This disclosure relates to depositing a coating on a work piece and, more particularly, to a method for improving the coating.
Physical vapor deposition (“PVD”) is one common method for coating a substrate, such as a gas turbine engine airfoil. To deposit a thermal barrier coating on a gas turbine engine airfoil, conventional Electron Beam Physical Vapor Deposition (“EB-PVD”) may utilize an electron beam gun to melt and vaporize a source material in one or more crucibles within a deposition chamber and deposit the source material onto the substrate. Heaters within the deposition chamber may be used to heat the airfoils to a predetermined temperature to facilitate the coating process.
An example method for use with a coating process includes depositing a ceramic coating on a substrate within a coating chamber. Prior to depositing the ceramic coating, an electron beam source is used to heat a ceramic material within the coating chamber. The ceramic material radiates heat that heats the substrate to an oxidation temperature to form an oxide layer on the substrate. A desired evaporation rate of the ceramic material is established during the heating. For example, the initial evaporation rate is approximately zero such that the ceramic material is not prematurely deposited onto the substrate before appropriately heating the substrate.
The various features and advantages of the disclosed examples will become apparent to those skilled in the art from the following detailed description. The drawings that accompany the detailed description can be briefly described as follows.
Referring to
In the illustrated example, the deposition apparatus 10 includes a coating chamber 14 for containing the work pieces 12 during the coating process. For instance, the coating chamber 14 may be a vacuum chamber and may include various ports for evacuating the interior of the coating chamber 14 or for selectively introducing gases that are to be used in the coating process. For instance, a gas source 13 provides a desired flow of oxygen or other gas. Optionally, a pump 15 may circulate a coolant (e.g., water) through walls of the coating chamber 14 to control the temperature of the walls of the coating chamber 14.
A heating source 16 may be located within the coating chamber 14 to heat the work pieces 12 to an oxidation temperature for the pre-heating stage. For instance, the work pieces 12 may include a nickel alloy substrate and a bond coat on the substrate. The bond coat may include MCrAlY, where the M includes at least one of nickel, cobalt, iron, or a combination thereof, Cr is chromium, Al is aluminum, and Y is yttrium.
The work pieces 12 may be pre-heated at the oxidation temperature to form a thermally grown oxide on the bond coat that enhances adhesion of ceramic thermal barrier coatings to the work pieces 12. In one example, the oxidation temperature is about 1700-2100° F. (927-1149° C.). For instance, the temperature may be greater than 1825° F. (996° C.) to form alpha alumina oxide but less than the temperature tolerance of the alloy used for the work piece 12 (e.g., 2100° F.). The work pieces 12 may be heated as described in co-pending U.S. Ser. No. 12/196,368 entitled “DEPOSITION APPARATUS HAVING THERMAL HOOD.” Given this description, one of ordinary skill in the art will recognize suitable oxidation temperatures to meet their particular needs.
In the disclosed example, the heating source 16 includes a media 18 that may be used to radiate heat and heat the work pieces 12 to the oxidation temperature. The media 18 may be any type of media that radiates heat. For instance, the media 18 may include particles of a ceramic material in a water-cooled tray 19. In one example, the ceramic material composition is equivalent to the composition of the ceramic thermal barrier coating that is to be deposited onto the work pieces 12 to avoid contaminating the work pieces 12 with foreign substances. In a further example, the media 18 includes gadolinia and zirconia.
At least one electron beam source 20, such as an axial electron gun, is mounted relative to the coating chamber 14 for pre-heating the media 18 and for depositing the ceramic thermal barrier coating. The disclosed example illustrates two electron beam sources 20, which may be used for pre-heating the media 18, applying the ceramic thermal barrier coating, or both. However, given this description, one of ordinary skill in the art will recognize that a single source or additional sources may be used to meet the needs of a particular application or coating process.
The work pieces 12 are mounted within a coating zone 30 within the coating chamber 14. For instance, the coating zone 30 is the spatial volume where the work pieces 12 will be coated. The work pieces 12 may be mounted in the coating zone 30 using a mounting fixture, such as a cylindrical fixture that extends around axis A.
The electron beam sources 20 may be activated to emit electron beams 42 onto the media 18. The electron beams 42 heat the media 18 and produce radiant heat 44 that radiates toward the coating zone 30. For example, a controller (not shown) may utilize software, hardware, or both to control focus, filament current, scanning area (power density), and/or other parameters of the electron beam sources 20 along with other operations associated with the deposition apparatus 10 (e.g., gas flow) to provide a desired amount of heat before and/or during the coating process. The electron beam sources 20 may also raster relatively low current-density electron beams 42 across the work pieces 12 prior to or during coating to directly heat the work pieces 12.
In the coating process, an ingot 50 is the source material for coating the work pieces 12. The deposition apparatus 10 introduces the ingot 50 into the coating chamber 14 through a crucible 52. Although only one crucible 52 is shown, the coating chamber 14 may utilize multiple crucibles 52 and ingots 50. A nozzle 57 on the crucible 52 includes an orifice 58 for directing a carrier gas 54 from a pressurized gas source 56 in a desired direction toward the work pieces 12 (e.g., directed vapor deposition). The nozzle 57 tapers from the sides of the crucible 52 to the orifice 58 to “jet” the carrier gas 54 toward the work pieces 12.
The electron beams 42 heat and evaporate the ingot 50. The carrier gas 54 directed from the orifice 58 carries the evaporated ingot material toward the work pieces 12. The evaporated ingot material deposits onto the surfaces of the work pieces 12 as the ceramic thermal barrier coating.
Referring to
In the pre-heating step 102, establishing the desired evaporation rate of the media 18 may be used to limit or prevent unwanted evaporation of the media 18. For instance, if the media includes gadolinia and zirconia (e.g., gadolinia stabilized zirconia), the gadolinia melts at a lower temperature than the zirconia. Therefore, heating the media 18 may cause melting and evaporation of small amounts of the gadolinia prior to completing the pre-heating to form the thermally grown oxide on the work pieces 12. If the gadolinia evaporates, the evaporated gadolinia may condense on the work pieces 12. In some examples, deposition of gadolinia during the pre-heating step may be desired. However, in other examples, evaporation and deposition of gadolinia during the pre-heating step 102 is unwanted because the deposited gadolinia may alter the stoichiometry of the subsequently deposited ceramic thermal barrier coating or lead to other unforeseen or unwanted results. In this regard, the method 100 may be used to establish the desired evaporation rate of the media 18 at about zero to avoid deposition of gadolinia during the pre-heating step 102.
The heating of the media 18 may be controlled to establish a desired evaporation rate of the media 18, such as to avoid evaporation of the media 18. In one example, a nominal gas flow rate through the coating chamber 14 may be used to attenuate the electron beams 42 and control evaporation of the media 18 (e.g., gadolinia). The term “nominal” as used in this description may refer to the actual flow rate, measured flow rate, set point flow rate, or other indication of the flow rate.
For instance, the gas source 13 may control an oxygen flow rate through the coating chamber 14. Oxygen gas is used during the pre-heating step 102 to facilitate forming the thermally grown oxide on the bond coat. The oxygen gas may be mixed with an inert gas, such as argon. In one example, the gas source 13 establishes a nominal oxygen gas flow rate through the coating chamber 14 of about 100-600 standard cubic centimeters per minute to attenuate the electron beams 42 and establish an evaporation rate of about zero. In a further example, the gas source 13 establishes a nominal oxygen gas flow rate of about 500-600 standard cubic centimeters per minute to attenuate the electron beams 42 and establish an evaporation rate of about zero. Higher gas flow rates may be used when coating the work pieces 12, after pre-heating. For instance, mixed gas flow of oxygen with argon, helium, and/or hydrogen may be about 10,000 standard cubic centimeters or more, depending on the parameters of a particular coating process.
In another aspect, the gas flow rate during pre-heating may correspond to a gas pressure within the coating chamber 14. For instance, the gas pressure may be about 1×10−4-2×10−3 torr (0.013-0.267 pascals). In a further example, the gas pressure may be about 7×10−4-1×10−3 torr (0.093-0.133 pascals). Higher pressures may be used when coating the work pieces 12, after pre-heating. For instance, the gas pressure may be about 5×10−2-5×10−1 torr (6.7-66.7 pascals).
Alternatively, or in addition to controlling the gas flow rate, the electron beam sources 20 may be programmed to scan and heat only a desired area of the media 18 to establish a desired evaporation rate of the media 18, such as to avoid evaporation of the media 18. For example, if the media 18 is crushed particles of gadolinia stabilized zirconia in the water-cooled tray 19, the electron beam sources 20 may heat an area of about 50-200 square inches (323-1290 square centimeters) to establish an evaporation rate of about zero. In another example, the area is about 87-175 square inches (561-1129 square centimeters) to establish an evaporation rate of about zero. Using the given areas provides the benefit of distributing the electron beams 42 over a relatively large area that avoids rapid heating of the media 18.
Alternatively, or in addition to controlling the gas flow rate and the heating area, a filament electric current of the electron beam sources 20 may be controlled to establish a desired evaporation rate of the media 18, such as to avoid evaporation of the media 18. For instance, the filament electric current corresponds to a power density of the electron beams 42. If the power density exceeds a certain threshold, the media 18 may evaporate. In one example, limiting the filament electric current to about 1-3.5 amperes establishes an evaporation rate of the media 18 of about zero. In a further example, the filament electric current is about 1.5-2.75 amperes. In a further example, the filament electric current is about 2.125 amperes. It is to be understood however, that the filament electric current may depend upon the type of electron beam gun used. In one example, the electron beam gun is a linear type gun rated at about 70 kW at 70 kV functioning at about 1 ampere, which is suitable for the relatively high pressures used in directed vapor electron beam PVD.
As indicated, the gas flow, heating area, and filament electric current may be controlled in combination to establish a desired evaporation rate of the media 18, such as to avoid evaporation of the media 18. Thus, any of the given parameters may be used in combination with other given parameters, such as beam spot specific power and raster frequency, to achieve a desired evaporation rate.
After the pre-heating step 102, the deposition apparatus 10 deposits the ceramic thermal barrier coating on the work pieces 12 during the coating step 104. For example, the deposition apparatus 10 evaporates the ingot 50 as described above. In one example, the parameters selected for the pre-heating step 102 may be adjusted prior to the coating step 104 to facilitate depositing the ceramic thermal barrier coating. For instance, the gas source 13 may change the gas flow such that the electron beams 42 may be focused on the ingot 50 with less attenuation. The oxygen gas facilitates formation of the thermally grown oxide, while the coating step 104 does not require as much oxygen. The filament electric current may also be adjusted for the coating step 104.
Although a combination of features is shown in the illustrated examples, not all of them need to be combined to realize the benefits of various embodiments of this disclosure. In other words, a system designed according to an embodiment of this disclosure will not necessarily include all of the features shown in any one of the Figures or all of the portions schematically shown in the Figures. Moreover, selected features of one example embodiment may be combined with selected features of other example embodiments.
The preceding description is exemplary rather than limiting in nature. Variations and modifications to the disclosed examples may become apparent to those skilled in the art that do not necessarily depart from the essence of this disclosure. The scope of legal protection given to this disclosure can only be determined by studying the following claims.
Number | Name | Date | Kind |
---|---|---|---|
4351267 | Kalbskopf | Sep 1982 | A |
4405659 | Strangman | Sep 1983 | A |
4676994 | Demaray | Jun 1987 | A |
4816293 | Hiramoto | Mar 1989 | A |
5262245 | Ulion et al. | Nov 1993 | A |
5514482 | Strangman | May 1996 | A |
5534314 | Wadley | Jul 1996 | A |
5998003 | Courtright et al. | Dec 1999 | A |
6177200 | Maloney | Jan 2001 | B1 |
6255001 | Darolia | Jul 2001 | B1 |
6284323 | Maloney | Sep 2001 | B1 |
6365236 | Maloney | Apr 2002 | B1 |
6447854 | Rigney | Sep 2002 | B1 |
6482537 | Strangman | Nov 2002 | B1 |
7972657 | Schlichting et al. | Jul 2011 | B2 |
8080283 | Schlichting et al. | Dec 2011 | B2 |
20030211245 | Spitsberg et al. | Nov 2003 | A1 |
20040134430 | Hass et al. | Jul 2004 | A1 |
20040211363 | Bruce | Oct 2004 | A1 |
20050244663 | Ulion et al. | Nov 2005 | A1 |
20050255242 | Hass | Nov 2005 | A1 |
20060062912 | Wortman | Mar 2006 | A1 |
20070172703 | Freling | Jul 2007 | A1 |
20070207266 | Lemke | Sep 2007 | A1 |
20080280130 | Beele et al. | Nov 2008 | A1 |
20090308733 | Maloney et al. | Dec 2009 | A1 |
20100047075 | Schlichting et al. | Feb 2010 | A1 |
20100047474 | Neal et al. | Feb 2010 | A1 |
20100098865 | Litton et al. | Apr 2010 | A1 |
20100104773 | Neal et al. | Apr 2010 | A1 |
20100154425 | Litton et al. | Jun 2010 | A1 |
20100189929 | Neal et al. | Jul 2010 | A1 |
20100196605 | Schlichting et al. | Aug 2010 | A1 |
20100247809 | Neal | Sep 2010 | A1 |
20100247952 | Latour et al. | Sep 2010 | A1 |
20100304037 | Zimmerman et al. | Dec 2010 | A1 |
20110086179 | Schlichting et al. | Apr 2011 | A1 |
20120164326 | Neal | Jun 2012 | A1 |
20120196030 | Neal et al. | Aug 2012 | A1 |
Number | Date | Country |
---|---|---|
0969117 | Jan 2000 | EP |
1621647 | Feb 2006 | EP |
1801263 | Jun 2007 | EP |
1162822 | Aug 1969 | GB |
2006045674 | Feb 2006 | JP |
2007192219 | Aug 2007 | JP |
WO 0157288 | Aug 2001 | WO |
03028428 | Apr 2003 | WO |
2004011688 | Feb 2004 | WO |
2004048632 | Jun 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20100104766 A1 | Apr 2010 | US |