined timings and predetermined rates. An opening/closing value that constitutes a flow rate adjustment function is provided midway on the atmospheric gas supply line 204. The treated body placement table 202 is arranged so as to be fixed to the rotating shaft 202-1 for the treated body placement table, inside the depressurization process chamber 201. The treated body 203 is arranged on the treated body placement table 202. The atmospheric gas supplied inside the depressurization process chamber 201 via the atmospheric gas supply line 204 passes through the recovery hood 206, as illustrated by an arrow A, and the processing solution supplied via the processing solution supply line 205, as illustrated by an arrow B, and each is recovered inside the depressurization waste solution tank 207 from the recovery line 210 through the recovery hood 206. The opening/closing valve 217 is provided midway on the recovery line 210.
The supply line 208 and the exhaust line 211 are coupled to the depressurization waste solution tank 207. The supply line 208 is a supply line for air or N2. The waste solution 223 inside the depressurization waste solution tank 207 is discharged outside the depressurization waste solution tank 207 via the drainage line 209. The air or N2 can be supplied from the supply line 208 and returned to one atmosphere pressure as necessary inside the depressurization waste solution tank 207. The opening/closing valve 215 is provided midway on the supply line 208. Further, the opening/closing valve 216 is provided midway on the drainage line 209. The depressurization process chamber 201 is depressurized via the exhaust line 212, and the waste solution tank 207 is depressurized via the exhaust line 211, each by the pump 213. The valves 218, 219 are arranged midway on the exhaust line 211, and the valves 220, 221 are arranged midway on the exhaust line 212. The valves 219, 221 are opening/closing valves that constitute a flow rate variable mechanism. The exhaust pump 213 is a pump resistant to moisture, and a diaphragm type chemical dry vacuum pump, specifically DTC-120 (made by ULVAC), for example, is preferably adopted.
The process chamber 201 and the waste solution tank 207 are attached to the frame 303 made of aluminum, for example, as illustrated in
In the nitrogen force-feed type processing (chemical) solution supply system 400, the processing solution supply line 402 provided with a ⅜-inch line on an upstream side and a ¼-inch line on a downstream side via the joint 413, and the ¼-inch nitrogen gas supply line 407 are connected to the canister 401 via the quick connector 414 and the quick connector 415, respectively. The stop valve 403, the flow rate adjustment valve 404, and the flow meter 405 are provided midway on the processing solution supply line 402. Then, a downstream section on the stop valve 403 side of the processing solution supply line 402 is connected to the processing solution supply line 205. The vent (exhaust) valve 409 and the flow-dividing joint 410 are provided midway on the nitrogen gas supply line 407. The vent (exhaust) valve 409 is for venting the nitrogen gas inside the canister 401 and inside the nitrogen gas supply line 407 to the outside. The downstream side of the nitrogen gas supply line 407 is inserted inside the mist trap 406. The nitrogen gas is introduced inside the mist trap 406 through the regulator 412, the stop valve 411, and the nitrogen gas supply line 408. The mist trap 406 is provided for preventing back flow of the processing solution to the upstream side.
The drainage line 209, the exhaust line 211, the recovery line 210, and the supply line 208 are connected to the depressurization waste solution tank 207 via the drain flange 501, the depressurization flange 502, the waste solution introduction flange 503, and the flange 504, respectively. The vacuum gauge 505 measures the pressure inside the waste solution tank 207. The solution level observation window 507 comprising a waste solution transparent member is provided to an upper portion of the waste solution tank 207 for observing the level of the waste solution inside the waste solution tank 207.
Unlike the depressurization process chamber 201 illustrated in
The gas jet inner wall tube 701 coupled to the gas introduction line 615 is attached to an inner wall of the depressurization process chamber 600. The gas jet nozzle 702 having a jetting direction that faces a center axis of an internal space of the depressurization process chamber 600 is provided to the gas jet inner wall tube 701 in a predetermined quantity. The jetting diameter and quantity of the gas jet nozzle 702 are designed so that a predetermined gas jetting flow rate is achieved.
In the present invention, while the gas jetting (blowing) flow rate from the gas jet nozzle 702 is determined in advance during suitable designing so that an agitation action or turbulence action does not occur inside the process chamber by the jetting of the gas to the extent possible, an optimum value is preferably more precisely determined in a gas jetting preliminary experiment. The extent of the agitation action or turbulence action by the gas jetting depends also on the gas exhaust rate and, in the present invention, is preferably 0.1 to 5.0 m/sec, more preferably 0.5 to 3.0 m/sec, and optimally around 2.0 m/sec. For example, in a case where the jet nozzle 702 having a diameter of 2 mm is provided on a semi-circular periphery in a quantity of 20 as illustrated, the N2 gas is preferably introduced at a rate of 200 cc/min inside the depressurization process chamber 600. The rate of the N2 gas at this time is 2.0 m/sec. In the present invention, the processing solution is preferably sufficiently degassed in advance to increase an absorbance of the gas. Furthermore, the processing solution supply line used is preferably a resin multilayer tube (made by Nichias Corporation) that suppresses oxygen permeability. While the above has described, an illustrative scenario of the present invention using N2 gas or surrounding gas as the atmospheric gas, CO2 gas can increase the dissolution rate into the processing solution if used and therefore is preferred in place of these gases.
While the above has described the present invention specifically, the technology of the present invention is not limited to TSV and is also applicable to other technological fields such as microelectromechanical systems (MEMS), for example, as long as the technology requires a high-aspect ratio hole.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2013/002645 | 4/18/2013 | WO | 00 |