Certain downhole operations involve placement of elements in a downhole environment, where the element performs its function, and is then removed. For example, elements such as ball/ball seat assemblies and fracture (frac) plugs are downhole elements used to seal off lower zones in a borehole in order to carry out a hydraulic fracturing process (also referred to in the art as “fracking”) to break up different zones of reservoir rock. After the fracking operation, the ball/ball seat or plugs are then removed to allow fluid flow to or from the fractured rock.
Balls and/or ball seats, and frac plugs, may be formed of a corrodible material so that they need not be physically removed intact from the downhole environment. In this way, when the operation involving the ball/ball seat or frac plug is completed, the ball, ball seat, and/or frac plug corrodes away. Otherwise, the downhole article may have to remain in the hole for a longer period than is necessary for the operation.
To facilitate removal, such elements may be formed of a material that reacts with the ambient downhole environment so that they need not be physically removed by, for example, a mechanical operation, but may instead corrode or dissolve under downhole conditions. However, while corrosion rates of, for example, an alloy used to prepare a corrodible article can be controlled by adjusting alloy composition, an alternative way of controlling the corrosion rate of a downhole article is desirable.
Corrodible materials may include those having a high activity on the saltwater galvanic series, such as a magnesium alloy adjusted for corrosion rate. It has been found that adjusting the amount of trace contaminants in a magnesium alloy can have a significant impact on the corrosion rate of such alloys (Song, G. and Atrens, A., “Understanding Magnesium Corrosion: A Framework for Improved Alloy Performance,” Adv. Eng. Mater. 2003, 5(12) pp. 837-858). For example, metals such as nickel, iron, copper, calcium, etc., may be added to magnesium to increase the corrosion rate and other metals such as zirconium, yttrium, etc. may be added to decrease the corrosion rate. Balancing the amounts of such additives to achieve a desired bulk corrosion rate can in this way control overall corrosion of articles made from the alloy; however, such an approach requires preparation of multiple batches of alloy, requiring high batch-to-batch reproducibility and precise, reproducible control of metal additives or contaminants in the alloy.
There accordingly remains a need for controlling the overall corrosion rate of magnesium alloys for use in downhole articles without need for fine adjustment of alloy composition and with improved corrosion control.
The above and other deficiencies of the prior art are overcome by, in an embodiment, a composite particle comprising a core, a shielding layer deposited on the core, and further comprising an interlayer region formed at an interface of the shielding layer and the core, the interlayer region having a reactivity less than that of the core, and the shielding layer having a reactivity less than that of the interlayer region, a metallic layer not identical to the shielding layer and deposited on the shielding layer, the metallic layer having a reactivity less than that of the core, and optionally, an adhesion metal layer deposited on the metallic layer.
In another embodiment, a composite particle comprises a magnesium-aluminum alloy core, a shielding layer comprising an aluminum-containing layer deposited on the core, and further comprising an interlayer region comprising α-Mg and γ-Mg17Al12 formed at the interface between the magnesium alloy core and the aluminum-containing layer, and further comprising inclusions of alumina, magnesia, or a combination comprising at least one of these oxides, a metallic layer deposited on the shielding layer, the metallic layer comprising Ni, Fe, Cu, Co, W, alloys thereof, or a combination comprising at least one of the foregoing, an aluminum-containing shielding layer deposited on the metallic layer, and optionally, an aluminum-containing adhesion metal layer, wherein the interlayer region, shielding layer, metallic layer, and optional adhesion metal layer are inter-dispersed with each other.
In another embodiment, a method of adjusting corrosion rate in an aqueous electrolyte is disclosed for a composite particle having a core, a shielding layer deposited on the core, and further comprising an interlayer region formed at an interface of the shielding layer and the core, the interlayer region having a reactivity less than that of the core, and the shielding layer having a reactivity less than that of the interlayer region, a metallic layer not identical to the shielding layer and deposited on the shielding layer, the metallic layer having a reactivity less than that of the core, and optionally, an adhesion metal layer deposited on the metallic layer, the method comprising selecting the metallic layer such that the lower the reactivity of the metallic layer is relative to the shielding layer, the greater the corrosion rate, and selecting the amount, thickness, or both amounts and thicknesses of the shielding layer and metallic layer such that the less the amount, thickness, or both amount and thickness of the shielding layer relative to those of the metallic layer, the greater the corrosion rate.
Referring now to the drawings wherein like elements are numbered alike in the several Figures:
Disclosed herein is a composite particle useful for fabricating a corrodible article. The composite particle has multilayered structure of a core of a high reactivity material, such as magnesium or a magnesium alloy, coated a shielding layer such as for example, aluminum. At the interface of the shielding layer and the core, an intermetallic phase can form, such as a crystalline metallic compound of magnesium and aluminum, and present in discontinuous regions. The shielding layer, which includes the intermetallic regions, has a layer of a noble material with a lower reactivity (i.e., more noble than the shielding layer, though comparable in reactivity to the intermetallic phase) disposed on it. An additional layer of an adhesive metal, for example, aluminum, can be disposed over the noble material layer, to provide adhesion between particles upon molding. The interlayer region, shielding layer, noble material layer (referred to herein as the “metallic layer” where the noble material is a metal), and optional adhesion layer are believed to be inter-dispersed with each other, and form a compositionally varied outer shell which is also inter-dispersed with the core.
The noble material layer, which has a lower reactivity relative to the core material, acts as a cathode, whereas the core, made of a metal such as magnesium which is more reactive than the noble metal layer, is anodic relative to the noble metal layer. The shielding layer, which includes the intermetallic phase, is also cathodic relative to the core, but anodic relative to the noble metal layer. A galvanic discharge cycle (e.g., corrosion) occurs between the relatively anodic and relatively cathodic materials in the presence of an electrolyte. By adjusting the composition of the noble metal layer relative to the core and shielding layers, and by adjusting the amounts and/or thicknesses of the shielding and noble metal layers, the corrosion rate of the composite particle is adjusted.
The composite particles are formed into articles by compressing and shaping the particles using, for example, cold molding followed by forging.
The core includes any material suitable for use in a downhole environment, provided the core is corrodible in the downhole environment relative to a second material having a different reactivity. In an embodiment, the composite particle thus includes a magnesium-containing core. A magnesium-containing core includes any such alloy which is corrodible in a corrosive environment including those typically encountered downhole, such as an aqueous environment which includes salt (i.e., brine), or an acidic or corrosive agent such as hydrogen sulfide, hydrochloric acid, or other such corrosive agents. Magnesium alloys suitable for use include alloys of magnesium (Mg) with aluminum (Al), cadmium (Cd), calcium (Ca), cobalt (Co), copper (Cu), iron (Fe), manganese (Mn), nickel (Ni), silicon (Si), silver (Ag), strontium (Sr), thorium (Th), zinc (Zn), zirconium (Zr), or a combination comprising at least one of these elements. Particularly useful alloys include magnesium alloy particles including those prepared from magnesium alloyed with Ni, W, Co, Cu, Fe, or other metals. Alloying or trace elements can be included in varying amounts to adjust the corrosion rate of the magnesium. For example, four of these elements (cadmium, calcium, silver, and zinc) have mild-to-moderate accelerating effects on corrosion rates, whereas four others (copper, cobalt, iron, and nickel) have a still greater accelerating effect on corrosion. Exemplary commercially available magnesium alloys and which include different combinations of the above alloying elements to achieve different degrees of corrosion resistance include but are not limited to, for example, magnesium alloyed with aluminum, strontium, and manganese such as AJ62, AJ50x, AJ51x, and AJ52x alloys, and magnesium alloyed with aluminum, zinc, and manganese which include AZ91A-E alloys.
It will be appreciated that alloys having corrosion rates greater than those of the above exemplary alloys are contemplated as being useful herein. For example, nickel has been found to be useful in decreasing the corrosion resistance (i.e., increases the corrosion rate) of magnesium alloys when included in amounts of less than or equal to about 0.5 wt %, specifically less than or equal to about 0.4 wt %, and more specifically less than or equal to about 0.3 wt %, to provide a useful corrosion rate for the corrodible downhole article. In another embodiment, the magnesium-containing core comprises a magnesium-aluminum alloy.
Particle sizes for the magnesium alloy cores may be from about 50 to about 150 micrometers (μm), more specifically about 60 to about 140 μm, and still more specifically about 70 to about 130 μm. Useful magnesium alloys may include combinations of the above elements and/or contaminants sufficient to achieve a corrosion rate for the magnesium alloy core of about 0.1 to about 20 mg/cm2/hour, specifically about 1 to about 15 mg/cm2/hour using aqueous 3 wt % KCl solution at 200° F. (93° C.).
The composite particle includes a shielding layer. The shielding layer is formed by depositing on the core, a material having a lower reactivity than that of the core. In an exemplary embodiment, the shielding layer is an aluminum-containing layer deposited on the core. In an embodiment, the core is a magnesium alloy core and the shielding layer is an aluminum-containing layer. As used herein “on” and “deposited on” mean that a layer may or may not be in direct contact with, the underlying surface to which the layer is applied, unless otherwise specified as by stating that the layers are at least partially in contact. It will be further understood that “deposited” and “depositing,” when used in with respect to a method, indicates the action of deposition, whereas “deposited” when used in the context of a composition or article, merely indicates the juxtaposition of the layer with respect to the substrate and does not indicate a process of deposition. The shielding layer further comprises an interlayer region formed at the interface of the core and shielding layer, which is compositionally derived from the core and shielding layers. In an embodiment, the interlayer region forms at the boundary of a magnesium-containing core and an aluminum-containing shielding layer, and the interlayer region comprises an intermetallic compound. For example, magnesium-aluminum alloys include an α-Mg phase, and in addition, a γ-Mg17Al12 intermetallic phase which accumulates at the grain boundaries within the Mg—Al alloy. The intermetallic γ-Mg17Al12 phase is generally present in amounts of less than 30 wt % of the Mg—Al alloy. Depending upon the composition, additional phases can also be present, including solid solution Al, and other intermetallic phases such as β-Mg2Al3. Upon deposition of the aluminum-containing shielding layer, the γ-Mg17Al12 phase forms and accumulates as well at the interface of the shielding layer and the Mg-containing core. Thermal treatment can accelerate the formation of the interlayer region. For example, heating at temperatures less than the eutectic point (e.g., less than or equal to about 450° C., depending on the alloy composition, and as long as the eutectic point is not exceeded) for about 15 minutes can form an intermetallic phase at the interface of the Mg-containing core and the Al-containing layer. The composite particle thus includes, as part of the interlayer region, the intermetallic compound γ-Mg17Al12. The interlayer region forms over the entire contacting area of the Mg-containing core and the Al-containing layer, or a portion of the contacting areas. Deposition method and any heat treating can be adjusted so that the intermetallic phase intervenes between a portion of contacting surfaces of the Mg alloy core and the Al-containing layer. The shielding layer further includes an oxide of one or more of the metals of which the core and/or shielding layers are comprised. For example, where the core comprises magnesium or a magnesium-aluminum alloy, and the shielding layer comprises aluminum, the shielding layer optionally includes oxides of magnesium (such as magnesia), aluminum (such as alumina), or a combination comprising at least one of the foregoing.
The composite particle further includes a metallic layer not identical to the shielding layer and deposited on the shielding layer. The metallic layer has a lower reactivity relative to the core, based on the saltwater galvanic series from lower reactivity (i.e., more noble metals) to high reactivity (i.e., less noble metals). In an embodiment, the metal(s) used for the metallic layer allow for the formation of hydrogen when used as a cathode in an electrochemical cell. The metallic layer thus comprises a group 6-11 transition metal. Specifically, the group 6-11 transition metal includes Ni, Fe, Cu, Co, W, alloys thereof, or a combination comprising at least one of the foregoing.
The composite particle optionally includes an adhesion layer deposited on the metallic layer. The adhesion layer comprises a material which promotes adhesion between the composite particles. An exemplary adhesion layer includes aluminum or an aluminum alloy. Upon compressing and forging of the adhesion layer-coated composite particles to form a molded article, the particles bind to one another through interparticle contact via the material of the adhesion layer, to further provide mechanical strength to the article.
The layers (shielding layer, metallic layer, and optional adhesion layer) may each have an average thickness of about 0.05 to about 0.15 μm, and specifically about 0.07 to about 0.13 μm. In an embodiment, each layer does not completely cover the underlying layer, and the layer coverage is thus discontinuous. Furthermore, where the layers are “on” one another, interstitial spaces at the interfaces of the layers may be present. In an embodiment, the interlayer region, shielding layer, metallic layer, and optional adhesion metal layer are inter-dispersed with each other. As used herein, “inter-dispersed” mean that two or more adjacent layers interpenetrate into or through each other in intimate admixture, where it will be appreciated that two (or more) inter-dispersed layers have, on average, a compositional gradient due to the interpenetration of one layer into the adjacent layer.
The core and shielding layer, shielding layer and metallic layer, and metallic layer and optional adhesion layer, are each thus in mutual partial contact, and are inter-dispersed, such that components of the core, the shielding layer, and the metallic layer are present at the exposed surface of the composite particle.
In an embodiment, the composite particles have a corrosion rate of about 0.1 to about 20 mg/cm2/hour, specifically about 1 to about 15 mg/cm2/hour using an aqueous 3 wt % KCl solution at 200° F. (93° C.).
In a specific embodiment, the shielding layer is an aluminum-containing layer, and the core is a magnesium-containing core. In an embodiment, the shielding layer comprises aluminum. In another embodiment, the shielding layer further comprises, in addition to aluminum, inclusions of alumina, magnesia, or a combination comprising at least one of these oxides. The shielding layer further includes an interlayer region formed at the interface between the magnesium alloy core and the first aluminum-containing layer. In an embodiment, the interlayer region comprises γ-Mg17Al12.
Also in a specific embodiment, the metallic layer comprises a group 6-11 transition metal on the shielding layer. The group 6-11 transition metal includes Ni, Fe, Cu, Co, W, alloys thereof, or a combination comprising at least one of the foregoing.
Optionally, in a specific embodiment, the adhesion layer is an aluminum-containing layer deposited on the metallic layer.
Deposition of the shielding, metallic, and adhesion layers on the core is not particularly limited. Where either or both of the shielding and optional adhesion layers includes aluminum or an aluminum alloy, uniformly depositing the aluminum layer(s) on a magnesium alloy core particle is accomplished in one exemplary embodiment by decomposition of an organometallic compound, such as triethylaluminum (having a boiling point of 128-130° C. at 50 mm Hg), after introducing the organometallic compound into a fluidized bed reactor containing the magnesium alloy core particles to deposit the shielding layer, or the introducing the organometallic compound into a reactor containing magnesium alloy core/shielding layer/metallic layer particles to deposit the adhesion layer. The interlayer region, which in this case includes an intermetallic compound such as γ-Mg17Al12, further forms at the interface of the Mg alloy core and the shielding layer by a thermal treatment, such as sintering and/or annealing, and/or forging of an article molded from the composite particles, at a temperature below the melting point of all or part of the composite particle.
Similarly, depositing a uniform metallic layer is also not particularly limited, and may be accomplished by, for example, decomposition of an organometallic compound (such as nickel carbonyl where the metallic layer is nickel) after introducing the organometallic compound into a fluidized bed reactor containing the magnesium alloy core particles coated with the shielding layer.
The core can also be coated with materials for the shielding layer, metallic layer, and optional adhesion layer using a physical mixing method. For example, the core can be admixed with one or more components of the shielding layer, metallic layer, and optional adhesion layer by cryo-milling, ball milling, or the like. In this way, the shielding, metallic layer and adhesion layer components can be included sequentially, or components for two or all three layers included simultaneously. Combinations of deposition methods including vapor phase deposition and physical methods can also be used to provide the composite particles. Where all components are included by physical mixing simultaneously, it will be appreciated that a single layer is formed which is a composite of the shielding layer, metallic layer, and adhesion layer components.
In another embodiment, the core comprises an inner core of a first core material and an outer core of a second core material, the inner core material having a lower reactivity than that of the outer core. The inner core is any material useful for depositing thereon a high reactivity material such as magnesium, without limitation. The inner core can thus be any suitable, low reactivity material, such as a 6-11 transition metal including Ni, Fe, Cu, Co, W, alloys thereof, or a combination comprising at least one of the foregoing; a metal oxide such as alumina, silica, silicates, iron oxides, titania, tungstates, and the like; a polymer including a phenolic polymer; ceramics; glasses; or other such materials. In an exemplary embodiment, the inner core comprises an aluminum alloy, nickel, iron, alumina, titania or silica, and the outer core comprises magnesium or a magnesium alloy as described hereinabove. The outer core is deposited on the inner core using any suitable deposition method such as physical vapor deposition (PVD) of the metallic magnesium or magnesium alloy in a fluidized bed reactor. The core structure having inner and outer cores is then coated with shielding layer, metallic layer, and optional adhesion layer as described above to form the composite particle.
The composite particle generally has a particle size of from about 50 to about 150 micrometers (μm), and more specifically about 60 to about 140 μm.
In another embodiment, a method of adjusting corrosion rate of a composite particle, or article prepared therefrom, is disclosed. In an embodiment, adjusting is accomplished by either or both of selecting the composition of the metallic layer to have the desired reactivity, where the lower the reactivity of the metallic layer relative to the shielding layer (and by definition, to both the core and interlayer region), the faster the corrosion rate; and conversely, the higher the reactivity of the metallic layer relative to the shielding layer, the slower the corrosion rate. Alternatively or in addition, in an embodiment, adjusting is accomplished by increasing the amount and/or thickness of the shielding layer for any given amount and/or thickness of metallic layer. It will further be appreciated that additional control of the corrosion rate is accomplished by the degree of inter-dispersion of the core, interlayer region, shielding layer, and metallic layer, where the more highly inter-dispersed these layers are, the greater the corrosion rate, and conversely, the less inter-dispersed the layers, the slower the corrosion rate. Thus, amount and thickness as used herein are related in that the higher the amount of a layer, expressed as weight percent based on the weight of the composite particle, the greater the thickness.
The surface of the composite particles includes both anodic and cathodic regions of the inter-dispersed layers. It will be understood that “anodic regions” and “cathodic regions” are relative terms, based on the relative reactivity of the inter-dispersed materials. For example as discussed above, magnesium (from the core) is anodic relative to the cathodic intermetallic compound of the interlayer region (γ-Mg17Al12) and cathodic aluminum from the interlayer region/shielding layer, and anodic relative to nickel from the cathodic metallic layer. Similarly, intermetallic compound (γ-Mg17Al12) is anodic relative to cathodic aluminum from the shielding layer, and anodic relative to nickel from the cathodic metallic layer; and aluminum from the shielding layer is anodic relative to nickel from the metallic layer.
In this way, upon exposure of the surface of the composite particle (and any article made from the composite particles) to an electrolyte, multiple localized corrosion mechanisms take place in which reversal of anodic and cathodic regions occur. For example, after exposed anodic core material (such as magnesium) is corroded, a previously cathodic material (such as intermetallic compound or aluminum in the shielding layer) becomes anodic and is corroded by interaction with the more cathodic metallic layer (e.g., which includes nickel, etc.). As the surface corrodes away and new, more anodic core material such as magnesium is exposed, the situation again reverses and the aluminum or intermetallic compound becomes cathodic toward the core material.
As corrosion advances in localized regions on the surface between anodic and cathodic regions in the presence of an electrolyte fluid (water, brine, etc.), these regions, referred to herein as micro-cells, can corrode outward over the surface of the composite particle and link to other micro-cells to form larger corrosion regions, which in turn can link to other corrosion regions, etc., as further anodic materials such as magnesium (from the core) or intermetallic γ-Mg17Al12 (from the interlayer region/shielding layer) is exposed. After these regions corrode, new, underlying anodic materials from the core are exposed to the electrolyte. Upon corroding, these inter-dispersed layers can thus become permeable to the electrolyte fluid. This allows percolation of electrolytic fluids into the corroding surface to penetrate and undermine the layers, and the process repeats until the corrodible materials are consumed. It will be appreciated that the presence of metal oxides at the core/shielding layer interface also decreases the corrosion rate of the core at the interface by acting as an inert barrier, and thus affects the relative anodic/cathodic character of the micro-cell (for example, where alumina and/or magnesia are present between a magnesium core and the intermetallic compound, the intermetallic compound is insulated from the core and will be anodic relative to the metallic layer). In this way, the presence of inclusions of metal oxides affects the overall corrosion rate of the composite particle.
Where the core comprises an inner and outer core in which the outer core is anodic, corrosion advances until only the inner core remains. The inner core thus exposed no longer has the structural integrity and cohesiveness of the composite particle, and disperses into the surrounding fluid as a suspension of particles, and can be removed in this way.
Thus, in an embodiment, a method of adjusting corrosion rate in a composite particle includes selecting the metallic layer such that the lower the reactivity of the metallic layer is relative to the shielding layer, the greater the corrosion rate. In another embodiment, a method of adjusting corrosion rate in a composite particle includes selecting the amount, thickness, or both amounts and thicknesses of the shielding layer and the metallic layer such that the less the amount, thickness, or both amount and thickness of the shielding layer are relative to those of the metallic layer, the greater the corrosion rate. The interlayer region, shielding layer, metallic layer, and optional adhesion metal layer being inter-dispersed with each other, and have compositions as discussed above.
In another embodiment, an article comprises the composite particles which may be provided as a powder or other suitable form such as a pre-compressed pellet. Articles may be prepared from the composite particle by compressing or otherwise shaping the composite particles, to form an article having the appropriate shape. For example, the composite particles are molded or compressed into the desired shape by cold compression using an isostatic press at about 40 to about 80 ksi (about 275 to about 550 MPa), followed by forging or sintering and machining, to provide an article having the desired shape and dimensions. As disclosed herein, forging or sintering is carried out at a temperature below that of the melting point of the components.
Thus, a method of forming an article comprises molding the composite particles and forging the molded article.
The article so prepared is referred to as a controlled electrolytic material (CEM) article, and useful under downhole conditions. Articles include, for example a ball, a ball seat, a fracture plug, or other such downhole article. However, it should be understood that though these articles are disclosed, there are other uses for the composite particles in powder form. For example, the composite particles may be included in a matrix that is non-metallic, and may be applied to a surface as a coating, such as a paint, powder coating, etc., where a controlled electrolytic process occurs in the presence of water, and preferably, water plus an electrolyte. Such processes may include coatings for marine applications such as drill rigs, boat or ship hulls, undersea tools, or other such applications. Such an electrolytic material may provide a sacrificial layer to mitigate or prevent corrosion of an underlying metal layer, or may alternatively prevent adhesion of, for example, marine organisms to the underwater surface coated with the composite particles.
An exemplary use is described herein.
In
In
In
While one or more embodiments have been shown and described, modifications and substitutions may be made thereto without departing from the spirit and scope of the invention. Accordingly, it is to be understood that the present invention has been described by way of illustration and not limitation.
All ranges disclosed herein are inclusive of the endpoints, and the endpoints are independently combinable with each other. The suffix “(s)” as used herein is intended to include both the singular and the plural of the term that it modifies, thereby including at least one of that term (e.g., the colorant(s) includes at least one colorant). “Optional” or “optionally” means that the subsequently described event or circumstance can or cannot occur, and that the description includes instances where the event occurs and instances where it does not. As used herein, “combination” is inclusive of blends, mixtures, alloys, reaction products, and the like. All references are incorporated herein by reference.
The use of the terms “a” and “an” and “the” and similar referents in the context of describing the invention (especially in the context of the following claims) are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. Further, it should further be noted that the terms “first,” “second,” and the like herein do not denote any order, quantity, or importance, but rather are used to distinguish one element from another. The modifier “about” used in connection with a quantity is inclusive of the stated value and has the meaning dictated by the context (e.g., it includes the degree of error associated with measurement of the particular quantity).
Number | Name | Date | Kind |
---|---|---|---|
2238895 | Gage | Apr 1941 | A |
2261292 | Salnikov | Nov 1941 | A |
2301624 | Holt | Nov 1942 | A |
2983634 | Budininkas et al. | May 1961 | A |
3106959 | Huitt et al. | Oct 1963 | A |
3152009 | DeLong | Oct 1964 | A |
3196949 | Thomas | Jul 1965 | A |
3390724 | Caldwell | Jul 1968 | A |
3395758 | Kelly et al. | Aug 1968 | A |
3406101 | Kilpatrick | Oct 1968 | A |
3465181 | Colby et al. | Sep 1969 | A |
3513230 | Rhees et al. | May 1970 | A |
3637446 | Elliott et al. | Jan 1972 | A |
3645331 | Maurer et al. | Feb 1972 | A |
3765484 | Hamby, Jr. et al. | Oct 1973 | A |
3768563 | Blount | Oct 1973 | A |
3775823 | Adolph et al. | Dec 1973 | A |
3878889 | Seabourn | Apr 1975 | A |
3894850 | Kovalchuk et al. | Jul 1975 | A |
3924677 | Prenner et al. | Dec 1975 | A |
4010583 | Highberg | Mar 1977 | A |
4039717 | Titus | Aug 1977 | A |
4050529 | Tagirov et al. | Sep 1977 | A |
4248307 | Silberman et al. | Feb 1981 | A |
4372384 | Kinney | Feb 1983 | A |
4373584 | Silberman et al. | Feb 1983 | A |
4374543 | Richardson | Feb 1983 | A |
4384616 | Dellinger | May 1983 | A |
4399871 | Adkins et al. | Aug 1983 | A |
4422508 | Rutledge, Jr. et al. | Dec 1983 | A |
4452311 | Speegle et al. | Jun 1984 | A |
4498543 | Pye et al. | Feb 1985 | A |
4499048 | Hanejko | Feb 1985 | A |
4499049 | Hanejko | Feb 1985 | A |
4534414 | Pringle | Aug 1985 | A |
4539175 | Lichti et al. | Sep 1985 | A |
4554986 | Jones | Nov 1985 | A |
4640354 | Boisson | Feb 1987 | A |
4664962 | DesMarais, Jr. | May 1987 | A |
4673549 | Ecer | Jun 1987 | A |
4674572 | Gallus | Jun 1987 | A |
4678037 | Smith | Jul 1987 | A |
4681133 | Weston | Jul 1987 | A |
4688641 | Knieriemen | Aug 1987 | A |
4693863 | Del Corso et al. | Sep 1987 | A |
4703807 | Weston | Nov 1987 | A |
4706753 | Ohkochi et al. | Nov 1987 | A |
4708202 | Sukup et al. | Nov 1987 | A |
4708208 | Halbardier | Nov 1987 | A |
4709761 | Setterberg, Jr. | Dec 1987 | A |
4714116 | Brunner | Dec 1987 | A |
4721159 | Ohkochi et al. | Jan 1988 | A |
4738599 | Shilling | Apr 1988 | A |
4768588 | Kupsa | Sep 1988 | A |
4784226 | Wyatt | Nov 1988 | A |
4805699 | Halbardier | Feb 1989 | A |
4817725 | Jenkins | Apr 1989 | A |
4834184 | Streich et al. | May 1989 | A |
H635 | Johnson et al. | Jun 1989 | H |
4850432 | Porter et al. | Jul 1989 | A |
4853056 | Hoffman | Aug 1989 | A |
4869324 | Holder | Sep 1989 | A |
4869325 | Halbardier | Sep 1989 | A |
4889187 | Terrell et al. | Dec 1989 | A |
4890675 | Dew | Jan 1990 | A |
4909320 | Hebert et al. | Mar 1990 | A |
4929415 | Okazaki | May 1990 | A |
4932474 | Schroeder, Jr. et al. | Jun 1990 | A |
4944351 | Eriksen et al. | Jul 1990 | A |
4949788 | Szarka et al. | Aug 1990 | A |
4952902 | Kawaguchi et al. | Aug 1990 | A |
4975412 | Okazaki et al. | Dec 1990 | A |
4977958 | Miller | Dec 1990 | A |
4981177 | Carmody et al. | Jan 1991 | A |
4986361 | Mueller et al. | Jan 1991 | A |
5006044 | Walker, Sr. et al. | Apr 1991 | A |
5010955 | Springer | Apr 1991 | A |
5036921 | Pittard et al. | Aug 1991 | A |
5048611 | Cochran | Sep 1991 | A |
5049165 | Tselesin | Sep 1991 | A |
5061323 | DeLuccia | Oct 1991 | A |
5063775 | Walker, Sr. et al. | Nov 1991 | A |
5073207 | Faure | Dec 1991 | A |
5074361 | Brisco et al. | Dec 1991 | A |
5084088 | Okazaki | Jan 1992 | A |
5090480 | Pittard et al. | Feb 1992 | A |
5095988 | Bode | Mar 1992 | A |
5103911 | Heijnen | Apr 1992 | A |
5117915 | Mueller et al. | Jun 1992 | A |
5161614 | Wu et al. | Nov 1992 | A |
5178216 | Giroux et al. | Jan 1993 | A |
5181571 | Mueller et al. | Jan 1993 | A |
5188182 | Echols, III et al. | Feb 1993 | A |
5188183 | Hopmann et al. | Feb 1993 | A |
5222867 | Walker, Sr. et al. | Jun 1993 | A |
5226483 | Williamson, Jr. | Jul 1993 | A |
5228518 | Wilson et al. | Jul 1993 | A |
5234055 | Cornette | Aug 1993 | A |
5253714 | Davis et al. | Oct 1993 | A |
5271468 | Streich et al. | Dec 1993 | A |
5282509 | Schurr, III | Feb 1994 | A |
5293940 | Hromas et al. | Mar 1994 | A |
5309874 | Willermet et al. | May 1994 | A |
5310000 | Arterbury et al. | May 1994 | A |
5318746 | Lashmore | Jun 1994 | A |
5380473 | Bogue et al. | Jan 1995 | A |
5392860 | Ross | Feb 1995 | A |
5394941 | Venditto et al. | Mar 1995 | A |
5398754 | Dinhoble | Mar 1995 | A |
5407011 | Layton | Apr 1995 | A |
5411082 | Kennedy | May 1995 | A |
5417285 | Van Buskirk et al. | May 1995 | A |
5427177 | Jordan, Jr. et al. | Jun 1995 | A |
5435392 | Kennedy | Jul 1995 | A |
5439051 | Kennedy et al. | Aug 1995 | A |
5454430 | Kennedy et al. | Oct 1995 | A |
5456317 | Hood, III et al. | Oct 1995 | A |
5464062 | Blizzard, Jr. | Nov 1995 | A |
5472048 | Kennedy et al. | Dec 1995 | A |
5474131 | Jordan, Jr. et al. | Dec 1995 | A |
5477923 | Jordan, Jr. et al. | Dec 1995 | A |
5526880 | Jordan, Jr. et al. | Jun 1996 | A |
5526881 | Martin et al. | Jun 1996 | A |
5529746 | Knoss et al. | Jun 1996 | A |
5533573 | Jordan, Jr. et al. | Jul 1996 | A |
5536485 | Kume et al. | Jul 1996 | A |
5558153 | Holcombe et al. | Sep 1996 | A |
5607017 | Owens et al. | Mar 1997 | A |
5623993 | Van Buskirk et al. | Apr 1997 | A |
5623994 | Robinson | Apr 1997 | A |
5636691 | Hendrickson et al. | Jun 1997 | A |
5641023 | Ross et al. | Jun 1997 | A |
5647444 | Williams | Jul 1997 | A |
5665289 | Chung et al. | Sep 1997 | A |
5677372 | Yamamoto et al. | Oct 1997 | A |
5685372 | Gano | Nov 1997 | A |
5707214 | Schmidt | Jan 1998 | A |
5709269 | Head | Jan 1998 | A |
5720344 | Newman | Feb 1998 | A |
5765639 | Muth | Jun 1998 | A |
5772735 | Sehgal et al. | Jun 1998 | A |
5782305 | Hicks | Jul 1998 | A |
5797454 | Hipp | Aug 1998 | A |
5826652 | Tapp | Oct 1998 | A |
5826661 | Parker et al. | Oct 1998 | A |
5829520 | Johnson | Nov 1998 | A |
5836396 | Norman | Nov 1998 | A |
5857521 | Ross et al. | Jan 1999 | A |
5881816 | Wright | Mar 1999 | A |
5934372 | Muth | Aug 1999 | A |
5960881 | Allamon et al. | Oct 1999 | A |
5990051 | Ischy et al. | Nov 1999 | A |
5992452 | Nelson, II | Nov 1999 | A |
5992520 | Schultz et al. | Nov 1999 | A |
6007314 | Nelson, II | Dec 1999 | A |
6024915 | Kume et al. | Feb 2000 | A |
6032735 | Echols | Mar 2000 | A |
6047773 | Zeltmann et al. | Apr 2000 | A |
6050340 | Scott | Apr 2000 | A |
6069313 | Kay | May 2000 | A |
6076600 | Vick, Jr. et al. | Jun 2000 | A |
6079496 | Hirth | Jun 2000 | A |
6085837 | Massinon et al. | Jul 2000 | A |
6095247 | Streich et al. | Aug 2000 | A |
6119783 | Parker et al. | Sep 2000 | A |
6142237 | Christmas et al. | Nov 2000 | A |
6161622 | Robb et al. | Dec 2000 | A |
6167970 | Stout et al. | Jan 2001 | B1 |
6173779 | Smith | Jan 2001 | B1 |
6189616 | Gano et al. | Feb 2001 | B1 |
6213202 | Read, Jr. | Apr 2001 | B1 |
6220350 | Brothers et al. | Apr 2001 | B1 |
6220357 | Carmichael | Apr 2001 | B1 |
6228904 | Yadav et al. | May 2001 | B1 |
6237688 | Burleson et al. | May 2001 | B1 |
6238280 | Ritt et al. | May 2001 | B1 |
6241021 | Bowling | Jun 2001 | B1 |
6250392 | Muth | Jun 2001 | B1 |
6273187 | Voisin, Jr. et al. | Aug 2001 | B1 |
6276452 | Davis et al. | Aug 2001 | B1 |
6276457 | Moffatt et al. | Aug 2001 | B1 |
6279656 | Sinclair et al. | Aug 2001 | B1 |
6287445 | Lashmore et al. | Sep 2001 | B1 |
6302205 | Ryll | Oct 2001 | B1 |
6315041 | Carlisle et al. | Nov 2001 | B1 |
6315050 | Vaynshteyn et al. | Nov 2001 | B2 |
6325148 | Trahan et al. | Dec 2001 | B1 |
6328110 | Joubert | Dec 2001 | B1 |
6341653 | Firmaniuk et al. | Jan 2002 | B1 |
6349766 | Bussear et al. | Feb 2002 | B1 |
6354379 | Miszewski et al. | Mar 2002 | B2 |
6371206 | Mills | Apr 2002 | B1 |
6372346 | Toth | Apr 2002 | B1 |
6382244 | Vann | May 2002 | B2 |
6390195 | Nguyen et al. | May 2002 | B1 |
6390200 | Allamon et al. | May 2002 | B1 |
6394185 | Constien | May 2002 | B1 |
6397950 | Streich et al. | Jun 2002 | B1 |
6403210 | Stuivinga | Jun 2002 | B1 |
6408946 | Marshall et al. | Jun 2002 | B1 |
6419023 | George et al. | Jul 2002 | B1 |
6439313 | Thomeer et al. | Aug 2002 | B1 |
6457525 | Scott | Oct 2002 | B1 |
6467546 | Allamon et al. | Oct 2002 | B2 |
6470965 | Winzer | Oct 2002 | B1 |
6491097 | ONeal et al. | Dec 2002 | B1 |
6491116 | Berscheidt et al. | Dec 2002 | B2 |
6513598 | Moore et al. | Feb 2003 | B2 |
6540033 | Sullivan et al. | Apr 2003 | B1 |
6543543 | Muth | Apr 2003 | B2 |
6561275 | Glass et al. | May 2003 | B2 |
6588507 | Dusterhoft et al. | Jul 2003 | B2 |
6591915 | Burris et al. | Jul 2003 | B2 |
6601648 | Ebinger | Aug 2003 | B2 |
6601650 | Sundararajan | Aug 2003 | B2 |
6612826 | Bauer et al. | Sep 2003 | B1 |
6613383 | George et al. | Sep 2003 | B1 |
6619400 | Brunet | Sep 2003 | B2 |
6634428 | Krauss et al. | Oct 2003 | B2 |
6662886 | Russell | Dec 2003 | B2 |
6675889 | Mullins et al. | Jan 2004 | B1 |
6713177 | George et al. | Mar 2004 | B2 |
6715541 | Pedersen et al. | Apr 2004 | B2 |
6719051 | Hailey, Jr. et al. | Apr 2004 | B2 |
6755249 | Robison et al. | Jun 2004 | B2 |
6776228 | Pedersen et al. | Aug 2004 | B2 |
6779599 | Mullins et al. | Aug 2004 | B2 |
6799638 | Butterfield, Jr. | Oct 2004 | B2 |
6810960 | Pia | Nov 2004 | B2 |
6817414 | Lee | Nov 2004 | B2 |
6831044 | Constien | Dec 2004 | B2 |
6883611 | Smith et al. | Apr 2005 | B2 |
6887297 | Winter et al. | May 2005 | B2 |
6896049 | Moyes | May 2005 | B2 |
6896061 | Hriscu et al. | May 2005 | B2 |
6899176 | Hailey, Jr. et al. | May 2005 | B2 |
6913827 | George et al. | Jul 2005 | B2 |
6926086 | Patterson et al. | Aug 2005 | B2 |
6932159 | Hovem | Aug 2005 | B2 |
6945331 | Patel | Sep 2005 | B2 |
6959759 | Doane et al. | Nov 2005 | B2 |
6973970 | Johnston et al. | Dec 2005 | B2 |
6973973 | Howard et al. | Dec 2005 | B2 |
6983796 | Bayne et al. | Jan 2006 | B2 |
6986390 | Doane et al. | Jan 2006 | B2 |
7013989 | Hammond et al. | Mar 2006 | B2 |
7017664 | Walker et al. | Mar 2006 | B2 |
7017677 | Keshavan et al. | Mar 2006 | B2 |
7021389 | Bishop et al. | Apr 2006 | B2 |
7025146 | King et al. | Apr 2006 | B2 |
7028778 | Krywitsky | Apr 2006 | B2 |
7044230 | Starr et al. | May 2006 | B2 |
7049272 | Sinclair et al. | May 2006 | B2 |
7051805 | Doane et al. | May 2006 | B2 |
7059410 | Bousche et al. | Jun 2006 | B2 |
7090027 | Williams | Aug 2006 | B1 |
7093664 | Todd et al. | Aug 2006 | B2 |
7096945 | Richards et al. | Aug 2006 | B2 |
7096946 | Jasser et al. | Aug 2006 | B2 |
7097906 | Gardner | Aug 2006 | B2 |
7108080 | Tessari et al. | Sep 2006 | B2 |
7111682 | Blaisdell | Sep 2006 | B2 |
7141207 | Jandeska, Jr. et al. | Nov 2006 | B2 |
7150326 | Bishop et al. | Dec 2006 | B2 |
7163066 | Lehr | Jan 2007 | B2 |
7174963 | Bertelsen | Feb 2007 | B2 |
7182135 | Szarka | Feb 2007 | B2 |
7210527 | Walker et | May 2007 | B2 |
7210533 | Starr et al. | May 2007 | B2 |
7217311 | Hong et al. | May 2007 | B2 |
7234530 | Gass | Jun 2007 | B2 |
7252162 | Akinlade et al. | Aug 2007 | B2 |
7255172 | Johnson | Aug 2007 | B2 |
7255178 | Slup et al. | Aug 2007 | B2 |
7264060 | Wills | Sep 2007 | B2 |
7267178 | Krywitsky | Sep 2007 | B2 |
7270186 | Johnson | Sep 2007 | B2 |
7287592 | Surjaatmadja et al. | Oct 2007 | B2 |
7311152 | Howard et al. | Dec 2007 | B2 |
7320365 | Pia | Jan 2008 | B2 |
7322412 | Badalamenti et al. | Jan 2008 | B2 |
7322417 | Rytlewski et al. | Jan 2008 | B2 |
7325617 | Murray | Feb 2008 | B2 |
7328750 | Swor et al. | Feb 2008 | B2 |
7331388 | Vilela et al. | Feb 2008 | B2 |
7337854 | Horn et al. | Mar 2008 | B2 |
7346456 | Le Bemadjiel | Mar 2008 | B2 |
7360593 | Constien | Apr 2008 | B2 |
7360597 | Blaisdell | Apr 2008 | B2 |
7387165 | Lopez de Cardenas et al. | Jun 2008 | B2 |
7401648 | Richard | Jul 2008 | B2 |
7416029 | Telfer et al. | Aug 2008 | B2 |
7426964 | Lynde et al. | Sep 2008 | B2 |
7441596 | Wood et al. | Oct 2008 | B2 |
7445049 | Howard et al. | Nov 2008 | B2 |
7451815 | Hailey, Jr. | Nov 2008 | B2 |
7451817 | Reddy et al. | Nov 2008 | B2 |
7461699 | Richard et al. | Dec 2008 | B2 |
7464764 | Xu | Dec 2008 | B2 |
7472750 | Walker et al. | Jan 2009 | B2 |
7478676 | East, Jr. et al. | Jan 2009 | B2 |
7503390 | Gomez | Mar 2009 | B2 |
7503399 | Badalamenti et al. | Mar 2009 | B2 |
7510018 | Williamson et al. | Mar 2009 | B2 |
7513311 | Gramstad et al. | Apr 2009 | B2 |
7527103 | Huang et al. | May 2009 | B2 |
7537825 | Wardle et al. | May 2009 | B1 |
7552777 | Murray et al. | Jun 2009 | B2 |
7552779 | Murray | Jun 2009 | B2 |
7575062 | East, Jr. | Aug 2009 | B2 |
7591318 | Tilghman | Sep 2009 | B2 |
7600572 | Slup et al. | Oct 2009 | B2 |
7635023 | Goldberg et al. | Dec 2009 | B2 |
7640988 | Phi et al. | Jan 2010 | B2 |
7661480 | Al-Anazi | Feb 2010 | B2 |
7661481 | Todd et al. | Feb 2010 | B2 |
7665537 | Patel et al. | Feb 2010 | B2 |
7686082 | Marsh | Mar 2010 | B2 |
7690436 | Turley et al. | Apr 2010 | B2 |
7699101 | Fripp et al. | Apr 2010 | B2 |
7703511 | Buyers et al. | Apr 2010 | B2 |
7708078 | Stoesz | May 2010 | B2 |
7709421 | Jones et al. | May 2010 | B2 |
7712541 | Loretz et al. | May 2010 | B2 |
7723272 | Crews et al. | May 2010 | B2 |
7726406 | Xu | Jun 2010 | B2 |
7757773 | Rytlewski | Jul 2010 | B2 |
7762342 | Richard et al. | Jul 2010 | B2 |
7770652 | Barnett | Aug 2010 | B2 |
7775284 | Richards et al. | Aug 2010 | B2 |
7775286 | Duphorne | Aug 2010 | B2 |
7784543 | Johnson | Aug 2010 | B2 |
7798225 | Giroux et al. | Sep 2010 | B2 |
7798226 | Themig | Sep 2010 | B2 |
7798236 | McKeachnie et al. | Sep 2010 | B2 |
7806189 | Frazier | Oct 2010 | B2 |
7806192 | Foster et al. | Oct 2010 | B2 |
7810553 | Cruickshank et al. | Oct 2010 | B2 |
7810567 | Daniels et al. | Oct 2010 | B2 |
7819198 | Birckhead et al. | Oct 2010 | B2 |
7828055 | Willauer et al. | Nov 2010 | B2 |
7833944 | Munoz et al. | Nov 2010 | B2 |
7849927 | Herrera | Dec 2010 | B2 |
7855168 | Fuller et al. | Dec 2010 | B2 |
7861781 | D'Arcy | Jan 2011 | B2 |
7874365 | East, Jr. et al. | Jan 2011 | B2 |
7878253 | Stowe et al. | Feb 2011 | B2 |
7896091 | Williamson et al. | Mar 2011 | B2 |
7897063 | Perry et al. | Mar 2011 | B1 |
7900696 | Nish et al. | Mar 2011 | B1 |
7900703 | Clark et al. | Mar 2011 | B2 |
7909096 | Clark et al. | Mar 2011 | B2 |
7909104 | Bjorgum | Mar 2011 | B2 |
7909110 | Sharma et al. | Mar 2011 | B2 |
7913765 | Crow et al. | Mar 2011 | B2 |
7931093 | Foster et al. | Apr 2011 | B2 |
7938191 | Vaidya | May 2011 | B2 |
7946340 | Surjaatmadja et al. | May 2011 | B2 |
7958940 | Jameson | Jun 2011 | B2 |
7963331 | Surjaatmadja et al. | Jun 2011 | B2 |
7963340 | Gramstad et al. | Jun 2011 | B2 |
7963342 | George | Jun 2011 | B2 |
7980300 | Roberts et al. | Jul 2011 | B2 |
7987906 | Troy | Aug 2011 | B1 |
8020619 | Robertson et al. | Sep 2011 | B1 |
8020620 | Daniels et al. | Sep 2011 | B2 |
8025104 | Cooke, Jr. | Sep 2011 | B2 |
8028767 | Radford et al. | Oct 2011 | B2 |
8033331 | Themig | Oct 2011 | B2 |
8039422 | Al-Zahrani | Oct 2011 | B1 |
8056628 | Whitsitt et al. | Nov 2011 | B2 |
8056638 | Clayton et al. | Nov 2011 | B2 |
8109340 | Doane et al. | Feb 2012 | B2 |
8127856 | Nish et al. | Mar 2012 | B1 |
8211248 | Marya | Jul 2012 | B2 |
8231947 | Vaidya et al. | Jul 2012 | B2 |
8276670 | Patel | Oct 2012 | B2 |
8327931 | Agrawal et al. | Dec 2012 | B2 |
8403037 | Agrawal et al. | Mar 2013 | B2 |
20010045285 | Russell | Nov 2001 | A1 |
20010045288 | Allamon et al. | Nov 2001 | A1 |
20020000319 | Brunet | Jan 2002 | A1 |
20020007948 | Bayne et al. | Jan 2002 | A1 |
20020014268 | Vann | Feb 2002 | A1 |
20020066572 | Muth | Jun 2002 | A1 |
20020104616 | De et al. | Aug 2002 | A1 |
20020136904 | Glass et al. | Sep 2002 | A1 |
20020162661 | Krauss et al. | Nov 2002 | A1 |
20030037925 | Walker et al. | Feb 2003 | A1 |
20030075326 | Ebinger | Apr 2003 | A1 |
20030104147 | Bretschneider et al. | Jun 2003 | A1 |
20030111728 | Thai et al. | Jun 2003 | A1 |
20030141060 | Hailey et al. | Jul 2003 | A1 |
20030141061 | Hailey et al. | Jul 2003 | A1 |
20030141079 | Doane et al. | Jul 2003 | A1 |
20030150614 | Brown et al. | Aug 2003 | A1 |
20030155114 | Pedersen et al. | Aug 2003 | A1 |
20030155115 | Pedersen et al. | Aug 2003 | A1 |
20030159828 | Howard et al. | Aug 2003 | A1 |
20030164237 | Butterfield | Sep 2003 | A1 |
20030183391 | Hriscu et al. | Oct 2003 | A1 |
20040005483 | Lin | Jan 2004 | A1 |
20040020832 | Richards et al. | Feb 2004 | A1 |
20040045723 | Slup et al. | Mar 2004 | A1 |
20040089449 | Walton et al. | May 2004 | A1 |
20040159428 | Hammond et al. | Aug 2004 | A1 |
20040182583 | Doane et al. | Sep 2004 | A1 |
20040256109 | Johnson | Dec 2004 | A1 |
20040256157 | Tessari et al. | Dec 2004 | A1 |
20050034876 | Doane et al. | Feb 2005 | A1 |
20050051329 | Blaisdell | Mar 2005 | A1 |
20050069449 | Jackson et al. | Mar 2005 | A1 |
20050102255 | Bultman | May 2005 | A1 |
20050161224 | Starr et al. | Jul 2005 | A1 |
20050165149 | Chanak et al. | Jul 2005 | A1 |
20050194143 | Xu et al. | Sep 2005 | A1 |
20050205264 | Starr et al. | Sep 2005 | A1 |
20050205266 | Todd et al. | Sep 2005 | A1 |
20050241824 | Burris, II et al. | Nov 2005 | A1 |
20050241825 | Burris, II et al. | Nov 2005 | A1 |
20050257936 | Lehr | Nov 2005 | A1 |
20050279501 | Surjaatmadja et al. | Dec 2005 | A1 |
20060012087 | Matsuda et al. | Jan 2006 | A1 |
20060045787 | Jandeska, Jr. | Mar 2006 | A1 |
20060057479 | Niimi et al. | Mar 2006 | A1 |
20060081378 | Howard et al. | Apr 2006 | A1 |
20060102871 | Wang et al. | May 2006 | A1 |
20060108126 | Horn et al. | May 2006 | A1 |
20060116696 | Odermatt et al. | Jun 2006 | A1 |
20060124310 | Lopez de Cardenas | Jun 2006 | A1 |
20060124312 | Rytlewski et al. | Jun 2006 | A1 |
20060131011 | Lynde et al. | Jun 2006 | A1 |
20060144515 | Tada et al. | Jul 2006 | A1 |
20060150770 | Freim, III | Jul 2006 | A1 |
20060151178 | Howard et al. | Jul 2006 | A1 |
20060162927 | Walker et al. | Jul 2006 | A1 |
20060213670 | Bishop et al. | Sep 2006 | A1 |
20060231253 | Vilela et al. | Oct 2006 | A1 |
20060283592 | Sierra et al. | Dec 2006 | A1 |
20070017674 | Blaisdell | Jan 2007 | A1 |
20070017675 | Hammami et al. | Jan 2007 | A1 |
20070029082 | Giroux et al. | Feb 2007 | A1 |
20070039741 | Hailey | Feb 2007 | A1 |
20070044966 | Davies et al. | Mar 2007 | A1 |
20070051521 | Fike et al. | Mar 2007 | A1 |
20070054101 | Sigalas et al. | Mar 2007 | A1 |
20070057415 | Katagiri et al. | Mar 2007 | A1 |
20070062644 | Nakamura et al. | Mar 2007 | A1 |
20070074873 | McKeachnie et al. | Apr 2007 | A1 |
20070107908 | Vaidya et al. | May 2007 | A1 |
20070108060 | Park | May 2007 | A1 |
20070119600 | Slup et al. | May 2007 | A1 |
20070131912 | Simone et al. | Jun 2007 | A1 |
20070151009 | Conrad, III et al. | Jul 2007 | A1 |
20070151769 | Slutz et al. | Jul 2007 | A1 |
20070169935 | Akbar et al. | Jul 2007 | A1 |
20070181224 | Marya | Aug 2007 | A1 |
20070185655 | Le Bemadjiel | Aug 2007 | A1 |
20070187095 | Walker et al. | Aug 2007 | A1 |
20070221373 | Murray | Sep 2007 | A1 |
20070221384 | Murray | Sep 2007 | A1 |
20070261862 | Murray | Nov 2007 | A1 |
20070272411 | Lopez De Cardenas et al. | Nov 2007 | A1 |
20070272413 | Rytlewski et al. | Nov 2007 | A1 |
20070277979 | Todd et al. | Dec 2007 | A1 |
20070284109 | East et al. | Dec 2007 | A1 |
20070299510 | Venkatraman et al. | Dec 2007 | A1 |
20080020923 | Debe et al. | Jan 2008 | A1 |
20080047707 | Boney et al. | Feb 2008 | A1 |
20080060810 | Nguyen et al. | Mar 2008 | A9 |
20080066923 | Xu | Mar 2008 | A1 |
20080066924 | Xu | Mar 2008 | A1 |
20080078553 | George | Apr 2008 | A1 |
20080099209 | Loretz et al. | May 2008 | A1 |
20080115932 | Cooke | May 2008 | A1 |
20080149325 | Crawford | Jun 2008 | A1 |
20080149345 | Marya et al. | Jun 2008 | A1 |
20080169105 | Williamson et al. | Jul 2008 | A1 |
20080179104 | Zhang et al. | Jul 2008 | A1 |
20080202764 | Clayton et al. | Aug 2008 | A1 |
20080223586 | Barnett | Sep 2008 | A1 |
20080223587 | Cherewyk | Sep 2008 | A1 |
20080236829 | Lynde | Oct 2008 | A1 |
20080248205 | Blanchet et al. | Oct 2008 | A1 |
20080277109 | Vaidya | Nov 2008 | A1 |
20080277980 | Koda et al. | Nov 2008 | A1 |
20080296024 | Huang et al. | Dec 2008 | A1 |
20080314581 | Brown | Dec 2008 | A1 |
20080314588 | Langlais et al. | Dec 2008 | A1 |
20090044946 | Schasteen et al. | Feb 2009 | A1 |
20090044949 | King et al. | Feb 2009 | A1 |
20090084556 | Richards et al. | Apr 2009 | A1 |
20090107684 | Cooke, Jr. | Apr 2009 | A1 |
20090145666 | Radford et al. | Jun 2009 | A1 |
20090159289 | Avant et al. | Jun 2009 | A1 |
20090178808 | Williamson et al. | Jul 2009 | A1 |
20090194273 | Surjaatmadja et al. | Aug 2009 | A1 |
20090205841 | Kluge et al. | Aug 2009 | A1 |
20090226704 | Kauppinen et al. | Sep 2009 | A1 |
20090242202 | Rispler et al. | Oct 2009 | A1 |
20090242208 | Bolding | Oct 2009 | A1 |
20090242214 | Foster et al. | Oct 2009 | A1 |
20090255667 | Clem et al. | Oct 2009 | A1 |
20090255684 | Bolding | Oct 2009 | A1 |
20090255686 | Richard et al. | Oct 2009 | A1 |
20090260817 | Gambier et al. | Oct 2009 | A1 |
20090266548 | Olsen et al. | Oct 2009 | A1 |
20090272544 | Giroux et al. | Nov 2009 | A1 |
20090283270 | Langeslag | Nov 2009 | A1 |
20090293672 | Mirchandani et al. | Dec 2009 | A1 |
20090301730 | Gweily | Dec 2009 | A1 |
20090308588 | Howell et al. | Dec 2009 | A1 |
20090317556 | Macary | Dec 2009 | A1 |
20100025255 | Su et al. | Feb 2010 | A1 |
20100032151 | Duphorne | Feb 2010 | A1 |
20100044041 | Smith et al. | Feb 2010 | A1 |
20100051278 | Mytopher et al. | Mar 2010 | A1 |
20100089583 | Xu et al. | Apr 2010 | A1 |
20100089587 | Stout | Apr 2010 | A1 |
20100101803 | Clayton et al. | Apr 2010 | A1 |
20100122817 | Surjaatmadja et al. | May 2010 | A1 |
20100139930 | Patel et al. | Jun 2010 | A1 |
20100200230 | East, Jr. et al. | Aug 2010 | A1 |
20100236793 | Bjorgum | Sep 2010 | A1 |
20100236794 | Duan et al. | Sep 2010 | A1 |
20100243254 | Murphy et al. | Sep 2010 | A1 |
20100252273 | Duphorne | Oct 2010 | A1 |
20100252280 | Swor et al. | Oct 2010 | A1 |
20100270031 | Patel | Oct 2010 | A1 |
20100294510 | Holmes | Nov 2010 | A1 |
20110005773 | Dusterhoft et al. | Jan 2011 | A1 |
20110036592 | Fay | Feb 2011 | A1 |
20110048743 | Stafford et al. | Mar 2011 | A1 |
20110056692 | Lopez de Cardenas et al. | Mar 2011 | A1 |
20110067872 | Agrawal | Mar 2011 | A1 |
20110067889 | Marya et al. | Mar 2011 | A1 |
20110067890 | Themig | Mar 2011 | A1 |
20110100643 | Themig et al. | May 2011 | A1 |
20110127044 | Radford et al. | Jun 2011 | A1 |
20110132143 | Xu | Jun 2011 | A1 |
20110132612 | Agrawal | Jun 2011 | A1 |
20110132619 | Agrawal | Jun 2011 | A1 |
20110132620 | Agrawal | Jun 2011 | A1 |
20110132621 | Agrawal | Jun 2011 | A1 |
20110135530 | Xu | Jun 2011 | A1 |
20110135953 | Xu | Jun 2011 | A1 |
20110136707 | Xu | Jun 2011 | A1 |
20110139465 | Tibbles et al. | Jun 2011 | A1 |
20110147014 | Chen et al. | Jun 2011 | A1 |
20110186306 | Marya et al. | Aug 2011 | A1 |
20110214881 | Newton et al. | Sep 2011 | A1 |
20110247833 | Todd et al. | Oct 2011 | A1 |
20110253387 | Ervin | Oct 2011 | A1 |
20110259610 | Shkurti et al. | Oct 2011 | A1 |
20110277987 | Frazier | Nov 2011 | A1 |
20110277989 | Frazier | Nov 2011 | A1 |
20110284232 | Huang | Nov 2011 | A1 |
20110284240 | Chen et al. | Nov 2011 | A1 |
20110284243 | Frazier | Nov 2011 | A1 |
20120118583 | Johnson et al. | May 2012 | A1 |
20120130470 | Agnew et al. | May 2012 | A1 |
20120168152 | Casciaro | Jul 2012 | A1 |
20120211239 | Kritzler et al. | Aug 2012 | A1 |
20120292053 | Xu et al. | Nov 2012 | A1 |
20130048304 | Agrawal et al. | Feb 2013 | A1 |
20130105159 | Alvarez | May 2013 | A1 |
20130133897 | Baihly et al. | May 2013 | A1 |
Number | Date | Country |
---|---|---|
1076968 | Oct 1993 | CN |
1255879 | Jun 2000 | CN |
101457321 | Jun 2010 | CN |
101457321 | Jun 2010 | CN |
1857570 | Nov 2007 | EP |
1857570 | Nov 2007 | EP |
912956 | Dec 1962 | GB |
61067770 | Apr 1986 | JP |
7-54008 | Feb 1995 | JP |
08232029 | Sep 1996 | JP |
8-232029 | Oct 1996 | JP |
2010502840 | Jan 2010 | JP |
95-0014350 | Nov 1995 | KR |
2008079485 | Jul 2008 | WO |
2009079745 | Jul 2009 | WO |
2011071902 | Jun 2011 | WO |
2011071910 | Jun 2011 | WO |
Entry |
---|
S. L. Lee, C. W. Hsu, F. K. Hsu, C. Y. Chou, C. K. Lin, C. W. Weng, Effects of Ni addition on hydrogen storage properties of Mg17Al12 alloy, Materials Chemistry and Physics, 2011, 126, 319-324. |
M. Liu, P. J. Uggowitzer, A.V. Nagasekhar, P. Schmutz, M. Easton, G. L. Song, A. Atrens, Calculated phase diagrams and the corrosion of die-cast Mg—Al alloys, Corrosion Science, 2009, 51, 606-619. |
M. Bououdina, Z.X. Guo, Comparative study of mechanical alloying of (Mg+Al) and (Mg+Al+Ni) mixtures for hydrogen storage, J. Alloys. Compds, 2002, 336, 222-231. |
T.J. Bastow, S. Celotto, Clustering and formation of nano-precipitates in dilute aluminum and magnesium alloys, Materials science and Engineering, 2003, C23, 757-762. |
H. Watarai, Trend of research and development for magnesium alloys—reducing the weight of structural materials in motor vehicles, (2006) Science and technology trends, Quaterly review No. 18, 84-97. |
Patent Cooperation Treaty International Search Report and Written Opinion for International Patent Application No. PCT/US2012/034978 filed on Apr. 25, 2012, mailed on Nov. 12, 2012. |
International Search Report and Written Opinion for International application No. PCT/US2012/034973 filed on Apr. 25, 2012, mailed on Nov. 29, 2012. |
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority; PCT/US2011/047000; Korean Intellectual Property Office; Mailed Dec. 26, 2011; 8 pages. |
Canadian Pat. App. No. 2783241 filed on Dec. 7, 2010 titled Nanomatrix Powder Metal Compact. |
Canadian Pat. App. No. 2783346 filed on Dec. 7, 2010, published on Jun. 16, 2011 for “Engineered Powder Compact Composite Material”. |
International Search Report and Written Opinion of the International Searching Authority, or the Declaration for PCT/US2011/058105 mailed from the Korean Intellectual Property Office on May 1, 2012. |
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration mailed on Feb. 23, 2012 (Dated Feb. 22, 2012) for PCT/US2011/043036. |
International Search Report and Written Opinion of the International Searching Authority for International Application No. PCT/US2011/058099 (filed on Oct. 27, 2011), mailed on May 11, 2012. |
Flow Control Systems, [online]; [retrieved on May 20, 2010]; retrieved from the Internet http://www.bakerhughes.com/products-and-services/completions-and-productions/well-completions/packers-and-flow-control/flow-control-systems. |
Optisleeve Sliding Sleeve, [online]; [retrieved on Jun. 25, 2010]; retrieved from the Internet weatherford.com/weatherford/groups/.../weatherfordcorp/WFT033159.pdf. |
“Sliding Sleeve”, Omega Completion Technology Ltd, Sep. 29, 2009, retrieved on: www.omega-completion.com. |
Welch, William R. et al., “Nonelastomeric Sliding Sleeve Maintains Long Term Integrity in HP/HT Application: Case Histories.” [Abstract Only], SPE Eastern Regional Meeting, Oct. 23-25, 1996, Columbus. Ohio. |
Ambat, et al.; “Electroless Nickel-Plating on AZ91D Magnesium Alloy: Effect of Substrate Microstructure and Plating Parameters”; Surface and Coatings Technology; 179; pp. 124-134; (2004). |
Chang, et al.; “Electrodeposition of Aluminum on Magnesium Alloy in Aluminum Chloride (A1C13)-1-ethyl-3-methylimidazolium chloride (EMIC) Ionic Liquid and Its Corrosion Behavior”; Electrochemistry Communications; 9; pp. 1602-1606; (2007). |
Forsyth, et al.; “An Ionic Liquid Surface Treatment for Corrosion Protection of Magnesium Alloy AZ31”; Electrochem. Solid-State Lett./ 9(11); Abstract only; 1 page. |
Forsyth, et al.; “Exploring Corrosion Protection of Mg Via Ionic Liquid Pretreatment”; Surface & Coatings Technology; 201; pp. 4496-4504; (2007). |
Hsiao et al.; “Effect of Heat Treatment on Anodization and Electrochemical Behavior of AZ91D Magnesium Alloy”; J. Mater. Res.; 20(10); pp. 2763-2771;(2005). |
Hsiao, et al.; “Anodization of AZ91D Magnesium Alloy in Silicate-Containing Electrolytes”; Surface & Coatings Technology; 199; pp. 127-134; (2005). |
Hsiao, et al.; “Baking Treatment Effect on Materials Characteristics and Electrochemical Behavior of anodic Film Formed on AZ91D Magnesium Alloy”; Corrosion Science; 49; pp. 781-793; (2007). |
Hsiao, et al.; “Characterization of Anodic Films Formed on AZ91D Magnesium Alloy”; Surface & Coatings Technology; 190; pp. 299-308; (2005). |
Huo et al.; “Corrosion of AZ91D Magnesium Alloy with a Chemical Conversion Coating and Electroless Nickel Layer”; Corrosion Science: 46; pp. 1467-1477; (2004). |
Liu, et al.; “Electroless Nickel Plating on AZ91 Mg Alloy Substrate”; Surface & Coatings Technology; 200; pp. 5087-5093; (2006). |
Lunder et al.; “The Role of Mg17Al12 Phase in the Corrosion of Mg Alloy AZ91”; Corrosion; 45(9); pp. 741-748; (1989). |
Pardo, et al.; “Corrosion Behaviour of Magnesium/Aluminium Alloys in 3.5 wt% NaC1”; Corrosion Science; 50; pp. 823-834; (2008). |
Shi et al.; “Influence of the Beta Phase on the Corrosion Performance of Anodised Coatings on Magnesium-Aluminium Alloys”; Corrosion Science; 47; pp. 2760-2777; (2005). |
Song, et al.; “Corrosion Mechanisms of Magnesium Alloys”; Advanced Engineering Materials; 1(1); pp. 11-33; (1999). |
Song, Guangling; “Recent Progress in Corrosion and Protection of Magnesium Alloys”; Advanced Engineering Materials; 7(7); pp. 563-586; (2005). |
Song, et al.; “Influence of Microstructure on the Corrosion of Diecast AZ91D”; Corrosion Science; 41; pp. 249-273; (1999). |
Song, et al.; “Corrosion Behaviour of AZ21, AZ501 and AZ91 in Sodium Chloride”; Corrosion Science; 40(10); pp. 1769-1791; (1998). |
Song, et al.; “Understanding Magnesium Corrosion”; Advanced Engineering Materials; 5; No. 12; pp. 837-858; (2003). |
Zhang, et al; “Study on the Environmentally Friendly Anodizing of AZ91D Magnesium Alloy”; Surface and Coatings Technology: 161; pp. 36-43; (2002). |
Chun-Lin, Li. “Design of Abrasive Water Jet Perforation and Hydraulic Fracturing Tool,” Oil Field Equipment, Mar. 2011. |
Notification of Transmittal of The International Search Report and the Written Opinion of the International Searching Authority; PCT/US2010/059257; Korean Intellectual Property Office; Mailed Jul. 27, 2011. |
International Search Report and Written Opinion; Mail Date Jul. 28, 2011; International Application No. PCT/US2010/057763; International Filing date Nov. 23, 2010; Korean Intellectual Property Office; International Search Report 7 pages; Written Opinion 3 pages. |
Constantine, Jesse. “Selective Production of Horizontal Openhole Completions Using ECP and Sliding Sleeve Technology.” SPE Rocky Mountain Regional Meeting, May 15-18, 1999, Gillette, Wyoming. [Abstract Only]. |
International Search Report and Written Opinion; International Application No. PCT/US2012/038622; International Filing Date: May 18, 2012; Date of Mailing Dec. 6, 2012; 12 pages. |
Shumbera et al. “Improved Water Injector Performance in a Gulf of Mexico Deepwater Development Using an Openhole Frac Pack Completion and Downhole Filter System: Case History.” SPE Annual Technical Conference and Exhibition, Oct. 5-8, 2003, Denver, Colorado. [Abstract Only]. |
Vickery, Harold and Christian Bayne, “New One-Trip Multi-Zone Frac Pack System with Positive Positioning.” European Petroleum Conference, Oct. 29-31, 2002, Aberdeen, UK. [Abstract Only]. |
Baker Oil Tools. “Z-Seal Metal-to-Metal Expandable Sealing Device Uses Expanding Metal in Place of Elastomers,” Nov. 6, 2006. |
Number | Date | Country | |
---|---|---|---|
20130029886 A1 | Jan 2013 | US |