The invention pertains generally to medical method/devices and more particularly to a method for fixing (e.g., tanning or crosslinking) and sterilizing biological tissue to I) decrease the fixed tissue's propensity for post-implantation calcification and ii) decrease the thrombogenicity of the fixed tissue.
Various types of implantable medical devices may be formed wholly or partially of biological tissue that has been chemically “fixed” or preserved. The technique used for chemical fixation of biological tissues typically requires exposure of the biological tissue to one or more chemical agents that are capable of forming cross-linkages between connective tissue protein molecules present in the tissue.
Examples of fixed biological tissues that have been used to form implantable bioprostheses include cardiac valves, blood vessels, skin, dura mater, pericardium, ligaments and tendons. These biological tissues typically contain connective tissue proteins (i.e., collagen and elastin) which act as the supportive framework of the tissue. The pliability or rigidity of each biological tissue is largely determined by the relative amounts of collagen and elastin present within the tissue and/or by the physical structure and confirmation of its connective tissue frame work.
Each Collagen molecule is made up of three (3) polypeptide chains intertwined in a coiled helical confirmation. The Chemical fixatives (i.e., tanning agents) which are used to preserve biological tissues generally form chemical cross-linkages between the polypeptide chains within a given collagen molecule (i.e., intramolecular crosslinkages), or between adjacent collagen molecules (i.e., intermolecular crosslinkages).
Examples of chemical fixative agents which have been utilized to cross-link collagenous biological tissues include; aldehydes (e.g., formaldehyde, glutaraldehyde, dialdehyde starch, para formaldehyde, glyceroaldehyde, glyoxal acetaldehyde, acrolein), diisocyanates (e.g., hexamethylene diisocyanate), carbodiimides, photooxidation, and certain polyepoxy compounds (e.g., Denacol-810, -512, or related compounds). Of the various chemical fixatives available, glutaraldehyde is the most widely used. Glutaraldehyde is used as the fixative for many commercially available bioprosthetic products, such as porcine bioprosthetic heart valves (i.e., the Carpentier-Edwards® stented porcine bioprosthesis; Baxter Healthcare Corporation; Edwards CVS Division, Irvine, Calif. 92714-5686), bovine pericardial heart valve prostheses (e.g., Carpentier-Edwards® Pericardial Bioprosthesis, Baxter Healthcare Corporation, Edwards CVS Division; Irvine, Calif. 92714-5686) and stentless porcine aortic prostheses (e.g., Edwards® PRIMA Stentless Aortic Bioprosthesis, Baxter Edwards AG, Spierstrasse 5, GH6048, Horn, Switzerland).
One problem which has been associated with the implantation of bioprosthetic materials is that the connective tissue proteins (i.e., collagen and elastin) within these materials can become calcified following implantation within the body. Such calcification can result in undesirable stiffening or degradation of the bioprosthesis. Two (2) types of calcification—intrinsic and extrinsic—are known to occur in fixed collagenous bioprostheses, although the exact mechanism(s) by which such calcification occurs is unknown. Intrinsic calcification is characterized by the precipitation of calcium and phosphate ions within the fixed bioprosthetic tissue, including the collagen matrix and remnant cells. Extrinsic calcification is characterized by the precipitation of calcium and phosphate ions within the thrombus, including adherent cells (e.g., platelets) to the bioprosthesis and the development of calcium phosphate-containing surface plaques on the bioprosthesis.
The factors that affect the rate at which fixed tissue bioprostheses undergo calcification have not been fully elucidated. However, factors that are thought to influence the rate of calcification include:
The factors that are thought to affect the propensity for platelets to adhere to a fixed bioprosthetic tissue include:
Various techniques have heretofore been proposed for mitigating the in situ calcification of glutaraldehyde-fixed bioprostheses. Included among these calcification mitigating techniques are the methods described in U.S. Pat. No. 4,885,005 (Nashef et al.) entitled Surfactant Treatment of Implantable Biological Tissue To Inhibit Calcification; U.S. Pat. No. 4,648,881 (Carpentier et al.) entitled Implantable Biological Tissue and Process For Preparation Thereof; U.S. Pat. No. 4,976,733 (Girardot) entitled Prevention of Prosthesis Calcification; U.S. Pat. No. 4,120,649 (Schechter) entitled Transplants; U.S. Pat. No. 5,002,2566 (Carpentier) entitled Calcification Mitigation of Bioprosthetic Implants; EP 103947A2 (Pollock et al.) entitled Method For Inhibiting Mineralization of Natural Tissue During Implantation and WO84/01879 (Nashef et al.) entitled Surfactant Treatment of Implantable Biological Tissue to Inhibit Calcification; and, in Yi, D., Liu, W., Yang, J., Wang, B., Dong, G., and Tan, H.; Study of Calcification Mechanism and Anti-calcification On Cardiac Bioprostheses Pgs. 17–22, Proceedings of Chinese Tissue Valve Conference, Beijing, China, June 1995.
There presently remains a need in the art for the development of new calcification-mitigating methods for fixing (i.e., tanning and crosslinking) and sterilizing biological tissues to provide bioprosthetic devices which are a) less likely to become calcified and b) less thrombogenic, following implantation within a patient's body.
Broadly stated, the present invention provides a method for chemical fixation and sterilization of biological tissue, comprising the steps of:
Further in accordance with the invention, there are provided various types of bioprosthetic articles that are wholly or partially formed of tissue that has been prepared by the above-summarized fixation/sterilization method of the present invention. Examples of specific biological tissues which may be utilized to prepare bioprosthetic articles in accordance with this invention include, but are not necessarily limited to: heart valves; venous valves; blood vessels; ureter; tendon; dura mater; skin; pericardium; cartilage (e.g., meniscus); ligament; bone; intestine (e.g., intestinal wall); and periostium.
Further aspects and objects of the present invention will become apparent to those skilled in the relevant art, upon reading and understanding the detailed description of presently preferred embodiments set forth herebelow.
Additional embodiments and aspects of the invention may become apparent to those of skill in the art upon reading and understanding of the detailed description and specific examples set forth herebelow.
As shown in
Step 1: Harvest/Prepare Biological Tissue
The desired biological tissue is harvested (i.e., surgically removed or cut away from its host animal). Thereafter, it is typically, trimmed or cut to size and washed with sterile water, balanced salt solution, saline or other suitable washing solution.
Step 2: Fixation of Biological Tissue
The biological tissue is then contacted with a crosslinking agent, such as an aldehyde (e.g., formaldehyde, glutaraldehyde, dialdehyde starch), polyglycidyl either (e.g., Denacol 810), diisocyanates, photooxidation, or carbodiimide(s)) to crosslink the connective tissue proteins present within the tissue. Due to the long standing use and experience with glutaraldehyde, a presently preferred fixative for use in this step is a solution of 0.2–2.0% by weight glutaraldehyde. For example, the biological tissue may be immersed in a solution of 0.625% by weight glutaraldehyde buffered to a pH of approximately 7.4 by a suitable buffer such as a phosphate buffer, for 0.5 hours to 14 days at 4–37 degrees C.
Step 3: Treatment with Denaturant/Surfactant/Crosslinking Agent (DSC Treatment):
a. Before or after fixation of the tissue in Step 2, the tissue is immersed in or otherwise contacted with a mixture containing i) a crosslinking agent, ii) a denaturing agent and iii) a surfactant (i.e., a DSC solution). One preferred DSC solution is a mixture of i) formaldehyde, ii) ethanol and ii) surfactant (e.g., Tween 80™ surfactant, available from ICI Americas, Brantford, Ontario). A preferred formulation for the DSC solution is as follows:
Formaldehyde . . . 0.1–10.0% (more pref. 4+/−0.4%) by weight
Ethanol . . . 1% to less than 60% (more pref. 2.2+/−2.2%) by weight
Tween 80 . . . 0.1–5.0% (more pref. 1.2+/−0.12%) by weight
The tissue is preferably immersed in the DSC solution for 2 to 24 hours and typically about 9 hours. During this immersion period, the DSC solution is maintained at a temperature of 4–50 degrees C., and typically about 20–37 degrees C.
Those skilled in the art will appreciate that various alternative chemical compounds or solutions may be substituted for each component of the DSC solution, as follows:
Potential Alternative Denaturing Agents:
After completion of Steps 1–3, and irrespective of the order in which Steps 2 and 3 were performed, the tissue is rinsed with a suitable rinsing solution such as isotonic saline or 0.625% glutaraldehyde. Thereafter, the tissue may be transported into a clean room or aseptic environment, and may be further trimmed or shaped (if necessary) and attached to or assembled with any non-biological components (e.g., stents, frames, suture rings, conduits, segments of polyester mesh to prevent suture tear-through, etc. . . ) To form the desired implantable bioprosthetic device. Examples of such assembled bioprosthetic devices include porcine bioprosthetic heart valves (i.e., the Carpentier-Edwards® stented porcine bioprosthesis; Baxter Healthcare Corporation; Edwards CVS Division, Irvine, Calif. 92714-5686), bovine pericardial heart valve prostheses (e.g., Carpentier-Edwards ®Pericardial Bioprosthesis, Baxter Healthcare Corporation, Edwards CVS Division; Irvine, Calif. 92714-5686), stentless porcine aortic prostheses (e.g., Edwards® PRIMA Stentless Aortic Bioprosthesis, Baxter Edwards AG, Spierstrasse 5, GH6048, Horn, Switzerland), and bio-mechanical ventricular assist devices (e.g., the Novacor N-100PC model; Novacor, Oakland, Calif.).
Step 5: Treatment with Denaturant/Surfactant/Crosslinking Agent (DSC Treatment) (Optional)
Optionally, the DSC treatment described in Step 3 above may be carried out at this point in the procedure instead of as the third (3rd) step of the procedure. Or, if such DSC treatment has already been performed as the third (3rd) step of the procedure, it may be repeated at this point in the procedure (e.g., as the fifth (5th) step of the procedure).
Step 6: Terminal Sterilization
The bioprosthesis is immersed in or contacted with a terminal sterilant and heated for a period of time sufficient to ensure sterility of the bioprosthesis until the time of implantation. This terminal sterilization procedure is preferably carried out in the sealed container or package in which the bioprosthesis will be shipped and stored until the time of implantation.
A preferred terminal sterilant is 0.2–2.0% by weight glutaraldehyde, and most preferably about 0.25% by weight glutaraldehyde. Although DSC solution or compounds of the DSC solution can also be used. The preferred terminal sterilization time and temperature is 1–6 days at 37° C. or 1–2 days at 50° C.
Preparation of a Stented Pericardial Valve Bioprosthesis
The following is an example of the manner in which a stented pericardial bioprosthetic heart valve may be manufactured in accordance with the method of the present invention.
STEP 1: A bovine pericardial sac is obtained from a slaughterhouse, placed on ice, and transported to the location at which the bioprosthesis will be manufactured. Thereafter, the tissue is defatted and trimmed.
STEP 2: The tissue is washed with sterile isotonic saline solution- and is thereafter immersed in a solution of 0.625% by weight glutaraldehyde buffered to a pH of approximately 7.4 by a suitable buffer such as a phosphate buffer, for approximately thirty minutes at room temperature. This results in crosslinking of the collagen present within the tissue.
STEP 3: The tissue is then removed from the fixative solution used in Step 2 and rinsed thoroughly with an aqueous solution of 0.625% (by weight) glutaraldehyde. Sometime thereafter, the DSC Treatment of Step 3 is carried out by immersing the tissue in DSC solution for 2 hours at ambient temperature. The DSC solution has the following formula:
STEP 4: After completion of the DSC Treatment of Step 3, the tissue is removed from the DSC solution and leaflets are formed. Thereafter, the leaflets are mounted upon and sutured to a stent. Also, a needle-penetrable suture ring is attached about the inflow end of the valve to facilitate suturing of the bioprosthesis to the native tissue of the host patient. This completes the assembly and fabrication of the bioprosthetic heart valve.
STEP 5: Subject the finished valve after inspection to DSC treatment again for 9 hours at 37° C.
STEP 6: After the bioprosthesis is removed from the DSC solution it is transferred to a container which has been pre-filled with 0.25% glutaraldehyde aqueous solution buffered to a pH of 7.4 with sodium hydroxide such that the bioprosthetic valve is fully immersed in the buffered glutaraldehyde solution. Thereafter, the container is sealed and placed in an oven where it is heated to a terminal sterilization temperature of 37.5+/−2.5 degrees C. for 25–27 hours. Thereafter, the container is cooled to room temperature and shipped to the hospital or other location(s) where it is stored until the time of implantation of the bioprosthetic valve.
Studies were performed to objectively assess the benefits of the above-described process in mitigating calcification and improving hemocompatibility. First, the new process was compared with a process as shown in
In the first comparison study, control tissues were generated by traditional glutaraldehyde fixation in conjunction with a terminal sterilization step as described above. In these tests, circular pieces of tissue prepared by the new method and by the control method were surgically placed in either the subcutaneous space in rats and rabbits, or in a pocket created in the paravertebral muscle in the rabbit. After thirty days implantation the tissues were excised from the host tissue, rinsed, and calcium content is determined by atomic absorption spectroscopy. The study results are as follows:
As is apparent, tissue produced according to the new process demonstrate reduced calcification in rat and rabbit implantation assays, and demonstrate the superiority of the new tissue preparation method compared to the control method.
The second study shows that tissues prepared according to the new method also demonstrate reduced adhesion of blood cells compared to a traditional treatment methods. The control method for the second study is seen in
The invention has been described hereabove with reference to certain presently preferred embodiments or examples only, and no effort has been made to exhaustively describe all possible embodiments or examples of the invention. Those skilled in the art will recognize that various modifications, additions and changes may be made to the particular embodiments and examples described hereabove without departing from the intended spirit and scope of the invention. Accordingly, it is intended that all such modifications, additions and changes be included within the scope of the following claims.
The present application is a continuation of U.S. application Ser. No. 09/828,650, filed on Apr. 6, 2001, now U.S. Pat. No. 6,547,827, which is a continuation of U.S. application Ser. No. 09/157,546, filed Sep. 21, 1998, “now U.S. Pat. No. 6,214,054.
Number | Name | Date | Kind |
---|---|---|---|
2393580 | Weiskopf | Jan 1946 | A |
3002895 | Freedman | Oct 1961 | A |
3093439 | Bothwell | Jun 1963 | A |
3870789 | Mikat | Mar 1975 | A |
3927422 | Sawyer | Dec 1975 | A |
3961097 | Gravlee, Jr. | Jun 1976 | A |
3966401 | Hancock et al. | Jun 1976 | A |
4050893 | Hancock et al. | Sep 1977 | A |
4082507 | Sawyer et al. | Apr 1978 | A |
4120649 | Schechter | Oct 1978 | A |
4323358 | Lentz et al. | Apr 1982 | A |
4350492 | Wright et al. | Sep 1982 | A |
4372743 | Lane | Feb 1983 | A |
4402697 | Pollock et al. | Sep 1983 | A |
4405327 | Pollock | Sep 1983 | A |
4624822 | Arru et al. | Nov 1986 | A |
4648881 | Carpentier et al. | Mar 1987 | A |
4770665 | Nashef | Sep 1988 | A |
4786287 | Nashef et al. | Nov 1988 | A |
4800603 | Jaffe | Jan 1989 | A |
4885005 | Nashef et al. | Dec 1989 | A |
4911713 | Sauvage | Mar 1990 | A |
4990131 | Dardik et al. | Feb 1991 | A |
5002566 | Carpentier et al. | Mar 1991 | A |
5068086 | Sklenak et al. | Nov 1991 | A |
5104405 | Nimni | Apr 1992 | A |
5116564 | Jansen et al. | May 1992 | A |
5131908 | Dardik et al. | Jul 1992 | A |
5275954 | Wolfinbarger | Jan 1994 | A |
5279612 | Eberhardt | Jan 1994 | A |
5447536 | Girardot et al. | Sep 1995 | A |
5595571 | Jaffe et al. | Jan 1997 | A |
5632778 | Goldstein | May 1997 | A |
5773285 | Park | Jun 1998 | A |
5792603 | Dunkelman et al. | Aug 1998 | A |
5882918 | Goffe | Mar 1999 | A |
5931969 | Carpentier et al. | Aug 1999 | A |
6214054 | Cunanan et al. | Apr 2001 | B1 |
Number | Date | Country |
---|---|---|
WO 8401894 | May 1984 | WO |
WO 9511047 | Apr 1995 | WO |
WO 9522361 | Aug 1995 | WO |
WO 9534332 | Dec 1995 | WO |
WO 9604028 | Feb 1996 | WO |
WO 9604028 | Feb 1996 | WO |
WO 9613227 | May 1996 | WO |
Number | Date | Country | |
---|---|---|---|
20030226208 A1 | Dec 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09828650 | Apr 2001 | US |
Child | 10345120 | US | |
Parent | 09157546 | Sep 1998 | US |
Child | 09828650 | US |