Method of communication with the POS terminal, the frequency converter for the post terminal

Information

  • Patent Grant
  • 9081997
  • Patent Number
    9,081,997
  • Date Filed
    Sunday, October 11, 2009
    14 years ago
  • Date Issued
    Tuesday, July 14, 2015
    8 years ago
Abstract
The communication method with the POS terminal that improves transmission characteristics of the authorized payment from the mobile communication device (9) is based upon a fact that the frequency converter (1) on that side of the communication channel where the POS terminals NFC antenna (8) is. The frequency converter (1) receives and processes the signal from the POS terminals NFC antenna (8) on the 13.56 MHz frequency, sends it on a higher frequency into the mobile communication device (9) and vice versa. The frequency converter (1) is outwardly energetically passive and is power supplied from the electromagnetic field received from the POS terminals antenna (8). The frequency converter (1) contains an antenna, tuned to the frequency in the range of 13.00 to 14.00 MHz, that is connected to the power supply element (4). The frequency converter (1) is located in the proximity of the POS terminal's antenna.
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is the National Stage of International Application No. PCT/IB2009/054457 filed Oct. 11, 2009, which claims the benefit of Slovak Application No. PP 5093-2008, filed Oct. 15, 2008, the disclosures of which are incorporated herein by reference in their entirety.


FIELD OF THE INVENTION

The invention refers to the usage and configuration of a frequency converter for NFC communication with a POS terminal. During direct debit payment the POS terminal communicates in a contactless way with a mobile communication device, such as a mobile phone with a removable card. The invention describes the way data are transmitted between the POS terminal and the mobile communication device using the NFC antenna with a frequency converter.


BACKGROUND OF THE INVENTION

The POS terminals that contain a NFC communication element are commonly used. This element is capable of ensuring contactless communication with the customer's personal device. Along with the increasing number of mobile communication device's functions, the necessity to ensure a reliable communication channel that operates with NFC elements on both sides of the channel also increases. The appropriate solution is considered to be the one that extends functions of the removable card, such as a memory card for the antenna and the NFC communication element function. Since the metal slot for the removable card, along with the hardware's environment, shade the removable card and cause problems in communication on a standard 13.56 MHz frequency, a desirable solution would be such, in which it would be possible to use a different, more suitable frequency without requiring a change in the existing hardware equipment of the POS terminals.


Such a solution is not known at present. The solutions describing common converters are known as in the invention EP 0601091, US 2008/0233906. However existing solutions describe converters which are not practically usable for supplementary extension of existing POS terminals.


There also are solutions as in the DE102007019272A1 file, in which there is a supplementary antenna that is conducted away from the shaded area of the mobile phone. However, these solutions are not suitable for universal usage and complicate the manipulation with a mobile phone. At the moment there is no such data transmission method, that would enable a reliable NFC communication between the POS terminal and the additionally installed NFC communication element in the mobile communication device.


SUMMARY OF THE INVENTION

The deficiencies mentioned are eliminated to a great extent by the way of communication with the POS terminal, in which the contactless payment application is launched over the NFC communication channel using the POS terminal and the mobile communication device, such as a mobile phone, as described by this invention. The subject matter of the invention is based on the fact that there is a frequency converter placed on that side of the communication channel, where there is the POS terminal's NFC antenna. The frequency converter receives the signal from the POS terminal's NFC antenna and sends it on the mobile communication device's frequency and in case of reverse data transmission the frequency converter receives the signal from the mobile communication device and sends it on the frequency of the POS terminal's NFC antenna.


From the simple application's point of view, it is suitable, if the frequency converter is outwardly energetically passive and is supplied with energy from the electromagnetic field received from the POS terminal's antenna. The frequency converter processes a part of the energy radiated by the signal of the POS terminal's NFC antenna, transforms it and sends the signal with original data further on a higher frequency. The rest of the signal radiated from the NFC antenna retains the original frequency.


During data transmission in the direction going from the POS terminal to the mobile communication device, the frequency converter's antenna that is located near the POS terminal's NFC antenna receives the signal from the POS terminal's NFC antenna, processes it in the first modulation and demodulation unit and then sends the data from the received signal to the second modulation and demodulation unit. From there, the data signal is sent over the transmitter on a higher frequency f1, which corresponds to the receiving frequency of the mobile communication device. In case of a reverse data transmission direction, the receiver of the frequency converter receives the signal from the mobile communication device on the frequency f2, processes it in the second amplitude modulation and demodulation unit, then sends the data from the received signal to the first amplitude modulation and demodulation unit, from where subsequently the signal data is sent on the frequency that corresponds to the POS terminal's NFC antenna's frequency—so preferably in the range from 13.00 to 14.00 MHz. The transmitter's frequency f1 can be different from the receiver's f2 frequency in order to avoid mutual disturbance between the transmitted and received signal. The value of the receiver's frequency can be of approximately a half the transmitter's frequency value or of approximately double of the transmitter's frequency value. The transmitter's f1 frequency is the xth multiple of the receiver's f2 frequency or the receiver's f2 frequency is the xth multiple of the transmitter's f1 frequency, while the value of x ranges from 1.75 to 2.45. In preferable configuration, both of the frequencies are the free, unlicensed frequencies defined by the ITU telecommunication union. The receiver's and/or transmitter's frequency can be within the range of 433.05-434.79 MHz or 902-928 MHz or 2.400-2.500 GHz or 5.725-5.875 GHz.


The deficiencies mentioned in the existing technology are to a large extent eliminated also by the frequency converter at the POS terminal for the NFC communication between the POS terminal and the mobile communication device, such as a mobile phone. The frequency converter encompasses an amplitude modulation and demodulation unit, an antenna, a transmitter and a receiver as described in this invention. The subject matter of this invention is based on the fact that the antenna is tuned to the frequency in the range from 13.00 to 14.00 MHz and is connected to the power supply element over the first modulation and demodulation unit. The power supply element is connected to the second modulation and demodulation unit, to which


a transmitter and a receiver are connected. The frequency converter is located in the proximity, within the reach of the POS terminal's antenna.


Such an implementation of otherwise known circuit elements enables to receive the NFC signal with data on the basic frequency and to send these data on a different, usually higher frequency. In a preferable configuration, the energetic need of the frequency converter's power supply element is covered exclusively by the energy from the electromagnetic field of the POS terminal's NFC antenna. Due to this, the frequency converter is located in the proximity of the POS terminal's NFC antenna. The POS terminal's NFC antenna is the source of energy even in the case of a reverse data flow, when the frequency converter receives the signal from the mobile communication device and modulates the received data into the original 13.56 MHz frequency signal.


From the point of view of simple usage and placement of the frequency converter it is desirable, if the frequency converter is of flat shape up to 3 mm in thickness, with 1 mm being preferred and if the frequency converter's body is placed next to, preferably affixed to the POS terminal's reader. The frequency converter can be formed as a sticker that is affixed to the plastic cover of the POS terminal's NFC reader in the place, under which there is the POS terminal's NFC antenna.


In order to ensure sufficient power supply for the frequency converter, it is suitable, if the frequency converter is located in such a way, in which the frequency converter's antenna is close to the POS terminal's antenna. The center of mass of the frequency converter's antenna surface is at a 20 mm distance from the center of mass of the POS terminal's antenna surface. In the configuration described, given to the frequency convertor, the signal from the POS terminal is radiated on a new frequency and also on an original 13.56 MHz frequency. This is possible, since the frequency converter can be proportioned in such a way, that 10 to 30% of the radiated signal from the original electromagnetic field is converted to a new frequency. The frequency converter's body does not shade the signal's energy 70 to 90% surplus of the POS terminal's NFC antenna. This part permeates on an original frequency. This offers a possibility for both the existing NFC communication elements along as the communication device with a different, usually higher frequency to communicate with the POS terminal.


The high-frequency signal has substantially higher permeability through the environment and on the mobile communication devices side it is possible to locate an antenna, respectively two antennas directly on the removable card inserted into the mobile communication device. The value of the receiver's frequency can be of approximately a half the transmitter's frequency value or of approximately double of the transmitter's frequency value. In preferable solution, both frequencies are free, unlicensed frequencies as are the frequencies in the range 433.05-434.79 MHz or 902-928 MHz or 2.400-2.500 GHz or 5.725-5.875 GHz.


Since the frequency converter after being affixed to the POS terminal's NFC reader can cover the original symbol showing the customer, where he should approach his mobile communication device when authorizing the payment, it is suitable if the frequency converter's body is equipped with a target symbol. This one is placed on the frequency converter body surface, which is opposite to the surface with adhesive layer.


The frequency converter described and the way of communication with the POS terminal over the frequency converter enables the common POS terminal to communicate with the mobile communication device on a significantly higher frequency while retaining the common communication channel with the 13.56 MHz frequency. The frequency converter is passive; it does not require to be supplied with energy; its' body is flat; all of which enables its easy implementation on the easily accessible place on the outside of the POS terminal, without the necessity of connecting any cables. The frequency converter implementation uses free, unlicensed frequencies on the mobile communications side. The higher frequencies have better penetration through the surroundings and enable to use an antenna placed on the removable card in the mobile communication device's side. The solution describes is constructionally simple and enables mass and comfortable adjustments to existing POS terminals.





BRIEF DESCRIPTION OF THE DRAWINGS

The invention is explained in more detail on the pictures 1 to 3. On the picture 1, there is a typical scheme of the frequency converter's implementation. On the picture 2, there is a configuration that is typical between the mobile phone and POS terminal in contactless communication.


The picture 3 display is block and scheme the data transmission process with the radiation of electromagnetic fields from the POS terminal's antenna.





REALIZATION EXAMPLES
Example 1

The frequency converter 1 is of the credit card's parameters being 0.8 mm thick. The shape of the frequency converter 1 basically copies the rectangular shape of the POS terminal's NFC antenna 8. The frequency converter 1 has an antenna 3 tuned to the frequency in the range between 13.00 and 14.00 MHz. The frequency converter's antenna 3 is located on that side of the frequency converter that is designed to be affixed to the POS terminal's NFC antenna's cover. This side of its' body is equipped with adhesive layer. The first modulation and demodulation unit 2 is connected to the frequency converter's antenna 3 and to the power supply element 4. The first modulation and demodulation unit 2 is formed by the diode bridge. The power supply element 4 encompasses a common connection between the stabilizer with a diode and capacitor. This solution receives electrical energy from the electromagnetic field received by the frequency converter's 1 antenna 3. The power supply element 4 ensures power supply to all frequency converter's 1 circuits, due to which the frequency converter 1 appears outwardly to be a passive element without the need of external power supply. The power supply element 4 is connected to the second modulation and demodulation unit 5 into which the data input is entered from the first modulation and demodulation unit 2. The transmitter 6 and the receiver 7 are connected to the second modulation and demodulation unit 5. The second modulation and demodulation unit 5 encompasses a resistor and a FET. In this example the transmitter's 6 f1 frequency is 2.400 GHz; the receiver's 7 f2 frequency is 5.725 GHz. The communication elements on the side of the SD memory card, that is inserted into the mobile communication device's 9, mobile phone's slot, are tuned to these f1, f2 frequencies.


The frequency converter 1 is affixed on the outside plastic cover of the POS terminal's reader in the place and in such a way, that the frequency converter's 1 antenna 3 is adjacent to the POS terminal's NFC antenna 8 and the center of mass of the frequency converter's 1 antenna 3 is located in 10 mm distance from the center of mass of the POS terminal's NFC antenna 8 surface.


The first modulation and demodulation unit 2 processes, demodulates and funnels the signal received by the frequency converter 1. The funneled signal is also used to power supply all the electronic circuits of the solution described. The demodulated data are received by the second modulation and demodulation unit 5 from where they are sent over the transmitter 6, to the mobile communication device 9. The signal emitted on the 2.400 GHz frequency is received by the receiver on the SD memory card and subsequently demodulated to data itself which then enter the mobile communication device 9.


In case of reverse flow, the data are modulated into the signal and sent on the unlicensed 5.725 frequency by the receiver within the SD memory card. This signal is received by the frequency converter's 1 receiver 7 and processed in the second modulation and demodulation unit 5. The data within the signal are sent into the first modulation and demodulation unit 2, where they are amplitudely modulated into the signal. The signal with the data is sent to the POS terminal's NFC reader over the frequency converter's 1 antenna 3 with the 13.56 MHz frequency.


Example 2

The frequency converter 1 in this example has a body that is 0.5 mm thick and has a shape of a circle combined with a rectangle. The circle's diameter is 70 mm and within it, there is an antenna 3. In the rectangular part, the elements are connected in the same way as in the example 1. The antenna 3 is tuned to the frequency of 13.56 MHz. The transmitter's 6 f1 frequency is 5.875 GHz, the receivers 7 f2 frequency is 2.500 GHz. The frequency converter 1 is in the form of a sticker, that is equipped with an adhesive layer with protection paper on one side and on the other side it has a guide sign in the form of a target.


INDUSTRIAL APPLICABILITY

The industrial applicability is obvious. According to this invention it is possible to produce and use the frequency converter repeatedly. The frequency converter is able to change the original frequency of the communication element to a more suitable, higher frequency, while the original communication channel is retained as well. According to this invention it is also possible to secure the communication with the POS terminal over frequency converter.


LIST OF RELATED SYMBOLS




  • 1—a frequency converter


  • 2—the first modulation and demodulation unit (amplitude demodulator)


  • 3—the frequency converter's antenna


  • 4—a power supply element


  • 5—the second modulation and demodulation unit (the transmitting modulator)


  • 6—a transmitter


  • 7—a receiver


  • 8—the POS terminal's NFC antenna


  • 9—a mobile communication device

  • f1—the transmitter's frequency

  • f2—the receiver's frequency


Claims
  • 1. A system for contactless payment via a mobile communication device, the system comprising: a point-of-sale (POS) terminal having a near-field communication (NFC) antenna;a removable memory card inserted in a respective slot of the mobile communication device, the removable memory card having an antenna; anda frequency converter positioned between the removable memory card and the NFC antenna of the POS terminal, the antenna on the removable memory card being tuned for communication with the frequency converter,wherein the frequency converter is a flat object in a shape of a sticker and is placed in range of the POS antenna and is adapted to receive a first signal from the NFC antenna of the POS terminal, to convert the first signal to a frequency suitable for reception by the removable memory card in the mobile communication device, and to communicate the converted first signal to the removable memory card in the mobile communication device,wherein the frequency converter is further adapted to receive a second signal from the removable memory card in the mobile communication device, to convert the second signal to a frequency suitable for reception by the NFC antenna of the POS terminal, and to communicate the converted second signal to the NFC antenna of the POS terminal,wherein the frequency converter is outwardly energetically passive and is powered by an electromagnetic field on a communication path between the mobile communication device and the NFC antenna of the POS terminal, said electromagnetic field being received from the NFC antenna of the POS terminal, andwherein the flat object of the frequency converter is placed on the outside surface of the POS terminal antenna and a center of mass of a surface of the frequency converter antenna is at a distance of less than 20 mm from a center of mass of a surface of the POS terminal antenna.
  • 2. The system of claim 1, wherein the frequency converter includes an antenna that receives the first signal from the NFC antenna of the POS terminal, processes the received signal in a first modulation and demodulation unit, sends data from the received signal into a second modulation and demodulation unit, from where the data signal is sent over a transmitter on a higher frequency that corresponds to a receiving frequency of the mobile communication device.
  • 3. The system of claim 2, wherein the frequency converter includes a receiver that is adapted to receive a signal from the mobile communication device on a first frequency, to process the received signal in the second modulation and demodulation unit, to send data from the received signal into the first modulation and demodulation block, from where the data signal is sent via the frequency converter antenna using the frequency that corresponds to the frequency of the NFC antenna of the POS terminal.
  • 4. The system of claim 3, wherein the transmitter operates at a frequency that is different from a frequency at which the receiver operates.
  • 5. The system of claim 4, wherein the transmitter and the receiver each operates at a frequency of 433.05-434.79 MHz, 902-928 MHz, 2.400-2.500 GHz, or 5.725-5.875 GHz.
  • 6. The system of claim 4, wherein the frequency at which the transmitter operates is an xth multiple of the frequency at which the receiver operates, or the frequency at which the receiver operates is an xth multiple of the frequency at which the transmitter operates, and x has a value of 1.75 to 2.45.
  • 7. A method for near-field communication (NFC) between a point-of-sale (POS) terminal and an antenna on a removable memory card in a mobile communication device, the POS terminal having an NFC antenna, the method comprising: locating a frequency converter within a flat object in a shape of a sticker on the outside surface of the POS terminal in proximity to the NFC antenna of the POS terminal such that the frequency converter is supplied with energy from an electromagnetic field generated by the NFC antenna of the POS terminal during transmission of data from the POS terminal to the mobile communication device, wherein the flat object of the frequency converter is placed on the outside surface of the POS terminal antenna and a center of mass of a surface of the frequency converter antenna is at a distance of less than 20 mm from a center of mass of a surface of the POS terminal antenna;receiving at the frequency converter a first signal containing first data transmitted from the NFC antenna of the POS terminal, the first signal having a first transmission frequency; andtransmitting from the frequency converter to the antenna on the removable memory card in the mobile communication device, a second signal containing the first data, the second signal having a second transmission frequency that is higher and differs from the first transmission frequency.
  • 8. The method of claim 7, further comprising: receiving at the frequency converter a third signal containing second data transmitted from the mobile communication device, the third signal having a third transmission frequency that is different from the first and second frequencies and wherein the second frequency is an xth multiple of the third frequency, or the third frequency is an xth multiple of the second frequency, and x has a value of 1.75 to 2.45.
  • 9. The method of claim 8, further comprising: transmitting from the frequency converter to the antenna of the POS terminal, a fourth signal containing the second data, the fourth signal having a fourth transmission frequency that is the same as the first transmission frequency.
Priority Claims (1)
Number Date Country Kind
5093-2008 Oct 2008 SK national
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/IB2009/054457 10/11/2009 WO 00 6/10/2010
Publishing Document Publishing Date Country Kind
WO2010/044041 4/22/2010 WO A
US Referenced Citations (129)
Number Name Date Kind
5574470 de Vall Nov 1996 A
5608417 de Vall Mar 1997 A
6062472 Cheung May 2000 A
6070795 Feiken Jun 2000 A
6070796 Sirbu Jun 2000 A
6450407 Freeman et al. Sep 2002 B1
6615243 Megeid et al. Sep 2003 B1
6745935 Grieu et al. Jun 2004 B1
6828670 Hayama et al. Dec 2004 B2
6976011 Capitant et al. Dec 2005 B1
7051429 Kerr et al. May 2006 B2
7364092 Narendra et al. Apr 2008 B2
7374100 Jei et al. May 2008 B2
7436965 Sherman Oct 2008 B2
7458518 Fukuda et al. Dec 2008 B2
7481358 Honjo et al. Jan 2009 B2
7568065 D'Athis Jul 2009 B2
7581678 Narendra et al. Sep 2009 B2
7689932 Maktedar Mar 2010 B2
7775442 Saarisalo Aug 2010 B2
7775446 Ochi et al. Aug 2010 B2
7805615 Narendra et al. Sep 2010 B2
7828214 Narendra et al. Nov 2010 B2
8055184 Dimartino et al. Nov 2011 B1
8127999 Diamond Mar 2012 B2
8355670 White Jan 2013 B2
20010005832 Cofta Jun 2001 A1
20020062249 Iannacci May 2002 A1
20020147658 Kwan Oct 2002 A1
20020163479 Lin Nov 2002 A1
20030055738 Alie Mar 2003 A1
20030138135 Chung et al. Jul 2003 A1
20040066278 Hughes et al. Apr 2004 A1
20040087339 Goldthwaite et al. May 2004 A1
20040127256 Goldthwaite et al. Jul 2004 A1
20050011960 Koike et al. Jan 2005 A1
20050072595 Cho Apr 2005 A1
20050092835 Chung et al. May 2005 A1
20050116050 Jei et al. Jun 2005 A1
20050125745 Engestrom Jun 2005 A1
20050222949 Inotay et al. Oct 2005 A1
20050269401 Spitzer et al. Dec 2005 A1
20050269402 Spitzer et al. Dec 2005 A1
20060083955 Kanouda et al. Apr 2006 A1
20060143578 Maktedar Jun 2006 A1
20060146023 Kidron Jul 2006 A1
20060152288 Peng et al. Jul 2006 A1
20060186209 Narendra et al. Aug 2006 A1
20060219776 Finn Oct 2006 A1
20060224470 Garcia et al. Oct 2006 A1
20060226217 Narendra et al. Oct 2006 A1
20060255160 Winkler Nov 2006 A1
20070014407 Narendra et al. Jan 2007 A1
20070014408 Narendra et al. Jan 2007 A1
20070016957 Seaward et al. Jan 2007 A1
20070050871 Mashhour Mar 2007 A1
20070083772 Harada et al. Apr 2007 A1
20070106564 Matotek et al. May 2007 A1
20070125840 Law et al. Jun 2007 A1
20070152035 Adams et al. Jul 2007 A1
20070158438 Fukuda et al. Jul 2007 A1
20070171079 Saito Jul 2007 A1
20070192840 Pesonen Aug 2007 A1
20070233615 Tumminaro Oct 2007 A1
20070235539 Sevanto et al. Oct 2007 A1
20070241180 Park et al. Oct 2007 A1
20070278290 Messerges et al. Dec 2007 A1
20070293155 Liao Dec 2007 A1
20080011833 Saarisalo Jan 2008 A1
20080048036 Matsumoto et al. Feb 2008 A1
20080051122 Fisher Feb 2008 A1
20080059375 Abifaker Mar 2008 A1
20080093467 Narendra et al. Apr 2008 A1
20080111756 Ochi et al. May 2008 A1
20080120129 Seubert et al. May 2008 A1
20080129629 Kimura et al. Jun 2008 A1
20080207124 Raisanen et al. Aug 2008 A1
20080233906 Mitomo et al. Sep 2008 A1
20080250244 Baentsch et al. Oct 2008 A1
20080270246 Chen Oct 2008 A1
20090013418 Okabe et al. Jan 2009 A1
20090063312 Hurst Mar 2009 A1
20090065571 Jain Mar 2009 A1
20090065572 Jain Mar 2009 A1
20090069049 Jain Mar 2009 A1
20090069050 Jain et al. Mar 2009 A1
20090069051 Jain et al. Mar 2009 A1
20090069052 Jain et al. Mar 2009 A1
20090070272 Jain Mar 2009 A1
20090070691 Jain Mar 2009 A1
20090070861 Jain Mar 2009 A1
20090088077 Brown et al. Apr 2009 A1
20090098825 Huomo et al. Apr 2009 A1
20090108063 Jain et al. Apr 2009 A1
20090119190 Realini May 2009 A1
20090124273 Back May 2009 A1
20090143104 Loh et al. Jun 2009 A1
20090157936 Goss et al. Jun 2009 A1
20090191812 Teruyama et al. Jul 2009 A1
20090193491 Rao Jul 2009 A1
20090199206 Finkenzeller et al. Aug 2009 A1
20090199283 Jain Aug 2009 A1
20090200371 Kean et al. Aug 2009 A1
20090261172 Kumar et al. Oct 2009 A1
20090265544 Moona et al. Oct 2009 A1
20090265552 Moshir et al. Oct 2009 A1
20090287589 Fivel Nov 2009 A1
20090298540 Narendra et al. Dec 2009 A1
20090307139 Mardikar et al. Dec 2009 A1
20090307142 Mardikar Dec 2009 A1
20090319287 Hammad et al. Dec 2009 A1
20100012721 Jain et al. Jan 2010 A1
20100023449 Skowronek et al. Jan 2010 A1
20100044444 Jain et al. Feb 2010 A1
20100045425 Chivallier Feb 2010 A1
20100062808 Cha et al. Mar 2010 A1
20100063893 Townsend Mar 2010 A1
20100181377 Chen et al. Jul 2010 A1
20100197224 Lahdenniemi et al. Aug 2010 A1
20100203870 Hubinak et al. Aug 2010 A1
20100205432 Corda et al. Aug 2010 A1
20100213265 Narendra et al. Aug 2010 A1
20100258639 Florek et al. Oct 2010 A1
20100264211 Jain et al. Oct 2010 A1
20100274677 Florek et al. Oct 2010 A1
20100274726 Florek et al. Oct 2010 A1
20100323617 Hubinak et al. Dec 2010 A1
20110264543 Taveau et al. Oct 2011 A1
20110282753 Mullen et al. Nov 2011 A1
Foreign Referenced Citations (69)
Number Date Country
1450782 Oct 2003 CN
1627321 Jun 2005 CN
1835007 Sep 2006 CN
1870012 Nov 2006 CN
101013903 Aug 2007 CN
101136123 Mar 2008 CN
101329801 Dec 2008 CN
101339685 Jan 2009 CN
101351819 Jan 2009 CN
10130019 Jan 2003 DE
10 2005 026435 Dec 2006 DE
10 2006 019628 Oct 2007 DE
10 2007 019272 Oct 2007 DE
0704928 Apr 1996 EP
601091 Dec 1997 EP
1365451 Nov 2003 EP
1450233 Aug 2004 EP
1536573 Jun 2005 EP
1752902 Feb 2007 EP
1752903 Feb 2007 EP
1785915 May 2007 EP
1943606 Jul 2008 EP
2390817 Nov 2011 EP
0611189 Sep 1926 FR
0611190 Sep 1926 FR
2390509 Jan 2004 GB
2424151 Sep 2006 GB
2432031 Sep 2007 GB
980562 Feb 2000 IE
2003-131808 May 2003 JP
2004-348235 Dec 2004 JP
2005-284862 Oct 2005 JP
2006-033229 Feb 2006 JP
2007034591 Feb 2007 JP
2007-060076 Mar 2007 JP
2007-166379 Jun 2007 JP
2007-304910 Nov 2007 JP
2008-083867 Apr 2008 JP
2002-0073106 Sep 2002 KR
2003-0005088 Jan 2003 KR
2004-0012401 Feb 2004 KR
2004-0060249 Jul 2004 KR
2004-0089800 Oct 2004 KR
2005-0008622 Jan 2005 KR
2007-0093133 Sep 2007 KR
22595 Feb 2009 SI
WO 03012717 Feb 2003 WO
WO 2005057316 Jun 2005 WO
WO 2005086456 Sep 2005 WO
WO 2006009460 Jan 2006 WO
WO 2007076456 Jul 2007 WO
WO 2007136939 Nov 2007 WO
WO 2008012416 Jan 2008 WO
WO 2008041861 Apr 2008 WO
WO 2008063990 May 2008 WO
WO 2008105703 Sep 2008 WO
WO 2009014502 Jan 2009 WO
WO 2009087539 Jul 2009 WO
WO 2009118681 Oct 2009 WO
WO 2010011670 Jan 2010 WO
WO 2010023574 Mar 2010 WO
WO 2010032215 Mar 2010 WO
WO 2010032216 Mar 2010 WO
WO 2010041245 Apr 2010 WO
WO 2010044041 Apr 2010 WO
WO 2010097777 Sep 2010 WO
WO 2010122520 Oct 2010 WO
WO 2010128442 Nov 2010 WO
WO 2010131226 Nov 2010 WO
Non-Patent Literature Citations (9)
Entry
Bluetooth Wikipedia, http://en.wikipedia.org/wiki/Bluetooth.
Cellular Frequencies, http://en.wikipedia.org/wiki/Cellular—frequencies.
“Intelligent Mouse”, IBM Technical Disclosure Bulletin, International Business Machines Corp., Thornwood, US, Feb. 1, 1995, 38(2), p. 463.
Finkenzeller (Ed.), “RFID-Handbuch: Grundlagen und praktische Anwendungen Induktiver Funkanlagen, Transponder und kontaktloser Chipkarten”, Jan. 1, 2002, 225-231 (English abstract attached).
“EMV Mobile Contactless Payment: Technical Issues and Position Paper”, www.emvco.com/mobile.aspx, © Oct. 11, 2007, accessed Apr. 20, 2009, 37 pages.
“NFC Frequently Asked Questions,” NFC for Customers, www.nfc-forum.org., Retrieved from the internet on Nov. 7, 2008, 5 pages.
Smart Card Alliance, “RF-Enabled Applications and Technology: Comparing and Contrasting RFID and RF-Enabled Smart Cards”, Smart Card Alliance Identity Council, Jan. 2007, 7 pages.
Smart Card Alliance: “Proximity Mobile Payments: Leveraging NFC and the Contactless Financial Payments Infrastructure a Smart Card Alliance Contactless Payments Council White Paper”, www.smartcardalliance.org, © Sep. 1, 2007, accessed Nov. 7, 2008, 10 pages.
Madlmayar et al., “Management of Multiple Cards in NFC-Deivces”, LNCS, 2008, 21 pages.
Related Publications (1)
Number Date Country
20100262503 A1 Oct 2010 US