Various devices are used to calculate characteristics of geological formations in drilling operations. Some devices include radiation emitters to emit radiation into the geological formation and detectors to detect the by-products of the interaction of the emitted radiation with a formation. For example, when the radiation emitter is a neutron emitter, and the emitted neutrons interact with nuclei in the geological formation, gamma rays are released, and detectors are used to measure the spectrum of released gamma rays to determine characteristics of the geological formation.
According to one embodiment, a method of calculating a formation characteristic includes measuring with at least two detectors spaced apart from each other, an intensity of gamma rays, and calculating the formation characteristic by calculating a ratio of the intensity of the gamma rays detected by the two detectors.
According to another embodiment, a gamma ray measurement system includes a neutron source; a first detector; a second detector; and a computing device configured to receive from the first and second detectors detection signals corresponding to a detected gamma ray intensity of each of the first and second detectors, and configured to calculate a formation characteristic based on a ratio of a gamma ray intensity detected by the first detector to a gamma ray intensity detected by the second detector.
According to yet another embodiment, a method of measuring a characteristic of an earth formation includes: covering at least two detectors with a layer of a boron isotope B10, cadmium or samarium; inserting the at least two detectors and a neutron source into a borehole; emitting neutrons from the neutron source; detecting gamma rays generated by a reaction of the B10 isotope, cadmium or samarium and neutrons; and calculating the characteristic of the formation by detecting a ratio of intensities of gamma rays detected by the at least two detectors.
Referring now to the drawings wherein like elements are numbered alike in the several Figures:
The assembly 20 may be embodied with any suitable carrier. A “carrier” as described herein means any device, device component, combination of devices, media and/or member that may be used to convey, house, support or otherwise facilitate the use of another device, device component, combination of devices, media and/or member. Exemplary non-limiting carriers include drill strings of the coiled tube type, of the jointed pipe type and any combination or portion thereof. Other carrier examples include casing pipes, wirelines, wireline sondes, slickline sondes, drop shots, downhole subs, bottom-hole assemblies, and drill strings.
In one embodiment, the measurement unit 22 of the assembly includes at least one neutron source 23 and a plurality of detectors, such as a short space (SS) detector 24 and a long space (LS) detector 25. The neutron source 23 emits fast neutrons 40, which interact with matter in the borehole and/or formation, lose energy, and become thermalized. The thermalized neutrons form a thermal neutron cloud 41, and the characteristics of the thermal neutron cloud 41, such as special distribution of thermal neutron flux, correlates with the properties of the matter that makes up the geological formation 10 such as hydrogen index and formation porosity. The neutron source 23 may be one of a chemical neutron source and a pulsed neutron generator.
The thermal neutron flux passing the detectors is converted into detectable particles, e.g., gamma rays, which can be detected by the SS detector 24 and the LS detector 25 by the material 29 and 33 that converts thermals neutrons into gamma rays 29 and 33. The material 29 and 33 converting neutrons into gamma rays 34 and 35 can be boron isotope B10. In one embodiment, each of the SS detector 24 and the LS detector 25 are made of a piece of scintillation material and optically coupled photodetector. For example, the SS detector 24 and the LS detector 25 include a respective crystal 26 and 30, and a respective light sensor 27 and 31. In the present embodiment, the crystals 26 and 30 are NaI crystals, and the light sensors 27 and 31 are photomultiplier tubes. In alternative embodiments, other scintillation crystals such as LanBr3:Ce, YAP, GYSO or BGO are used to detect gamma rays emitted in the process of neutron interaction with material converting neutrons into gamma rays.
In the embodiment shown in
Referring again to
Power P can be supplied to the assembly 20 performing measurement of the formation properties 20 via a wire to power the neutron source 23, e.g., when the neutron source is a pulsed neutron generator, and may also provide operating power to the photodetectors 27 and 31. Data D is transmitted to a computing device, such as a personal computer or server having a database to store and generate formation characteristic data based on the data collected by the SS detector 24 and the LS detector 25. The computing device may include a processor and another suitable electronics, and may be disposed at any desired location, such as at surface location or a downhole location.
The intensity of gamma rays produced by the neutron reaction with B10 nuclei is proportional to the intensity of the thermal neutron flux passing through the detectors 24 or 25. Since the characteristics of the thermal neutron cloud 41 correspond to characteristics of the geological formation 10, the intensity of gamma rays produced in neutron reaction with B10 nuclei provides information about the characteristics of the geological formation 10. Since the boron peak in the measured spectrum includes the gamma ray signal generated in a neutron reaction with B10 nuclei, detecting and measuring the boron peak provides information about the thermal neutron cloud 41 and the geological formation 10. In particular, the ratio of the intensity of gamma rays formed in neutron reaction with B10 nuclei in layer 29 of the SS detector 24 to the intensity of gamma rays formed in neutron reaction with B10 nuclei in layer 33 of the LS detector 25 corresponds to a porosity of the formation 10, as demonstrated by formula (I).
In equation (1), R is a ratio of gamma ray intensities, GIxx is the gamma ray intensity emitted in neutron reaction with layers of B10 coatings 34 and 35 detected of a respective SS or LS detector 24 or 25, FTNxx is a flux of thermal neutrons passing through the respective SS or LS detector 24 or 25, n(Zx) is the concentration of thermal neutrons in a point of detector location Zx, and f(ρ) is a function of the formation porosity.
In the example shown in
The gamma ray measurement system 42 includes the measurement unit 22, a computing device 43, and a communication line 45 to transmit detected gamma ray data from the measurement unit 22 to the computing device 43. The computing device 43 includes an input terminal 44 to receive the gamma ray data from the measurement unit 22, and a processor, memory, and supporting logic to convert the detected data to information about a geological formation. The input terminal 44 is one of a wired port, such as a conductive lead connected to a wire, or a wireless port, such as an antenna. Likewise, the communication line 45 is one of a wire and air through which wireless data signals propagate.
The computing device 43 is configured to receive the detected gamma ray data and calculates formation characteristics, such as a porosity of the formation, based at least upon the portion of the gamma ray data corresponding to gamma rays generated when neutrons interact with the coating of the detectors 24 and 25, as discussed above.
In support of the teachings herein, various analysis components may be used, including a digital and/or an analog system. The computing device and the detection assembly may have components such as a processor, storage media, memory, input, output, communications link, user interfaces, software programs, signal processors (digital or analog) and other such components (such as resistors, capacitors, inductors and others) to provide for operation and analyses of the apparatus and methods disclosed herein in any of several manners well appreciated in the art. It is considered that these teachings may be, but need not be, implemented in conjunction with a set of computer executable instructions stored on a computer readable medium, including memory (ROMs, RAMs), optical (CD-ROMs), or magnetic (disks, hard drives), or any other type that when executed causes a computer to implement the method of the present invention. These instructions may provide for equipment operation, control, data collection and analysis and other functions deemed relevant by a system designer, owner, user or other such personnel, in addition to the functions described in this disclosure.
Further, various other components may be included and called upon for providing for aspects of the teachings herein. For example, a power supply (e.g., at least one of a generator, a remote supply and a battery), cooling unit, heating unit, motive force (such as a translational force, propulsional force or a rotational force), magnet, electromagnet, sensor, electrode, transmitter, receiver, transceiver, antenna, controller, optical unit, electrical unit or electromechanical unit may be included in support of the various aspects discussed herein or in support of other functions beyond this disclosure.
It will be recognized that the various components or technologies may provide certain necessary or beneficial functionality or features. Accordingly, these functions and features as may be needed in support of the appended claims and variations thereof are recognized as being inherently included as a part of the teachings herein and a part of the invention disclosed.
While the invention has been described with reference to exemplary embodiments, it will be understood that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications will be appreciated to adapt a particular instrument, situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the appended claims.
This application claims priority from U.S. Provisional Application No. 61/500,039 filed Jun. 26, 2011 in the U.S. Patent and Trademark Office, the entire contents of which are hereby incorporated by reference in the present application.
Number | Date | Country | |
---|---|---|---|
61500039 | Jun 2011 | US |